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Abstract

While stress may be a potential mechanism by which childhood threat and depriva-

tion influence mental health, few studies have considered specific stress-related

white matter pathways, such as the stria terminalis (ST) and medial forebrain bundle

(MFB). Our goal was to examine the relationships between childhood adversity and

ST and MFB structural integrity and whether these pathways may provide a link

between childhood adversity and affective symptoms and disorders. Participants

were young adults (n = 100) with a full distribution of maltreatment history and affec-

tive symptom severity. Threat was determined by measures of childhood abuse and

repeated traumatic events. Socioeconomic deprivation (SED) was determined by a

measure of childhood socioeconomic status (parental education). Participants under-

went diffusion spectrum imaging. Human Connectome Project data was used to per-

form ST and MFB tractography; these tracts were used as ROIs to extract

generalized fractional anisotropy (gFA) from each participant. Childhood threat was

associated with ST gFA, such that greater threat was associated with less ST gFA.

SED was also associated with ST gFA, however, conversely to threat, greater SED

was associated with greater ST gFA. Additionally, threat was negatively associated

with MFB gFA, and MFB gFA was negatively associated with post-traumatic stress

symptoms. Our results suggest that childhood threat and deprivation have opposing

influences on ST structural integrity, providing new evidence that the context of

childhood adversity may have an important influence on its neurobiological effects,

even on the same structure. Further, the MFB may provide a novel link between

childhood threat and affective symptoms.
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1 | INTRODUCTION

Childhood adversity was recently posited to be psychiatry's greatest

public health challenge (Sara & Lappin, 2017), as it is highly prevalent

(Felitti et al., 1998; Kessler et al., 2010; Merrick, Ford, Ports, &

Guinn, 2018) and a major predictor of affective disorders (Danese

et al., 2009; Silverman, Reinherz, & Giaconia, 1996). Longitudinal stud-

ies indicate that childhood adversity predicts 24% and 37% of mood

and anxiety/trauma-related disorders in early adulthood, respectively

(Danese et al., 2009; Silverman et al., 1996), as well as worse progno-

sis in terms of severity and chronicity of illness (Nanni, Uher, &

Danese, 2012).

The type and timing of childhood adversity are important factors

for neural development (Baker et al., 2013; Dunn, Nishimi, Gomez,

Powers, & Bradley, 2018; Teicher & Samson, 2016; Tottenham &

Galván, 2016; Tottenham & Sheridan, 2010). McLaughlin et al. pro-

posed a novel conceptual framework distinguishing two dimensions

of childhood adversity—threat and deprivation, in which deprivation is

“the absence of expected environmental inputs and complexity” while

threat is “the presence of experiences that represent a threat to one's

physical integrity” (McLaughlin, Sheridan, & Lambert, 2014; Sheridan &

McLaughlin, 2014). Deprivation is a continuum of experiences that

includes institutionalization/institutional rearing, neglect, poverty, and

low socioeconomic status (SES), all of which are characterized by envi-

ronments with diminished social and cognitive stimuli. In contrast,

experiences of threat include traumatic events (actual or threatened

death, serious injury, sexual violation, or harm to one's physical integ-

rity), physical and sexual abuse, and domestic or community violence.

Much of the childhood adversity literature has focused on the stress

or allostatic load model involving alterations to the HPA axis, neural

effects of glucocorticoids, and related excitotoxic neural damage. The

authors propose considering neural mechanisms beyond this model, in

which deprivation may shape neural development via activity-

dependent plasticity leading to over-pruning of synaptic connections,

particularly within association cortices. Threat, however, may influ-

ence emotional or fear learning networks, with structural and func-

tional alterations within the hippocampus, amygdala, and medial

prefrontal cortex. The goal of the present manuscript is to examine

relationships of threat and deprivation with visceral white matter

structural integrity. We hypothesize that while social and cognitive

deprivation may yield less neural complexity, particularly in cortical

areas, the pervasive stress of childhood socioeconomic deprivation

(SED) may yield repeated firing of, and thus, strengthening of visceral,

stress-related circuits.

It is well known that childhood threat and/or deprivation are

associated with brain white matter differences (Choi, Jeong, Polcari,

Rohan, & Teicher, 2011; Choi, Jeong, Rohan, Polcari, & Teicher, 2009;

Frodl et al., 2012; Gianaros, Marsland, Sheu, Erickson, &

Verstynen, 2012; Lu et al., 2013; Ugwu, Amico, Carballedo, Fagan, &

Frodl, 2014), particularly within large bundles such as the cingulum

and uncinate fasciculus. Studies have typically found that childhood

adversity is associated with less fractional anisotropy (FA) within the

uncinate fasciculus (Eluvathingal et al., 2006; Govindan, Behen,

Helder, Makki, & Chugani, 2009; Kumar et al., 2013) and cingulum

(Hanson et al., 2013; Kumar et al., 2013). Childhood adversity has

been linked to dysregulated neuroendocrine and autonomic stress

reactivity in childhood and later in life (Carpenter et al., 2007; Carpen-

ter, Shattuck, Tyrka, Geracioti, & Price, 2011; Chen, Langer,

Raphaelson, & Matthews, 2004; Gunnar, Frenn, Wewerka, & Van

Ryzin, 2009; Hackman, Betancourt, Brodsky, Hurt, & Farah, 2012;

Heim et al., 2000; Heim, Newport, Bonsall, Miller, & Nemeroff, 2001;

Koopman et al., 2004; Lovallo, Farag, Sorocco, Cohoon, &

Vincent, 2011). However, research has not yet revealed how child-

hood threat and deprivation impact specific, proximally stress-

responsive white matter pathways.

Visceral neural circuits, comprised of descending preautonomic/

visceromotor and ascending viscerosensory circuits, may be

influenced by childhood adversity and may contribute importantly to

differences in stress reactivity and affective symptoms. Visceral cir-

cuits have been implicated in affective processes (e.g., conditioned

and unconditioned fear (Schweimer, Fendt, & Schnitzler, 2005), phasic

and sustained responses to threat (Avery, Clauss, & Blackford, 2016;

Lebow & Chen, 2016)), and are critical in the control of stress

responses (Rinaman, Banihashemi, & Koehnle, 2011). Descending

preautonomic circuits directly control autonomic outflow to target

organs, including stressor-evoked changes, while viscerosensory cir-

cuits have important modulatory influences on stress responses

(Banihashemi & Rinaman, 2006; Clayton & Williams, 2000; Pacak,

Palkovits, Kopin, & Goldstein, 1995). Both descending preautonomic

and ascending viscerosensory projections course through the white

matter of the medial forebrain bundle (MFB) (Coenen, Panksepp,

Hurwitz, Urbach, & Mädler, 2012; Nieuwenhuys, Geeraedts, &

Veening, 1982).

