
materials

Review

Hydrophobic Thin Films from Sol–Gel Processing:
A Critical Review

Matteo Poddighe and Plinio Innocenzi *

����������
�������

Citation: Poddighe, M.; Innocenzi, P.

Hydrophobic Thin Films from

Sol–Gel Processing: A Critical Review.

Materials 2021, 14, 6799. https://

doi.org/10.3390/ma14226799

Academic Editor: Ahalapitiya

H Jayatissa

Received: 24 September 2021

Accepted: 8 November 2021

Published: 11 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratory of Materials Science and Nanotechnology (LMNT), Department of Biomedical Sciences, University
of Sassari, CR-INSTM, Viale San Pietro, 07100 Sassari, Italy; m.poddighe16@studenti.uniss.it
* Correspondence: plinio@uniss.it

Abstract: Fabrication of hydrophobic thin films from a liquid phase is a hot topic with critical
technological issues. Interest in the production of hydrophobic surfaces is growing steadily due to
their wide applications in several industrial fields. Thin films from liquid phases can be deposited
on different types of surfaces using a wide variety of techniques, while the design of the precursor
solution offers the possibility of fine-tuning the properties of the hydrophobic coating layers. A
general trend is the design of multifunctional films, which have different properties besides being
hydrophobic. In the present review, we have described the synthesis through sol–gel processing of
hydrophobic films enlightening the main achievements obtained in the field.

Keywords: sol–gel process; hydrophobic; wettability; contact angle; surfaces

1. Introduction

The control of surface wettability is a crucial technological issue for several fields, such
as microelectronics, separation membranes, car windshields, self-cleaning surfaces, traffic
indicators and biotechnology [1–6]. The leading technologies used for the deposition of
hydrophobic/hydrophilic thin films and modification of surfaces include chemical vapour
deposition (CVD) [7], laser ablation [8] and plasma treatments [9]. Superhydrophobic sur-
faces have different applications in self-cleaning, anti-icing, and anti-sticking applications.

Besides physical deposition techniques also the wet chemistry route, in particular
sol–gel processing [10], has received great interest for the fabrication of highly controlled
hydrophobic-hydrophilic systems.

A class of compounds that are well suited for a fine design of thin films, including
the wettability, are the alkoxides and organically modified alkoxides or organosilanes
(Figure 1). They are employed as the reactive compounds for sol–gel chemistry to prepare
functional thin films but are also used as surface modifiers and primers. The organically
modified alkoxides are characterized by one or more covalent Si-C bonds that do not react
during the sol–gel reactions of hydrolysis and condensation [11]. They can be applied for
modifying the surface of different types of materials, e.g., glass or silicon wafers, from
hydrophilic to hydrophobic and vice versa, through the chemical and physical tailoring
of the surfaces [12]. An advantage of the solution processing route is the possibility of
achieving a highly tailored coating design in terms of composition, thickness, surface
roughness, contact angle, and mechanical properties. Thin layers can be simply applied on
a wide variety of surfaces, i.e., ceramics, glass, metals, and polymers of different shape and
compositions. The film can be deposited using several deposition techniques, such as dip-
coating, spin-coating, doctor blade, and spray-coating, just to name the main one [13,14].
The composition of the functional coating can be largely adjusted by controlling the sol–gel
chemistry. Alkoxides or organically modified alkoxides can be used alone or in combination
for preparing the precursor solution. Organically modified alkoxides, in particular, offer the
possibility of adding specific functionalities to the coatings by the organic modifier, such
as epoxy [15], methyl, or aminic groups. Playing with composition, amount, and type of
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functional organic groups, thin films with specific hydrophilic-hydrophobic properties have
been developed and applied in several fields [16,17]. The development of these functional
coatings needs careful control of the mechanical properties and chemical durability [18,19].
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On the other hand, deposition of thin films via solution processing has the advantage
to allow a very fine design of the functional layer–substrate systems.
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1.1. From Sol–Gel Chemistry to the Functional Coatings

Alkoxides are at the ground of sol–gel processing, widely studied and applied to
deposit thin films on different surfaces. Sol–gel coatings can play a functional role, for
instance, in photonics and microelectronic, but can also be simply applied as surface
modifiers. Sol–gel methods have been employed for producing nanomaterials, micro
and nanoparticle, [20–24], due to the simplicity of synthesis, the possibility of controlling
particle size, the control of particle order and distribution, the possibility of obtaining both
dense and porous structures under mild reaction conditions [11].

