

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202305979

A Single-Atom Manganese Nanozyme Mn-N/C Promotes Anti-Tumor Immune Response via Eliciting Type I Interferon Signaling

Wen Qiao, Jingqi Chen, Huayuan Zhou, Cegui Hu, Sumiya Dalangood, Hanjun Li, Dandan Yang*, Yu Yang* and Jun Gui*

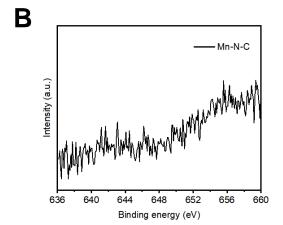
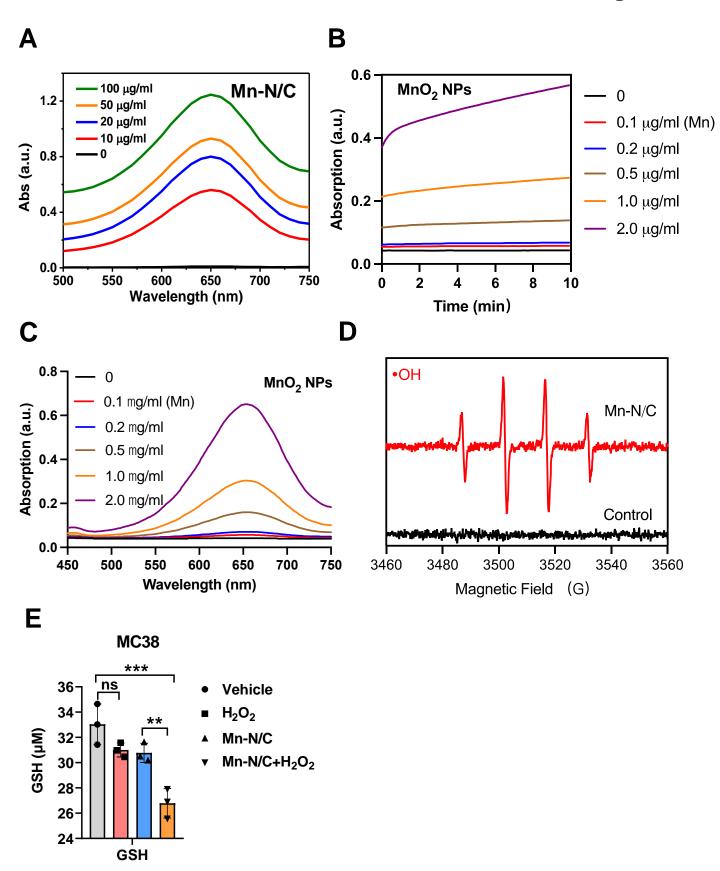



Figure S1. Characterization of single-atom manganese nanozyme Mn-N/C.

- **A.** High-resolution SEM and TEM images of Mn-N/C.
- **B.** XRD data of Mn-N/C, showing their amorphous feature.