These visceral circuits converge on several regions that play a role

in stress regulation, the paraventricular nucleus of the hypothalamus

(PVN), bed nucleus of the stria terminalis (BST), and the amygdala.

The PVN is critical in the control of stress responses, controlling both

autonomic and neuroendocrine responses (Herman, Cullinan,

Ziegler, & Tasker, 2002; Luiten, Ter Horst, Karst, & Steffens, 1985).

The BST and amygdala are also preautonomic, preparasympathetic

structures (Rinaman, Levitt, & Card, 2000), innervating the brainstem

nucleus of the solitary tract (NST) (Card et al., 1990; Westerhaus &

Loewy, 2001). The NST receives viscerosensory information from the

vagus (Kalia & Sullivan, 1982) and relays it to both the ventral BST

and PVN (Banihashemi & Rinaman, 2006; Card & Sved, 2011; Ter

Horst, De Boer, Luiten, & Van Willigen, 1989). The BST is an impor-

tant stress-control hub with direct access (Dong, Petrovich, Watts, &

Swanson, 2001) and influence over stress-related PVN activity and

physiological stress responses (Choi et al., 2007; Crane, Buller, &

Day, 2003; Gray & Piechowski, 1993). The BST also heavily intercon-

nects with the amygdala (Dong, Petrovich, & Swanson, 2001) and is

connected to the PVN and amygdala via the white matter of the stria

terminalis (ST) (Dong, Petrovich, & Swanson, 2001).

Research on both rodents and humans indicates a link between

childhood adversity and visceral, stress-related circuits. In rodents,

manipulations of early experience that alter stress reactivity later in
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life have been shown to change the neonatal synaptic assembly of

preautonomic circuits originating within the PVN, BST, and central

nucleus of the amygdala (Card, Levitt, Gluhovsky, & Rinaman, 2005),

as well as stressor-evoked activation of the PVN, BST, and NST later

in life (Banihashemi, O'Neill, & Rinaman, 2011). In humans, previous

research in healthy adults demonstrated relationships between child-

hood threat (i.e., physical abuse) and stressor-evoked activity within

the preautonomic hypothalamus (including PVN), BST, and amygdala

(Banihashemi, Sheu, Midei, & Gianaros, 2015). These findings suggest

that these visceral brain regions are sensitive to levels of abuse that

fall below the severe-to-extreme range, characteristic of a healthy

sample.

The current study builds on this previous work, examining child-

hood adversity-related differences in the white matter connecting vis-

ceral, stress-related regions in a mixed (continuous and

transdiagnostic) mental health sample with a full range of childhood

adversity experiences and affective symptoms. Guided by the threat

and deprivation framework, our goal was to examine how threat and

deprivation may influence specific stress-related, visceral white matter

pathways, the ST and MFB. We hypothesized that proximal, familial

threats like abuse may diminish structural integrity, while more distal,

environmental stressors of low SES or SED may strengthen these

pathways (via repeated, coordinated activation of this visceral, stress-

control network). Several studies have mapped the human MFB

(Anthofer et al., 2015; Bracht et al., 2014; Coenen et al., 2012;

Coenen et al., 2018; Hana, Hana, Dooms, Boecher-Schwarz, &

Hertel, 2015). The ST has been carefully mapped in non-human pri-

mates using neuroanatomical and neuroimaging techniques (Oler

et al., 2017). Several studies have examined and/or mapped the ST in

humans (Avery et al., 2014; Dzafic, Oestreich, Martin, Mowry, &

Burianová, 2019; Eluvathingal et al., 2006; Folloni et al., 2019; Kamali

et al., 2015; Koller, Hatton, Rogers, & Rafal, 2019; Krüger, Shiozawa,

Kreifelts, Scheffler, & Ethofer, 2015; Kwon, Byun, Ahn, Son, &

Jang, 2011; Tromp et al., 2019) and Rafal et al. have examined the ST

in humans and non-human primates (Rafal et al., 2015). The majority

of these human ST and MFB studies have used standard diffusion ten-

sor imaging (DTI); thus, detailed tractography of the ST and MFB using

high-resolution diffusion weighted imaging (DWI) (e.g., multi-shell

DWI and/or diffusion spectrum imaging) in human brain is of interest.

To our knowledge, this is the first study to examine these specific

structures using high-resolution diffusion spectrum imaging (DSI) in

the context of childhood threat and deprivation.

2 | METHODS AND MATERIALS

2.1 | Participants

Participants were recruited from the community using a variety of

methods, including referrals from research studies and online and city

bus advertisements. Out of 1,020 contacts made, 111 (18.5%) were

consented and enrolled in the study. Of those consented, 100 (90%)

participants completed all study procedures. Participants included

59 female and 41 male young adults (n = 100, mean age = 27.28,

SD = 3.99). Of these 100 participants, 45% self-reported their race as

White, 36% as Black or African American, 13% as Asian, 4% as multi-

racial, and 2% as biracial. Within this sample, 7 individuals reported

their ethnicity as Hispanic or Latino. All participants provided

informed consent after receiving an explanation of study protocols

and were examined with the approval of the University of Pittsburgh

Institutional Review Board.

Following initial contact, respondents were screened and

excluded for: MRI contraindications (e.g., claustrophobia, metal in the

body, severe visual or auditory impairment), pregnancy, left-handed-

ness, cardiovascular disease and diabetes, neurological disorders

(including seizure disorders, migraine disorder, traumatic brain injury,

or neurodegenerative disorders), psychotropic medications or any

medications affecting cardiovascular or neural function, suicidality or

marked functional impairment, and current psychiatric disorders (bipo-

lar, psychotic disorders, substance abuse, or dependence) except for

depression, anxiety, or trauma-related disorders.

Screening included five childhood physical abuse items derived

from the Childhood Trauma Questionnaire (CTQ) in order to recruit a

relatively even distribution of participants across four physical abuse

severity levels defined by the CTQ (Bernstein et al., 1994). The follow-

ing distribution of physical abuse severity was achieved in the final

sample (n = 100): 29% None-Minimal, 23% Low-Moderate, 21%

Moderate–Severe, and 27% Severe-Extreme. A relatively even distri-

bution across childhood SES (as assessed by maximum parental edu-

cation level), 31% Low (GED—some college, no degree), 34% Middle

(Associate or Bachelor's), and 35% High (Master's or Doctorate), was

also achieved. All participants had at least one parent with a GED or

higher education level.