The phase transition from a sol to a gel, which is not a thermodynamic event, is
governed by the hydrolysis and condensation reactions leading to the formation of an
interconnected network (Figure 2) [25].
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Figure 2. Illustration of the reaction of silicon alkoxides to form a silica network. R = alkoxy.

The sol–gel process can be described in a simplified and general way as soft-chemistry
route to prepare oxide and hybrid organic-inorganic materials from low-temperature
processing. The synthesis can be described as a multistep method involving sequential
synthesis steps (Figure 3):

â First step: Sol formation. A sol is obtained by mixing the precursors in water, organic
solvent (e.g., methanol or ethanol) with a proper catalyst;

â Second step: Gel formation. The proceeds of the hydrolysis and condensation re-
actions allows the sol to gel transition with the formation of two continuous and
interconnected phase, one liquid (the sol) and the other solid (the inorganic or hybrid
network). This step is used only if a bulk must be obtained. In the case of a film
deposition sol of controlled aging are employed. Aging governs the dimensions and
structure of inorganic clusters in the precursor sols;

â Third step: Film deposition. The precursor sols are used to deposited thin films on
different substrates via a specific deposition method (i.e., spin or dip-coating);

â Fourth step: Drying. After film deposition the residual solvent is removed through a
drying process to obtain a xerogel;

â Fifth step: Firing. The film is condensed using a controlled heat-treatment to increase
its density and mechanical properties. This step must be carefully controlled to avoid
cracking or delamination from the substrate.

These advantages make it also possible to fabricate organic-inorganic hybrid surfaces
where the organic compounds are bonded to an inorganic matrix. Optical waveguides,
optical limiters, optical switches have been obtained using hybrid organic-inorganic coat-
ings [26].

In a hybrid film, the organic component plays an important role because it changes the
functional properties of the material and affects its mechanical properties and durability. It
has been observed that as the length of the organic chain increases, the mechanical and
adhesion properties of the film decrease [27].
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1.2. Properties Design

The surface energy, the contact angle and the surface roughness are the key parameters
to keep under control for the fabrication of hydrophobic thin films.

There are several ways to calculate the surface energy of a film, such as Berthelot
method, Antonow method, Zisman approach, Good and Garifalco approach, Owens model,
Neaumann model and Fowkes model [28–30]. Although there is still a heated debate about
the validity of the methods, the most commonly used is the Fowkes method [31]. In the
simplest case, for a solid-liquid system, the associated surface energy is given by:

γs = γs + γl − 2
√

γs
d + γl

d (1)

where γs is the surface tension of the solid, γl is the surface tension of the liquid, γs
d is the

surface tension including the London forces associated with the solid and γl
d is the surface

tension including the London forces associated with the liquid.
Measuring the contact angle is one of the fastest and most common methods for

evaluating the hydrophobic-hydrophilic nature of a surface. The earliest studies of contact
angle and surface wettability date back to the early 1800s, when Thomas Young attempted
to explain his hypothesis about the factors influencing interactions at the interface between
a smooth solid and a liquid [32]. Two other regimes were later formulated, the Wenzel [33]
and the Cassie–Baxter [34] regimes (Figure 4).
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A surface is considered hydrophobic when the contact angle between the water droplet
and the surface is greater than 90◦ and superhydrophobic when the contact angle is greater
than 150◦.
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A classic example of Young’s regime is that proposed by C. Lv et al. with a hydropho-
bic film fabricated by photolithography and etching of inductively coupled plasma [35]. T.
Han et al. reported a work on the synthesis of a titanium oxide film modified with fluori-
nated reagents, with the aim of studying the structural modification of the surface to obtain
a roughness belonging to the Wenzel regime [36]. A study validating the Cassie–Baxter
regime has been reported by E. Bormashenko et al. [37], who studied the effect of three
different micro-texturing of polymers on metal surfaces.