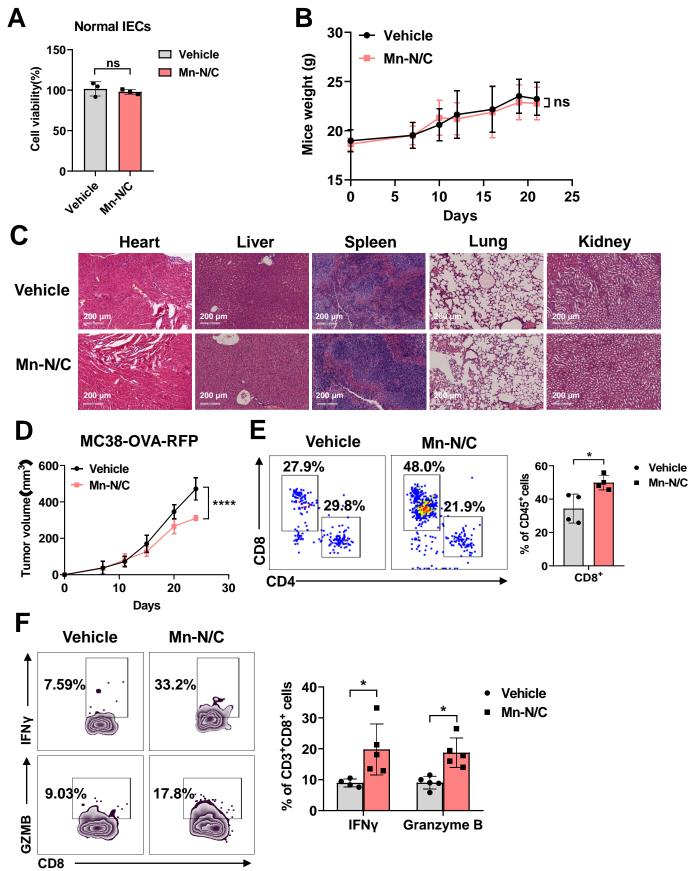

Figure S2

Figure S2. The peroxidase-like activity of Mn-N/C and ROS generation.

- **A.** The absorbance at different wavelengths in the absence (black) and presence of different concentrations of Mn-N/C.
- **B.** The time-dependent absorbance changes of TMB (652 nm) in the absence (black) or presence of different concentrations of MnO_2 .
- C. The UV-Vis spectrum of TMB in the absence or presence of different concentrations of $\rm MnO_2$.
- **D.** EPR spectra for detection of •OH by DMPO.
- **E.** GSH levels in MC38 tumors treated with H_2O_2 or Mn-N/C (100 µg/mL) for 24 hr. Data are shown as mean \pm SEM (n=3). Two-tailed unpaired t-test was performed for the comparisons between two groups.
- **, *P*<0.01; ***, *P*<0.001; ns, no significance.

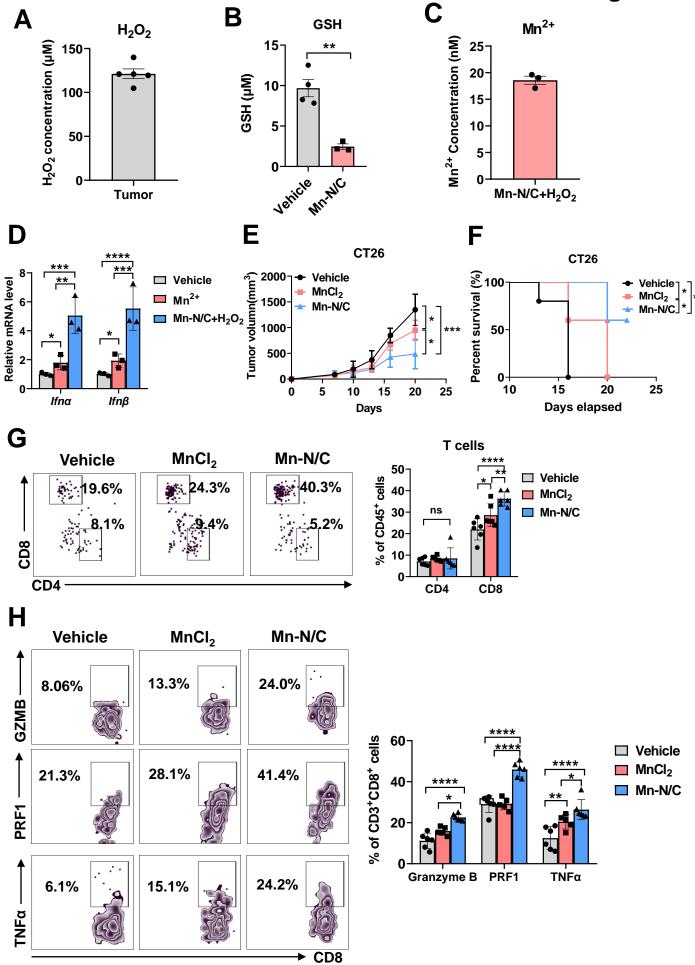

Figure S3

Figure S3. Mn-N/C suppresses tumor growth without tissue damage.