2.2 | Study protocol & measures

The study involved two visits completed within 1 month (mean num-

ber of days between visits: 14.39 ± 10.96), an intake visit followed by

an MRI scan visit at the University of Pittsburgh Magnetic Resonance

Research Center. During the first visit, eligibility was assessed more

rigorously via questionnaires regarding medical history, 2-week medi-

cation history, current substance use, and traumatic brain injury. Par-

ticipants were excluded if deemed ineligible by these additional

measures.

2.2.1 | Childhood threat

Childhood maltreatment was assessed using the Childhood Trauma

Questionnaire (CTQ), a 28-item Likert-type scale that measures five

subscales of maltreatment: physical, emotional and sexual abuse, and

physical and emotional neglect (Bernstein et al., 1994). Each subscale

contains five items, presented as a mix of both objective (e.g., “I was

punished with a belt, a board, a cord, or some other hard object”) and
subjective statements (e.g., “I believe that I was emotionally abused”),
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with scores ranging from 1—Never to 5—Very Often True. Scores for

each subscale range from 5 to 25, with 5 indicating no maltreatment.

A sum of the abuse subscales represented our CTQ Threat variable.

(A sum of the neglect subscales represented our CTQ Deprivation var-

iable, which was used in secondary analyses. See Variable Selection

below).

Additional forms of childhood threat were assessed using the

Trauma History Questionnaire (THQ). The THQ is a 24-item question-

naire that assesses both the occurrence and recurrence of traumatic

events throughout an individual's lifetime (Stamm, 1996). We used an

adapted version of the THQ in which participants responded “yes” or
“no” to indicate whether a particular event occurred, then indicated

the frequency that an event was experienced (either “Once” or “Two

or more times”) at three possible age ranges: 0–11, 12–17, and >18

(Insana, Kolko, & Germain, 2012). Traumatic events included experi-

ences with crime, environmental disasters, injury or death, as well as

physical or sexual abuse.

2.2.2 | Childhood socioeconomic deprivation

A sociodemographic inventory was used to collect data on childhood

and adulthood socioeconomic status (SES). Maximum parental educa-

tion level was used to determine childhood SES; the participants' own

educational level determined adulthood SES; both were presented as

a 9-point education level scale (0—No high school diploma, 1—GED,

2—High school diploma, 3—Technical training, 4—Some college, no

degree, 5—Associate degree, 6—Bachelor's degree, 7—Master's

degree, 8—MD/PhD/JD/PharmD). Measures such as low SES, socio-

economic disadvantage or neighborhood deprivation in early life are

considered forms of childhood deprivation (Berti & Pivetti, 2019;

McLaughlin et al., 2014; Morris, Berk, Maes, Carvalho, & Puri, 2019;

Webb et al., 2017). Further, education level is often used as an index

of SES and has been shown to identify mental health inequalities

(Reiss, 2013), is associated with physiological measures of stress

(Ursache, Merz, Melvin, Meyer, & Noble, 2017) and is a strong predic-

tor of physical health, namely cardiovascular disease risk (Winkleby,

Jatulis, Frank, & Fortmann, 1992). Thus, we used maximum parental

education level (reverse coded) as our primary measure of childhood

SED. Adulthood SES was used as a covariate.

2.2.3 | Negative life events

The 24-item Life Events List assesses major life events experienced

by the participant within the past 12 months; these include experi-

ences such as moving, separation or divorce and death of someone

close (Cohen, Tyrrell, & Smith, 1991). Participants respond whether or

not they have experienced a particular event in the past year with

possible follow up questions assessing emotional valence and/or

details if affirmative. This inventory was used to assess the total num-

ber of negative life events, which was used as a covariate.

2.2.4 | Affective symptom severity

Participants completed questionnaires to assess depression and post-

traumatic stress symptom severity. Beck's Depression Inventory (BDI-

II) was used to assess presence and severity of depression within the

past 2 weeks. The BDI-II is a 21-item questionnaire that asks partici-

pants whether they have experienced a thought or behavior related

to depressive symptoms, such as feelings of hopelessness or sleep

problems, on a scale of 0 to 3 (Beck, Steer, Ball, & Ranieri, 1996). The

PTSD Checklist—Civilian Version (PCL-C) assessed post-traumatic

stress symptom severity in the last month on a 5-point Likert scale

ranging from not at all (1) to extremely (5). It is a valid and reliable,

20-item measure that includes assessment of all re-experiencing,

avoidance and arousal symptoms, as well as negative cognitions

(Wilkins, Lang, & Norman, 2011).

2.2.5 | Diagnostic assessment

Psychiatric diagnoses of mood, anxiety, or trauma-related disorders

were evaluated and confirmed via in-person interview using the Struc-

tured Clinical Interview for DSM-IV Axis I Disorders by a trained inter-

viewer. Of the 100 participants who completed the study, 29% were

healthy controls, whereas 71% had a history of affective diagnosis. Of

those with a diagnostic history, 30 had a trauma-related disorder,

24 had a depressive disorder, and 17 had an anxiety disorder, as their

primary lifetime diagnosis. The most frequent diagnosis in the sample

was post-traumatic stress disorder (30% of the sample) and the next

most common disorder was major depressive disorder (15% of the

sample). Also, 37% had comorbid lifetime mood and anxiety/trauma-

related disorders.

2.2.6 | Sample characterization

Participants also completed questionnaires to characterize the sample,

including the Perceived Stress Scale (PSS, 10-item version) to assess

frequency of stress-related feelings (Cohen, Kamarck, &

Mermelstein, 1983), the State Trait Anxiety Inventory (STAI-Y2) to

assess presence and severity of trait anxiety (Spielberger, Gorsuch,

Lushene, Vagg, & Jacobs, 1983) and the NEO Five-Factor Inventory-3

(NEO-FFI-3, 60 items) to assess five domains of personality (neuroti-

cism, extraversion, openness, agreeableness, and conscientiousness)

(McCrae & Costa Jr, 2007). See Table 1 for Participant Characteristics.