One of the main parameters affecting the hydrophobicity of a surface is roughness.
The investigation of surface morphology has led to the discovery of the importance of
roughness in the hydrophobic properties of an interface. A well-ordered structure with
different degrees of porosity leads to an increase in the hydrophobic character due to the
amount of air between the surface and the water droplet [38].

In general, it is possible to convert the hydrophilic character of a surface into a
hydrophobic one applying the proper structural modification [39]. A. Marmur et al. have
described an ideal method for designing a hydrophobic surface [40]. In their work, they
have studied the parameters that affect the hydrophobicity of the surface, taking into
account mainly two morphological models (Figure 5): the flat-top and the semicircular.
Both models follow the Cassie–Baxter regime. In the flat-top model, the water droplet
does not enter between the pillars but stays on their surface, thanks to the air trapped
at the interface. In the semicircular model, the pillars have a rounded shape, which
causes the water droplet to flow over them, penetrating the structure and decreasing the
hydrophobic character.
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B. J. Basu and co-workers [41] obtained an interface with a crater-like roughness using
hydrophobic silica nanoparticles (hexamethyldisilazane (HMDS)—treated fumed silica) in
sols of TEOS and MTES. The films, deposited by spray or dip-coating, have an irregular
rugosity as a function of silica nanoparticle content. Interestingly, the concentration of
the silica nanoparticles affects the hydrophobicity (Figure 6). However, only the MTES
composite films are crack-free and remain superhydrophobic (160◦ contact angle) up to
thermal treatments of 400 ◦C, when the methyl groups degrade.

The needle-like structure is the best morphology to achieve maximum hydrophobic-
ity, but the poor mechanical strength does not make it worthwhile for real applications.
(Figure 7) [42].

Several different approaches have been used to deposit thin films via sol–gel process-
ing with the purpose of controlling its hydrophobic-hydrophilic properties. One of main
differences is due to the deposition technique, they can be single or multiple steps via
spin-coating, dip-coating or spray-coating. Moreover, the sol can incorporate nanoparticles
whose surface can be also modified; the colloidal solution is then used for the deposition of
hydrophobic films.
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2. One-Step Surface Modification

The one-step deposition of functional layers via solution processing is the simplest
method and from the industrial point of view has several advantages as reduces the
processing time and complexity of the process. It also offers the possibility of large-scale
implementation. In general, a hybrid organic-inorganic single layer is enough to modify
the contact angle of the material. The precursor is obtained by controlled co-hydrolysis
and condensation of different alkoxides to obtain a homogeneous and transparent sol [43].
The resulting film is usually composed of a silica network modified with an organic group,
R’, which could play the role of the hydrophobic moiety of the interface (Figure 8).

A superhydrophobic hybrid film has been obtained by a one-pot synthesis, using
MTES and PhTMS as precursors. Methyl and phenyl are the silica network modifiers. The
precursor sol results from the mixing of MTES, methanol, water, and PhTMS which is
added in a second step to react with MTES. The resulting sol has been deposited on a glass
substrate via dip-coating. A thermal treatment at 150 ◦C is enough to densify the coating. It
is important to note that the thermal treatment temperature is a critical parameter because
it should be high enough to densify the films without degrading the organic groups. This
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MTES-PhTES layer reaches a very high contact angle, 164◦, showing a superhydrophobic
character [44]. Superhydrophobic coatings can be also obtained using hybrid TEOS-VTMS
organic-inorganic precursor sols (contact angle 144◦) [45] and TMOS-TMCS (contact angle
120◦) [46]. Both the sols have been synthesised employing synthesis similar to those
described above and have been deposited by dip-coating on a glass substrate. The effect
of the functional groups (phenyl, vinyl, and methyl in PhTMS, VTMS and TMCS) leads
to porous structures with a different degree of order (PhTMS pore size 200–1300 nm,
VTMS pore size ~1000 nm, TMCS pore size 100–500 nm). The presence of pores (Figure 9)
within these films increases the amount of air at the interface with the water droplet, thus
limiting the contact with the surface. In these cases, the hydrophobic character of the
surface increases.
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Table 1 lists the main results reported in the literature for one-pot syntheses of hy-
drophobic surfaces. The technique has been employed on different substrates and using
several deposition techniques, confirming the versatility of the technique.

Table 1. One-pot syntheses of hydrophobic silica films.