2.2.7 | MRI protocol and data acquisition

MRI data were collected on a 3-Tesla Trio TIM whole-body MRI scan-

ner (Siemens, Erlangen, Germany), equipped with a 32-channel head

coil. Diffusion spectrum imaging (DSI) data were acquired using a

19-minute, 271-direction scan (including 20 reference images) using a
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twice-refocused spin-echo EPI sequence and multiple q values

(TR = 4,250 ms, TE = 150 ms, voxel size = 2.4 × 2.4 × 2.4 mm3,

FoV = 230 × 230 mm, b-max = 4,000 s/mm2). We also included

structural imaging for anatomical comparisons using a 4.8-min

T1-weighted sagittal MPRAGE sequence (TR = 1,500 ms, TE =

3.19 ms, flip angle = 8�, 176 slices, FoV = 256 × 256 mm2, voxel

size = 1 × 1 × 1.0 mm3). DSI data were reconstructed using a Q-space

diffeomorphic reconstruction (QSDR) approach (Yeh & Tseng, 2011),

using a 1.25 diffusion sampling length ratio. Spatial normalization was

conducted using an SPM-like normalization with 14-18-14 basis func-

tions and an output resolution of 2 mm isotropic. The generalized

fractional anisotropy (gFA) (Tuch, 2004) of each participant was calcu-

lated in native space and then nonlinearly warped to MNI152 space

(Yeh & Tseng, 2011). [Fractional anisotropy is canonically interpreted

as an overall index of structural integrity, however, can be influenced

by other factors (e.g., underlying microstructural properties of white

matter and support tissue) (Hagmann et al., 2006; Pierpaoli

et al., 2001).] Four participants were excluded from hierarchical

regression analyses due to excessive movement and/or distortion

(analytic n = 96). The average group template of 96 participants (cre-

ated for visualization purposes) revealed high quality DSI data with

crisp endpoint terminations and few wandering fibers (Figure 1).

2.3 | HCP image acquisition, reconstruction and
tractography: Creating ST and MFB ROIs using
HCP data

Human connectome project (HCP) data were used to perform ST and

MFB tractography (https://www.humanconnectome.org/, n = 488);

these ST and MFB tracts from the HCP group template were then

used as regions of interest (ROIs) to extract ST and MFB gFA from the

voxelwise reconstructed spin distribution function (SDF, a normalized

orientation distribution function) of each participant in the current

study (n = 96). ST and MFB tractography was performed using a single

ROI-based (not an ROI-to-ROI) approach; dilated regions shown in fig-

ures (Figures 2 and 3, and Figures S3 & S4) are for the purposes of

visualization and descriptive anatomy. Please see Data S1 for details

on HCP image acquisition and reconstruction, and tractography and

analysis (Figures S1–S4 and Table S1).

2.4 | Variable selection

Preliminary data analyses revealed that our childhood threat and dep-

rivation measures were correlated with one another (Table 2); how-

ever, among the potential deprivation measures, maximum parental

education level was the least correlated with the threat measures

(Pearson r = 0.232 to 0.403, Table 2). CTQ Threat (abuse) and CTQ

Deprivation (neglect) were strongly correlated (r = 0.756). Because of

the apparent lack of differentiation between these constructs from

TABLE 1 Participant characteristics (n = 100)

Characteristic Mean SD Range

Age (years) 27.28 3.99 21–35

CTQ threat 31.25 13.59 15–69

CTQ deprivation 21.14 8.79 10–46

CTQ total score 52.39 21.11 25–100

THQ (age 0–11) .94 1.46 0–7

THQ (age 12–17) 1.17 1.89 0–11

Parental education level 5.29 2.04 1–8

Education level 5.19 1.56 1–8

BDI II total score 11.64 10.79 0–49

PCL-C total score 32.35 13.92 17–75

Perceived stress 16.97 8.75 2–37

STAI-T 41.76 13.33 20–77

NEO: Neuroticism (%) 36.86 10.18 13–59

NEO: Extraversion (%) 39.54 7.96 12–56

NEO: Openness (%) 33.58 4.73 19–42

NEO: Agreeableness (%) 44.10 4.96 28–55

NEO: Conscientiousness (%) 43.88 7.42 20–59

F IGURE 1 Average group
template (n = 96) demonstrated
high quality diffusion spectrum
imaging (DSI) data showed in
ventral (a) and sagittal views (b)
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this measure, CTQ Deprivation was considered only in secondary ana-

lyses (Table S5 and S6) and maximum parental education level

(reverse coded) was used as the primary measure of socioeconomic

deprivation (SED), such that higher values reflected greater levels of

deprivation. As early childhood experiences are key for neural devel-

opment (Tottenham & Sheridan, 2010) and white matter is shaped by

repeated events (Fields, 2008; Fields, 2010), we focused our primary

analyses of trauma on early, repeated traumatic events (THQ 0–11,

events that occurred two or more times; exploratory analyses examin-

ing later, repeated traumatic events analyses, THQ 12–17, are

included in Data S1, Table S4). Because CTQ Threat and THQ 0–11

are strongly correlated (r = 0.647), these threat measures were consid-

ered in separate models. Doing so allowed examination of abuse (CTQ

Threat) and broader traumatic events (THQ 0–11) separately. Because

the threat measures co-occur with SED and are not completely inde-

pendent from one another, we considered each threat measure along

with SED in the same step of our hierarchical regression models (see

Data Analysis). Thus, we examined the additive effects (Fahrmeir,

Kneib, Lang, & Marx, 2013) of threat and deprivation similar to Law-

son et al. (Lawson et al., 2017).

2.5 | Data analysis

2.5.1 | Childhood adversity and visceral white
matter

We examined whether childhood threat and SED variables were asso-

ciated with ST or MFB gFA. All hierarchical regression models covar-

ied for age, sex, and race in Step 1 and examined the additive effects

of childhood threat (abuse or early repeated trauma) and SED

F IGURE 2 Fornix and Stria Terminalis Human Connectome
Project Group Tractography. (a,b). We observed fornix fibers (blue)
extending from the hippocampus, arcing through the crura, forming
the body and dividing into the columns. The stria terminalis (red)
curved along the medial aspect of the caudate and extended toward
the anterior commissure. Stria terminalis endpoints (red) were
localized primarily within the dorsal and ventral BST (c). (c,d) Fornix
endpoints (blue) were located within the subiculum and Cornu
Ammonis (primarily CA3, d), and within the medial preoptic and
paraventricular hypothalamus (c). Dilated regions represent BST
(magenta, c) and paraventricular/preautonomic hypothalamus (blue, c)
ROIs used previously (Banihashemi et al., 2015), and hippocampus
(light blue, d) and amygdala (aqua green, d) ROIs from the AAL atlas