Silicon
Alkoxide

Organically
Modified
Alkoxide

Substrate Coating Method Contact Angle/◦ Data from Ref.

TEOS methyl (MTES) Glass Dip-coating 160 [47]

TEOS HDMS Glass Dip- and
Spray-coating 166 [48]

TEOS VTMS Glass Dip-coating 145 [49]
TEOS TMES Glass Dip-coating 151 [50]
TEOS phenyl Glass Dip-coating 133 [51]
TEOS PMHS PMMA Dip-coating 125 [52]
TEOS OTES Glass Dip-coating 125 [53]
TMOS HMDS Stainless steel plate Dip-coating 145 [54]

3. Two-Steps Surface Modification

This process consists of coating the substrate using two different layers. Generally, the
first one is silica and the second one is a hybrid coating (Figure 10). Silica films obtained by
sol–gel processing are, in general, hydrophilic. The number of residual hydroxyls, which
results from the synthesis and thermal treatment of the silica films, control the contact
angle [46].
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the film.

The OH groups can be used to modify the silica surface, for instance, attaching specific
functional groups.

Although more steps are required compared to a single layer deposition, the two-stage
process allows obtaining a controlled functional layer with a highly homogeneous distribu-
tion of the organic functional groups over the entire surface, modifying the morphology of
the interface and increasing the thickness and roughness [55].

With a two-step approach, films with high hydrophobic properties have been obtained,
for example a MTMS-TMCS hybrid film. The precursor sol has been prepared by mixing
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MTMS, methanol, and water, and has been catalysed by NH4OH. A glass substrate is then
immersed in the sol by dip-coating for 12 h at room temperature. The resulting film is
heat-treated at 150 ◦C to densify the hybrid network. The sample is then functionalised
by dipping the substrate in a 10% solution of TMCS in hexane followed by annealing at
100 ◦C, obtaining a superhydrophobic surface with a contact angle of 170◦ [56]. In this
case, the high density of TMCS produces a high roughness, increasing the amount of air
between the surface and the water droplet, thus improving the hydrophobic character of
the film. In a similar way, a hydrophobic film can be obtained from a TEOS sol. The silica
surface is then functionalised with OTS, in the presence of an acid catalyst and deposited
on a glass substrate by dip-coating. The resulting film presents a contact angle of 120◦ [57].

An interesting study reports the influence of the functional group on the hydrophobic
character of the surface [58].

A TEOS derived silica layer (74◦ contact angle) is functionalised using four different
organically modified alkoxides, MTES, VTES, PhTES, and OTES, deposited on a glass
substrate; titanium(IV) isopropoxide is used as a crosslinking agent. It was observed that
longer is the length of the functional group (MTES < VTES < PhTES < OTES), more the
hydrophobic character of the film increases, ranging from an 85◦ contact angle (TEOS-
MTES system) to a maximum of 107◦ (TEOS-OTES system) (Figure 11). It was also noted
that the contact angle of TEOS-VTES and TEOS-PhTES coatings were similar (92◦ and 91◦,
respectively) due to the analogous interaction of the C=C double bond and the aromatic
ring with the hydroxyl groups at the interface, which is only partially condensed.
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Figure 11. AFM images of the silica films prepared with different precursors and photo of the films deposited on glass
slides, respectively. Reproduced with permission from [58].

Table 2 lists some of the main two-step syntheses for producing hydrophobic sil-
ica films.
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Table 2. Two-step syntheses of hydrophobic silica films.

Silicon
Alkoxide

Organically Modified
Alkoxide Substrate Coating Method Contact Angle

/◦ Data from Ref.

MTES/TMMS TMCS Glass Dip-coating 172 [59]
MTES TMCS Glass Spray-coating 167 [60]
TEOS DMCS/TMCS Glass Dip-coating 162 [61]
TEOS TMCS Glass Dip-coating 153 [62]
ETES iso-OTMS Glass Dip-coating 160 [63]

4. Multilayer Films

This method of synthesis consists of making several layers to modify the morphology
of the surface increasing the roughness of the film and consequently the hydrophobicity of
the interface (Figure 12). This method has not been extensively applied to the synthesis of
hydrophobic films, likely because increases the complexity of the process and reduces the
technological appeal. However, it represents an important route if multifunctional coatings
must be fabricated.