F IGURE 3 Medial Forebrain Bundle Human Connectome Project
Group Tractography. (a) MFB tractography demonstrating fibers
coursing through the mid-brain tegmentum toward the BST.
(b) Endpoints from the above tractography localized within the BST.
Dilated regions represent the BST (yellow, a&b) ROI used previously
(Banihashemi et al., 2015) and the dorsal brainstem seed ROI (blue
rectangular prism, a&b) used for tractography
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together in Step 2. We also evaluated whether our findings remained

after multiple comparison correction (FDR <0.05, for four tests, CTQ

Threat and THQ 0–11 models for each tract, ST and MFB)

(Benjamini & Hochberg, 1995) and after adjusting for adulthood

trauma (all traumatic events occurring after age 18), adulthood SES

(education level), and negative life events within the past year (Life

Events List); these variables were entered together in Step 3. Where a

significant relationship was found between CTQ Threat and visceral

white matter, post-hoc analyses were performed substituting each

abuse subscale in the model to examine which type of abuse may be

driving the effects.

2.5.2 | Visceral white matter and affective
symptoms/disorders

We also examined whether ST and MFB gFA were associated with

depressive or post-traumatic stress symptom severity or the number

of lifetime diagnoses. Hierarchical regression models covaried for age,

sex, and race in Step 1 and examined the effect of either ST gFA or

MFB gFA in Step 2 in two separate models. We also evaluated

whether our findings remained after multiple comparison correction

(FDR <0.05, for three tests, one for each measure of affect) and after

adjusting for adulthood trauma (all traumatic events occurring after

age 18), adulthood SES (education level) and negative life events

within the past year (Life Events List); these variables were entered

together in Step 3.

3 | RESULTS

3.1 | Human connectome project ST and MFB
tractography

Our observed fornix and ST tractography was largely consistent with

literature describing ex vivo histology (Nieuwenhuys, Voogd, & van

Huijzen, 2008), with fornix fibers extending from the hippocampus,

arcing through the crura, forming the body and dividing into the col-

umns (Figure 2a,b). The ST curved along the medial aspect of the cau-

date and extended toward the anterior commissure (Figure 2a,b). ST

endpoints were localized primarily within the dorsal and ventral BST

(Figure 2c). Fornix endpoints were located within the subiculum and

Cornu Ammonis (primarily CA3, Figure 2d), and within the medial

preoptic and paraventricular hypothalamus (Figure 2c). The MFB

coursed through the mid-brain tegmentum toward the BST

(Figure 3a), with some endpoints localized within the BST (Figure 3b).

3.2 | Childhood threat, deprivation, and visceral
white matter

3.2.1 | Stria terminalis

Our analyses from both models [abuse (CTQ Threat) and early

repeated trauma (THQ 0–11)] revealed that threat and socioeconomic

deprivation (SED, maximum parental education level reverse coded)

had significant, yet opposing effects on ST gFA (Figure 4a–c and

Tables 3 and 4, left). In the CTQ Threat and SED model, CTQ Threat

had a negative effect (ß = −0.337; p = .003, Figure 4a), while SED had

a positive effect, on ST gFA (ß = 0.317; p = .005, Figure 4b and

Table 3, left); both survived multiple comparison correction (adjusted

p values: CTQ Threat, p = .006, SED, p = .020) and remained signifi-

cant when adulthood trauma, adulthood SES and negative life events

were added to the model (Table 3, left).

Post-hoc analyses examining CTQ Threat (abuse) subscales rev-

ealed that emotional (ß = −0.249; p = .024), physical (ß = −0.362;

p = .002), and sexual (ß = −0.215; p = .043) abuse were each nega-

tively associated with ST gFA; all of these survived multiple compari-

son correction for three tests (one for each abuse type) and remained

significant with the additional adulthood covariates. In each of these

CTQ Threat subscale analyses, SED had a significant, opposing effect

on ST gFA (see Data S1 for abbreviated results, Table S2).

TABLE 2 Correlations between childhood threat and deprivation measures

CTQ threat THQ 0–11 THQ 12–17 CTQ deprivation SED

CTQ threat (abuse) Pearson r — .647** .653** .756** .403**

p (2-tailed) — .000 .000 .000 .000

THQ 0–11 Pearson r .647** — .770** .454** .232*

p (2-tailed) .000 — .000 .000 .023

THQ 12–17 Pearson r .653** .770** — .551** .236*

p (2-tailed) .000 .000 — .000 .020

CTQ deprivation (neglect) Pearson r .756** .454** .551** — .399**

p (2-tailed) .000 .000 .000 — .000

Socioeconomic deprivation (SED) Pearson r .403** .232* .236* .399** —

p (2-tailed) .000 .023 .020 .000 —

*Correlation is significant at the 0.05 level (2-tailed); **Correlation is significant at the 0.01 level (2-tailed).
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Similar effects were seen with the THQ 0–11 and SED model, in

which both THQ 0–11 and SED had significant, opposing effects on

ST gFA; THQ 0–11 had a negative effect (ß = −0.332; p = .001,

Figure 4c), while SED had a positive effect (ß = 0.271; p = .011) on ST

gFA (Table 4, left). Both survived multiple comparison correction

(adjusted p values: THQ 0–11, p = .004, SED, p = .022) and remained

significant with the additional adulthood covariates (Table 4, left).

3.2.2 | Medial forebrain bundle

In the CTQ Threat and SED model, CTQ Threat had a negative effect

on MFB gFA (ß = −0.269; p = .020, Figure 4d). This effect survived

multiple comparison correction (adjusted p value: CTQ Threat,

p = .020) and remained significant with the additional adulthood

covariates (Table 3, right). SED did not have a significant effect on

MFB gFA.

Post-hoc analyses revealed that physical abuse (ß = −0.281;

p = .018) was negatively associated with ST gFA; this finding did not

survive multiple comparison correction, but did remain significant with

the additional adulthood covariates (ß = −0.277; p = .031). SED did

not have a significant effect on MFB gFA in any subscale model (see

Data S1 for abbreviated results, Table S3).

Similar to the CTQ Threat model, THQ 0–11 had a significant

negative effect on MFB gFA (ß = −0.271; p = .011, Figure S5). This

effect survived multiple comparison correction (adjusted p value: THQ

0–11, p = .015) and remained significant with the additional adulthood

covariates (Table 4, right). SED did not have a significant effect on

MFB gFA (Table 4, right). Removing one outlier from the THQ 0–11

and MFB gFA model makes this finding more robust. THQ 0–11 had a

significant negative effect on MFB gFA (ß = −0.340; p = .001). This

effect also survived multiple comparison correction (adjusted p value:

THQ 0–11, p = .025) and remained significant with the additional

adulthood covariates (ß = −0.332; p = .004). [See Data S1 for second-

ary analyses examining later, repeated traumatic events, THQ 12–17

(Table S4), CTQ Deprivation (neglect) as an alternative measure of

deprivation (Tables S5 and S6), and regression analyses stratified by

sex (Tables S7 and S8)].

F IGURE 4 Relationships between threat, socioeconomic deprivation and visceral white matter. (a,b) Opposing relationships of threat and
socioeconomic deprivation (SED) on Stria Terminalis generalized fractional anisotropy (gFA); (a) CTQ Threat (abuse) had a negative effect
(ß = −0.337; p = .003) on ST gFA. (b) SED (maximum parental education level, reverse coded) had a positive effect on ST gFA (ß = 0.317;
p = .005). (c) Similar to abuse (CTQ Threat), early repeated traumatic events (THQ 0–11) had a negative effect (ß = −0.332; p = .001) on ST gFA.
(d) CTQ Threat (abuse) had a negative effect on MFB gFA (ß = −0.269; p = .020). Scatterplots indicate primary lifetime diagnosis from the SCID-
IV (white—no history of affective diagnosis, red—post-traumatic stress disorder [PTSD], blue—depressive disorder, purple—anxiety disorder)
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3.3 | Visceral white matter and affective
symptoms

Regression analyses revealed that ST gFA was not significantly associ-

ated with depression symptoms (ß = −0.066; p = .524), post-traumatic

stress symptoms (ß = −0.069; p = .507) or the number of lifetime diag-

noses (ß = −0.141; p = .145).

Regression analyses revealed that MFB gFA was negatively asso-

ciated with depression (ß = −0.218; p = .033) and post-traumatic

stress symptoms (ß = −0.210; p = .043), as well as the number of

TABLE 3 Regression results:
Childhood threat (abuse), socioeconomic
deprivation and visceral white matter
analyses

Stria Terminalis gFA Medial forebrain bundle gFA

Step Variable St. Beta t p St. Beta t p

1 Age .060 .571 .570 .087 .835 .406

Sex −.146 −1.411 .162 .062 .602 .548

Race −.062 −.597 .552 −.126 −1.211 .229

2 Age .058 .564 .574 .134 1.252 .214

Sex −.165 −1.650 .102 .024 .228 .820

Race .005 .046 .964 −.086 −.832 .408

CTQ threat −.337 −3.071 .003* −.269 −2.371 .020*

Socioeconomic deprivation .317 2.891 .005* .070 .616 .540

3 Age .056 .479 .633 .146 1.201 .233

Sex −.203 −1.911 .059 .025 .223 .824

Race −.013 −.132 .895 −.096 −.908 .367

CTQ threat −.316 −2.792 .006* −.260 −2.188 .031*

Socioeconomic deprivation .279 2.341 .021 .041 .330 .742

THQ >18 .099 .813 .419 −.015 −.118 .907

Adulthood SES −.122 −1.149 .254 −.077 −.694 .490

Negative life events −.146 −1.218 .227 −.002 −.014 .989

Note: Bold values indicate significance at p < .05. *Survival of FDR correction (0.05) for four tests.

TABLE 4 Regression results:

Childhood threat (repeated traumatic
events, age 0–11), socioeconomic
deprivation and visceral white matter
analyses

Stria Terminalis gFA Medial forebrain bundle gFA

Step Variable St. Beta t p St. Beta t p

1 Age .060 .571 .570 .087 .835 .406

Sex −.146 −1.411 .162 .062 .602 .548

Race −.062 −.597 .552 −.126 −1.211 .229

2 Age .023 .230 .819 .107 1.011 .315

Sex −.126 −1.289 .201 .054 .531 .597

Race .009 .087 .931 −.082 −.794 .429

THQ 0–11 −.332 −3.292 .001* −.271 −2.601 .011*

Socioeconomic deprivation .271 2.611 .011* .035 .325 .746

3 Age −.007 −.060 .952 .093 .756 .452

Sex −.149 −1.403 .164 .071 .638 .525

Race −.009 −.089 .929 −.090 −.855 .395

THQ 0–11 −.326 −2.919 .004* −.283 −2.424 .017*

Socioeconomic deprivation .229 2.003 .048 .002 .020 .984

THQ >18 .135 1.096 .276 .019 .144 .886

Adulthood SES −.097 −.910 .366 −.054 −.485 .629

Negative life events −.095 −.773 .442 .045 .348 .728

Note: Bold values indicate significance at p < .05. *Survival of FDR correction (0.05) for four tests.
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lifetime affective diagnoses (ß = −0.198; p = .040). The relationships

between MFB gFA and depression (ß = −0.202; p = .040) and the

number of lifetime diagnoses (ß = −0.180; p = .044) remained signifi-

cant with the additional adulthood covariates, however, only the rela-

tionship between MFB gFA and post-traumatic stress symptoms

survived multiple comparison correction (adjusted p value: MFB gFA,

p = .043) (see Data S1 for relationships between childhood adversity

variables and affective symptoms/diagnoses, Table S9).

4 | DISCUSSION

Childhood threat and deprivation are dimensions of childhood adver-

sity thought to have different influences on the brain via distinct

mechanisms (McLaughlin et al., 2014; Sheridan & McLaughlin, 2014).

How threat and deprivation may differentially influence stress-related,

visceral neural circuits is unknown. This study examined effects of

childhood threat and deprivation on stress-related, visceral white mat-

ter. We hypothesized that threat would be associated with less struc-

tural integrity, while socioeconomic deprivation (SED, low SES/parental

education level) would be associated with greater structural integrity of

visceral white matter. Our primary finding was that childhood threat

and SED have opposing relationships with ST gFA, in which greater

threat (both abuse and early repeated trauma) was associated with less,

while greater SED was associated with higher ST gFA. To our knowl-

edge, this is the first study to show opposing effects of threat and dep-

rivation on visceral white matter. Further, threat (both abuse and early

repeated trauma) also had a negative relationship with MFB gFA, while

SED did not have an effect. Interestingly, only MFB gFA was associated

with affective symptoms and disorders, suggesting it may be a novel

link between childhood threat and affect.