Materials 2021, 14, x FOR PEER REVIEW 10 of 18 
 

 

Table 2. Two-step syntheses of hydrophobic silica films. 

Silicon 

Alkoxide 

Organically Modified 

Alkoxide 
Substrate Coating Method 

Contact 

Angle 

/° 

Data 

from 

Ref. 

MTES/TMMS TMCS Glass Dip-coating 172 [59] 

MTES TMCS Glass Spray-coating 167 [60] 

TEOS DMCS/TMCS Glass Dip-coating 162 [61] 

TEOS TMCS Glass Dip-coating 153 [62] 

ETES iso-OTMS Glass Dip-coating 160 [63] 

4. Multilayer Films 

This method of synthesis consists of making several layers to modify the morphology 

of the surface increasing the roughness of the film and consequently the hydrophobicity 

of the interface (Figure 12). This method has not been extensively applied to the synthesis 

of hydrophobic films, likely because increases the complexity of the process and reduces 

the technological appeal. However, it represents an important route if multifunctional 

coatings must be fabricated. 

 

Figure 12. Example scheme of a multilayer synthesis: (a) deposition of the first layer, (b) deposition 

of the second layer, (c) functionalisation of the film. 

The use of polymerising compounds is a technique often used in the synthesis of 

hydrophobic films. An interesting work reports that the addition of polyacrylic acid 

(PAA) in a TEOS sol, allows obtaining layers with high roughness. In this case, an acid 

catalysed silica sol (TEOS in ethanol), is pre-reacted before the addition of PAA. Then, a 

Figure 12. Example scheme of a multilayer synthesis: (a) deposition of the first layer, (b) deposition of the second layer,
(c) functionalisation of the film.



Materials 2021, 14, 6799 11 of 18

The use of polymerising compounds is a technique often used in the synthesis of
hydrophobic films. An interesting work reports that the addition of polyacrylic acid (PAA)
in a TEOS sol, allows obtaining layers with high roughness. In this case, an acid catalysed
silica sol (TEOS in ethanol), is pre-reacted before the addition of PAA. Then, a second basic
sol is prepared with TEOS, NH4OH, and ethanol, without the addition of the polymerising
agent. The two sols, after aging for 24 h, are mixed and deposited on a glass substrate
via dip-coating. The film is then air-dried for a few minutes. This procedure is repeated
five times, with a final thermal treatment at 500 ◦C for 30 min. The interface is modified
by chemical vapour deposition. The substrate is placed inside a sealed vessel containing
TMCS, with no direct contact between solid and liquid. The vessel is then put in an oven at
140 ◦C to allow the reaction between the OH groups of the substrate and the TMCS vapour.
Finally, the substrate is sonicated and dried under a flow of N2. The resulting film shows a
contact angle of 151◦ [64].

The strategy of producing different sols is particularly feasible to fabricate multilayer
systems. For example, alternating the deposition on a glass substrate by dip-coating, of a
TEOS sol and a TEOS-PEG200 sol, with final functionalisation with TMCS, makes it possible
to obtain films that present dense (inner layer)-porous (outer layer) hybrid structures, with
high roughness [65]. A film of this type shows a contact angle of 135◦. A triple-layer film
is obtained using the same approach, using TEOS and tetrabutyl ortho-titanate (TBOT).
The use of TBOT makes it possible to increase the mechanical properties of the surface,
increasing its resistance to abrasion and adhesive strength to the substrate. In both tests, no
change in film transmittance has been observed, indicating the high mechanical properties
of the developed surface. In this case, a glass substrate is dip-coated in three different
sols, one of TEOS, one of TBOT and one of TEOS-TBOT, and finally functionalised with
HMDS to obtain hydrophobic properties. This triple layer has resulted in an hybdrophobic
abrasion-resistant and antireflective coating, making it ideal in the field of solar cells [66].