4.1 | Potential neural mechanisms underlying
relationships of threat and deprivation with visceral
white matter

4.1.1 | Opposing relationships of threat and
deprivation within stria terminalis

Childhood threat experiences may shape neural development via

effects of stress on the brain, such as neural effects of glucocorticoids

and related excitotoxic damage (Tottenham & Sheridan, 2010), along

with specific changes in fear learning circuits (prefrontal cortex, amyg-

dala, and hippocampus) (McLaughlin et al., 2014); while deprivation

may shape neural development via synaptic pruning (McLaughlin

et al., 2014) or activity-dependent plasticity, in which activity

strengthens synapses that repeatedly fire one another and eliminates

those which do not. The notion that deprivation influences neural

development via activity-dependent plasticity is likened to other stud-

ies of sensory deprivation. For example, in the visual system, early life

monocular deprivation leads to loss of cortical space devoted to the

deprived eye as terminals from the visual thalamic nucleus of the non-

deprived eye expand (Hubel, Wiesel, & LeVay, 1977). Similar pro-

cesses may contribute to our findings; for example, proximal, familial

threats like abuse may diminish structural integrity via excitotoxic

effects of glucocorticoids on the brain, while more distal, environmen-

tal stressors of SED/low SES may strengthen these pathways via

repeated, coordinated activation (Rinaman et al., 2011). Differences in

the chronicity of these dimensions of childhood adversity could also

contribute to the opposing findings seen here. For example, abuse

and repeated traumatic events may be phasic occurrences while dep-

rivation may be more tonic or sustained.

4.1.2 | Threat and visceral white matter

Greater childhood threat was also associated with less MFB gFA poten-

tially via similar mechanisms, or diminished structural integrity due to

excitotoxic damage from glucocorticoids. These effects of childhood

threat on MFB gFA appear to be driven by physical abuse, which has

been shown to dysregulate stress reactivity (Carpenter et al., 2011) and

predict affective symptoms (Springer, Sheridan, Kuo, & Carnes, 2007).

Physical abuse is also associated with greater stress reactivity within

stress-related, visceral regions, PVN, BST, amygdala and subgenual ante-

rior cingulate cortex (sgACC), while emotional abuse was associated with

greater stress reactivity in regions more distal to the stress response,

sgACC and amygdala (Banihashemi et al., 2015). Thus, individuals with a

developmental history of physical abuse may be engaging more of this

visceral, stress-control network to a greater extent, eliciting greater

excitotoxic damage to the MFB.

Effects of threat on ST and MFB may also be mediated by inflam-

matory processes. Greater inflammation is linked to diminished white

matter integrity (Favrais et al., 2011; Walker et al., 2018). In humans,

individuals that transitioned from low to high systemic inflammation

during midlife had the least white matter structural integrity compared

to those that maintained low systemic inflammation (Walker

et al., 2018). Further, unpredictable chronic stress increases central

proinflammatory cytokines and decreases oligodendrocyte number in

rats (Yang et al., 2015). Unpredictable chronic stress may be similar to

the potentially more proximal, phasic experiences of childhood threat,

however, Gianaros et al. found that inflammatory pathways partially

mediated the relationship between socioeconomic position and white

matter integrity (Gianaros et al., 2012). Thus, it is possible that both

childhood threat and deprivation influence these stress-related neural

circuits via distinct (e.g., glucocorticoid excitoxicity and activity-

dependent plasticity) and similar mechanisms (e.g., inflammatory path-

ways) to produce a net effect that reflects the more dominant (fre-

quent/chronic/severe) dimension of childhood adversity.

4.2 | Neuroendocrine and autonomic implications
of threat and deprivation findings

Childhood adversity is associated with dysregulated (heightened or

diminished) stress reactivity in childhood and later in life, with
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alterations in both neuroendocrine and autonomic physiology and stress

reactivity (Carpenter et al., 2007; Carpenter et al., 2011; Chen et al., 2004;

Gunnar et al., 2009; Hackman et al., 2012; Heim et al., 2000; Heim

et al., 2001; Koopman et al., 2004; Lovallo et al., 2011). There are inconsis-

tencies in the literature regarding directionality depending on age and sam-

ple composition, however, there is evidence that threat (i.e., abuse/

maltreatment) blunts (Bernard, Frost, Bennett, & Lindhiem, 2017; Carpen-

ter et al., 2007; Carpenter et al., 2011; Doom, Cicchetti, & Rogosch, 2014;

Peckins, Susman, Negriff, Noll, & Trickett, 2015), while deprivation

(i.e., low SES) heightens basal levels of catecholamines and cortisol, as well

as cortisol reactivity (Chen, Cohen, & Miller, 2009; Cohen, Doyle, &

Baum, 2006; Lê-Scherban et al., 2018; Lupien, King, Meaney, &

McEwen, 2001). Longitudinal research shows that maltreated children

with higher initial cortisol levels display blunted cortisol levels over time,

perhaps related to the hypothalamic–pituitary–adrenal (HPA) axis being

overburdened and suppressed by chronic stress (Doom et al., 2014). Lon-

gitudinal research in low SES children shows the opposite trend; low SES

children display greater 2-year increases in daily cortisol compared to high

SES children (Chen et al., 2009). This may be due to stress associated with

low SES children appraising ambiguous situations as threatening, as

opposed to the stress of directly experiencing/witnessing threats (Chen

et al., 2004; Chen et al., 2009). As these visceral white matter structures

connect regions involved in the regulation of stress responses

(Banihashemi & Rinaman, 2006; Choi et al., 2007; Rinaman et al., 2011),

our threat, deprivation and visceral white matter findings may be linked to

specific neuroendocrine and autonomic profiles.

4.3 | Functional implications of deprivation-related
enhanced stria terminalis structural integrity: A
potential neural adaptation?

To further interpret how these differences in ST microstructure may

relate to functional outcomes, two recent studies provide insights.

Koller et al. showed that greater ST FA is associated with greater

orienting bias toward threat in a saccadic decision task (Koller

et al., 2019). Another study by Dzafic et al. showed that greater ST

microstructure was associated with faster recognition of anger follow-

ing an anger cue during a dynamic emotional perception task (Dzafic

et al., 2019). Their findings suggest that individuals with greater ST

microstructure have more efficient emotion processing under threat

(Dzafic et al., 2019). In the context of our findings, in which greater

SED is associated with greater ST structural integrity, these studies

suggest a potential neural adaptation in which greater ability to orient

to threat or recognize emotion may yield enhanced situational aware-

ness of threat, therefore enhancing likelihood of survival. Further

investigation will be necessary to determine to what extent these

opposing relationships of threat and deprivation with ST structural

integrity are adaptive, however, our findings may have broad implica-

tions for orienting responses to threatening stimuli, emotion

processing and social behavior. Further, these findings may challenge

the notion that early life stress creates neural changes that indicate

maladaptive damage, but that neural differences in the context of

childhood adversity may be adaptive for the relevant context (for

review see Champagne et al., 2008; Teicher & Samson, 2016; Teicher,

Samson, Anderson, & Ohashi, 2016).

4.4 | Visceral white matter and affective
symptoms: The medial forebrain bundle as a novel link
between threat and affect

Despite evidence that ST structural integrity and related neural cir-

cuits are associated with anxiety and post-traumatic stress (Avery

et al., 2016; Harnett, Ference, Knight, & Knight, 2020; Kim, Kim, Kiu

Choi, & Lee, 2017), in our sample, recruited along a continuum of

physical abuse and affective symptom severity, we did not find signifi-

cant relationships with affective measures. Our findings revealed that

only MFB gFA was associated with affective symptoms and disorders,

suggesting it may be a novel link between childhood threat and affect.

Greater MFB gFA was linked to fewer depressive and post-traumatic

stress symptoms. Interestingly, vagal nerve stimulation (targeting

brainstem NST) alleviates treatment-resistant depression, as does

deep brain stimulation of the MFB, suggesting altered visceral circuit

signaling in mood disorders (Berry et al., 2013; Fenoy et al., 2016).

Repeated coordinated activation between preautonomic and

viscerosensory pathways (Rinaman et al., 2011) may act to strengthen

this pathway, contributing to a greater capacity to regulate affective

responses to stress.

4.5 | Limitations

A limitation of this work is the cross-sectional nature of the study

focused on young adults. A novel continuous and transdiagnostic

design was implemented in which a relatively even distribution across

physical abuse severity was achieved. This is an advantage over work

done in healthy samples in which threat severity distributions can be

heavily skewed with the majority of the sample having none-to-

minimal childhood threat. However, we have not captured the devel-

opmental trajectory of these visceral white matter tracts during pre-

sumably narrow sensitive periods in childhood, as indicated by related

structures (Andersen et al., 2008; Pechtel, Lyons-Ruth, Anderson, &

Teicher, 2014; Teicher et al., 2018; Zhu et al., 2019). The develop-

mental trajectory of these visceral white matter circuits is unclear in

humans; available evidence suggests that these tracts are present in

neonates (Chen et al., 2011) and reach peak structural integrity earlier

than most major white matter bundles (Dubois et al., 2008; Lebel

et al., 2012; Westlye et al., 2010). At this time, our goal was to investi-

gate these circuits in their mature state to examine potential neural

outcomes of childhood threat and deprivation experiences. We were

able to examine traumatic events retrospectively using the broad age

ranges of 0–11 and 12–17 and saw similar effect sizes of traumatic

events during both age ranges on ST gFA, while earlier traumatic

events had more robust effects on MFB gFA (Table 4 and Table S4).

Future work will be necessary to examine the dynamic relationships
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of threat and deprivation with the ST and MFB using a longitudinal

approach and to examine the role of timing in the opposing relation-

ships shown with ST here.

This study also used retrospective assessments of childhood

abuse and traumatic events; concerns with such reports are recall bias

and false positives, however, agreement between sibling retrospective

reports of abuse, and prospectively collected records suggests reliabil-

ity of such reports (Bifulco, Brown, & Harris, 1994; Bifulco, Brown,

Lillie, & Jarvis, 1997; Hardt & Rutter, 2004). Further, Scott et al. found

no differences between prospective and retrospective reports of

maltreatment in the strength of the relationships between maltreat-

ment history and affective disorders (Scott, McLaughlin, Smith, &

Ellis, 2012).

Measures of HPA or autonomic function were not collected in

this study, which limits our ability to interpret how the relationships

of threat, deprivation and visceral white matter may be linked to neu-

roendocrine and physiological function. An important area of future

work will be to examine how threat, deprivation and visceral white

matter alterations relate to measures of neuroendocrine, autonomic

and neuroimmune signaling.

Another limitation may be that the tractography templates for ST

and MFB may vary across individuals or may vary depending on an

individual's diagnostic history or state. However, for the scope of the

current work, using the HCP data as a template with high-resolution

DSI was a robust method of analysis mitigating the inconsistencies of

individual tractography. It will be important for future work to isolate

components of the tract that are related to childhood threat and/or

deprivation and to further investigate potential sources of microstruc-

tural differences (e.g., myelination, axonal degeneration, extent of axo-

nal dispersion). Future work will also consider additional pathways

that link these visceral regions of interest, such as the amygdalofugal

pathway (Folloni et al., 2019).

In future analyses, it will also be important to test whether the

effects of childhood threat and/or deprivation on affective symptoms

are mediated by visceral white matter in a larger sample that is suffi-

ciently powered to detect such effects (Fritz & MacKinnon, 2007).

Further, using SED, or low SES based on maximum parental education

level as our primary index of deprivation may also be considered a lim-

itation. Although secondary analyses using CTQ Threat and CTQ Dep-

rivation (neglect) also show similar trends toward opposing effects on

ST gFA (Table S5), suggesting that our findings may be robust to the

specific measure of deprivation. Future work will be necessary to

investigate other components of deprivation that integrate cognitive

deprivation and/or more comprehensive measures of SES

(e.g., neighborhood deprivation as derived from census tract data)

(Sumner, Colich, Uddin, Armstrong, & McLaughlin, 2019).

5 | SUMMARY AND CONCLUSIONS

This study provides the first evidence that childhood threat and depri-

vation have opposing influences on ST gFA, and novel evidence that

different dimensions of childhood adversity may have differential

influences on structural integrity or underlying microstructure, even

within the same region. Further, our results demonstrate that the

MFB may provide a novel link between childhood threat and affective

symptoms. Examining how these stress-related, visceral circuits link

childhood adversity to affective symptoms could improve our under-

standing of mechanisms underlying affective disorders and provide

novel targets for intervention.
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