5. Hydrophobic Film with Modified Nanoparticles

Another way of achieving a hydrophobic film is using modified nanoparticles (Figure 13).
Nanoparticles can be arranged in a well-ordered structure, resulting in superhydrophobic
surfaces [67].
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The modification of silica nanoparticles with vinyl functional groups allows obtaining
films with a high contact angle of 169◦. To prepare the hydrophobic layer, 1 g of Stöber silica
nanoparticles (diameter of 453 nm) is dispersed in ethanol with an excess of VTEOS, to sub-
stitute all the hydroxyls with vinyl groups. Then ammonia is added, and the final mixture
is left to react under stirring. The modified nanoparticles are then washed and dispersed
again in ethanol to obtain the final sol. The vinyl-modified silica nanoparticles are used to
obtain a film on a wafer substrate by drop casting. The size of the nanoparticles, which
ranged from 85 to 1600 nm, does not affect the contact angle when they are 150–1600 nm in
the range, while for particles smaller than 150 nm, the hydrophobic character decreases [68]
(Figure 14).
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and the vinyl-modified silica nanoparticles with different diameters: (b) 85 nm, (c) 167 nm, (d) 360 nm,
(e) 453 nm, and (f) 1600 nm. The insets on the top right corners are the corresponding profiles of
water drops on the surfaces and the water contact angles. The inset on the bottom left of (e) shows
the enlarged particles. Reproduced with permission from [68].

The addition of a polymer, such as polymethylmethacrylate (PMMA), allows the
obtaining of a nanocomposite film, with a porous structure and high roughness, by in-
corporating silica nanoparticles within the PMMA polymer matrix. This leads to an
increase in the abrasion resistance of the film and the achievement of a contact angle of
165◦ [69]. By combining two sols, for example one of acid-catalysed TEOS and one of
base-catalysed TEOS/MTES, deposited on a silicon wafer substrate by dip-coating, it is
possible to obtain hydrophobic bilayer films (contact angle 115◦) with methyl-modified
silica nanoparticles [70].

This approach makes it possible to increase the optical properties of the surface. By
modifying the silica nanoparticles with OTS and depositing the film on a silicon wafer sub-
strate by dipping, hydrophobic surfaces with a contact angle of 119◦ and high tribological
properties have been fabricated [71]. Other results in the production of hydrophobic films
using modified silica nanoparticles are shown in Table 3.
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Table 3. Hydrophobic modified silica nanoparticles.

Silicon
Alkoxide

Organically Modified
Alkoxide Substrate Coating Method Contact Angle/◦ Data from Ref.

TEOS HDMS/MTMS Glass Spin-coating 165 [72]
TEOS HMDS Glass Dip-coating 160 [73]

TEOS HMDS Glass and Silicon
wafer Dip-coating 126 [74]

TEOS OTS Glass Spin-coating 150 [75]
TEOS MTES/VTES/OTES/OTS Glass Brushing 146 [76]

TEOS MTES Stainless steel
mesh Dip-coating 142 [77]

TEOS GPTMS/HDTMS Silicon, glass, and
cellulosic cotton Spin-coating 141 [78]

TEOS PMHS Glass Dip-coating 130 [79]
TEOS MTES Glass Dip-coating 122 [80]
TEOS TEOS Glass Spin-coating 121 [81]

MTES/TEOS PDMS Glass Spray-coating 133 [82]
MTES/TEOS PDMS Glass Spray-coating 120 [83]

HMDS MTMS Glass Dip-coating 161 [84]
SiO2-NPs MPTMS Silicon wafer Spray-coating 162 [85]
SiO2-NPs PDMS/OTMS Shrink film Spray-coating 155 [86]

6. FAS (Fluoroalkylsilanes)

A possible strategy to obtain superhydrophobic surfaces is fabricating rough surfaces
modified with low surface energy molecules such as fluoroalkysilanes (FAS). The use of
FAS has always been investigated because of the ease of obtaining hydrophobic, chemically
and mechanically resistant surfaces, compared to classical alkylsilanes [87]. In recent
years, however, the presence of fluorinated agents has banned their use because of their
dangerous effect on human health [88]. In particular, acute lung inflammation has been
observed in the operators during deposition of hydrophobic coatings via spray-drying [89].

Corrosion resistance is a property often required in coatings and with the use of FAS it
is possible to achieve this type of film. An example is an aluminium alloy substrate that is
dip-coated in a PFANI (polyfluoroaniline) modified GPTMS sol, resulting in a hydrophobic
film with a contact angle of 113◦ [90]. Using PFAS, it is possible to obtain other films with a
hydrophobic character (contact angle of 112◦), for example by inserting them into silica
and titanium oxide sols and then depositing them on fused silica by spin-coating [91].

7. A Brief Comparison of the Different Synthesis Routes

Fabrication of superhydrophobic coatings via sol–gel processing offers a wide spec-
trum of different solutions which can be customized as a function of the specific require-
ments. In many cases, the choice is dictated by the need for combining several functions in
the thin films, in other is just the need for controlling the contact angle through a robust,
simple, and low-cost process. Each of these synthesis routes (Figure 15) has its advantages
and disadvantages, peculiar reaction conditions, chemical precursors and processing; in
general, it is challenging to select the best method.

Looking at the techniques employing modified nanoparticles to obtain hydrophobic
films, it can be said that they exhibit the most performing mechanical properties, with high
abrasive resistance, strong adhesion, scratch, and corrosion resistance. The synthesis is,
however, often very complicated, with several steps and treatments, such as separating
the particles to obtain the desired size or preparing different sols to fabricate at first the
nanoparticles, modifying them, and finally depositing on a substrate. The same situation
occurs in the syntheses that employ several depositions steps. Multilayers are deposited on
the same substrate to design the hydrophobic characteristics together with other functional
properties. Even if from the technological point of view a multistep process is less appealing
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for producing hydrophobic coatings, it represents an important toll when multifunctional
coatings are required.
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On the other hand, one-pot and two-steps syntheses are simpler and faster, but often
the hydrophobic films exhibit lower mechanical properties. The main advantages of one-
pot and two-steps syntheses are the mild reaction conditions (sometimes the reaction
takes place at room temperature), shorter aging times, reduced use of reagents and low-
temperature heat treatments (no more than 200 ◦C). One way to increase the hardness
and hydrophobicity of the films is to use a polymerising agent, such as PMMA, to modify
the surface at the interface, giving strength to the structure. Considering a compromise
between film quality and simplicity of synthesis, the latter two approaches are the most
suitable for large-scale applications.

8. Conclusions

In this review, we have discussed the various approaches that can be followed to syn-
thesise hydrophobic films using sol–gel processing. The sol–gel method is a very versatile
technique, which allows obtaining mechanically and chemically resistant hydrophobic
films. Although surface modification with fluoroalkysilanes has been one of the most
successful ways to control the surface energy, currently their use is severely restricted due
to the potential toxicity to human health. This limitation has prompted increased research
into new modifying reagents and methods, looking for feasible solutions. Organosilanes
with hydrophobic functional groups represent an attractive alternative.

In each synthesis route the general strategy is to modify the morphology of the film
surface increasing the roughness, while the surface energy of the interface, is modified by
replacing polar hydrophilic species, such as hydroxyls, with apolar hydrophobic groups.
Ideally, a compromise between these two factors should be reached by choosing the most
suitable modifying agent and processing conditions.

Producing hydrophobic films using modified nanoparticles is undoubtedly of great
interest; the modification of surface, dimension, composition, and loading of the nanopar-
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ticles in the precursor sol, represent a feasible toolbox for designing the film property.
The overall synthesis, which requires several steps, does not currently make this method
particularly attractive feasible for a large-scale production.

The most promising approaches appear to be one-step and two-step synthesis routes,
which offers a good compromise in terms of performance and production costs. A clear
trend is the fabrication of multifunctional coatings that require the combination of different
properties in the same material. Superhydrophobicity must be combined with optical,
mechanical, surface requirements which could be fulfilled only through a complex design
of the material.

The various technological limitations still need further improvements to develop
advanced methods for the production of hydrophobic surfaces. Depositions of films from
a liquid phase, such as sol–gel, are largely employed in the industry but are always chal-
lenged by physical deposition methods. The flexibility of sol–gel synthesis offers, however,
the possibility of a very fine tuning of composition and properties, which makes the method
still highly attractive also for the deposition of hydrophobic-superhydrophobic coatings.

The greatest challenge in the next future is, however, moving to deposition methods
which are “green”, using non-toxic reagents, water as solvent and fabrication methods
which reduces the exposure of the operators to aerosols. The environmental issues must be
considered to be a high priority to develop the materials for the future.
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