- **A.** The cell viability of normal intestinal epithelial cells (IECs) treated with vehicle or Mn-N/C for 24 hr by CCK8 assays. Quantitative data are shown as mean±SEM (n=3). Two-tailed unpaired t-test was performed for the comparison between two groups.
- **B.** Body weight curve of CT26 tumor-bearing mice treated with vehicle or Mn-N/C. Data are shown as mean±SEM (n=4-5 mice per group). Two-way ANOVA (mixed model) and Sidak's multiple comparisons test were performed.
- **C.** Representative IHC images of heart, liver, spleen, lung and kidney of CT26 tumor-bearing mice treated with vehicle or Mn-N/C.
- **D.** Tumor growth curve of MC38-OVA-RFP in the WT mice treated with vehicle or Mn-N/C. Data are shown as mean±SEM (n=5 mice per group). Two-way ANOVA (mixed model) and Sidak's multiple comparisons test were performed.
- **E.** FACS analysis (left) and quantification (right) of tumor-infiltrating CD8⁺ T cells in the mice treated with vehicle or Mn-N/C as **D** described. Data are shown as mean±SEM (n=4 mice per group). Two-tailed unpaired t-test was performed for the comparisons between two groups.
- **F.** FACS analysis (left) and quantification (right) of IFN γ^+ and Granzyme B⁺ of tumor-infiltrating CD8⁺ T cells in the mice treated with vehicle or Mn-N/C as **D** described. Data are shown as mean±SEM (n=4-5 mice per group). Two-way ANOVA and Sidak's multiple comparisons test were performed.
- *, *P*<0.05; ****, *P*<0.0001; ns, no significance.

Figure S4

Figure S4. Mn-N/C displayed superior tumor suppression compared to MnCl₂.

- **A.** H_2O_2 concentration in CT26 tumor tissues. Data are shown as mean±SEM (n= 5 mice).
- **B.** GSH levels in CT26 tumor tissue following vehicle or Mn-N/C treatment. Data are shown as mean±SEM (n=3-4 mice per group). Two-tailed unpaired t-test was performed for the comparisons between two groups.
- C. Mn²⁺ concentration in the supernatant of MC38 tumor cells treated with Mn-N/C and H₂O₂ for 24 hr. After treatment, supernatants were subjected to high-speed centrifugation to remove residue Mn-N/C. The content of dissociated Mn²⁺ in the supernatant was determined by ICP-MS. Data are shown as mean±SEM (n=3).
- **D.** Real-time PCR analysis of $Ifn\alpha$ and $Ifn\beta$ gene expression levels in MC38 tumor cells treated with Mn²⁺ (20 nM) or Mn-N/C combined with H₂O₂ for 24 hr. Data are shown as mean±SEM (n=3). Two-way ANOVA and Sidak's multiple comparisons test were performed.
- **E.** Tumor growth curve of CT26 in the WT mice intratumorally injected with vehicle, MnCl₂ or Mn-N/C. Data are shown as mean±SEM (n=5 mice per group). Two-way ANOVA (mixed model) and Sidak's multiple comparisons test were performed.
- **F.** Kaplan–Meier analysis of mice survival after vehicle, MnCl₂ or Mn-N/C treatment as described in **E** (n=5 mice per group).
- **G.** FACS analysis (left) and quantification (right) of tumor-infiltrating CD4⁺ and CD8⁺ T cells in the mice treated with vehicle, MnCl₂, or Mn-N/C. Data are shown as mean±SEM (n=6 mice per group). Two-way ANOVA and Sidak's multiple comparisons test were performed.
- **H.** FACS analysis (left) and quantification (right) of Granzyme B^+ , PRF1 $^+$, TNF α^+ of tumor-infiltrating CD8 $^+$ T cells in the mice treated with vehicle, MnCl $_2$, or Mn-N/C. Data are shown as mean \pm SEM (n=6 mice per group). Two-way ANOVA and Sidak's multiple comparisons test were performed.
- *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001

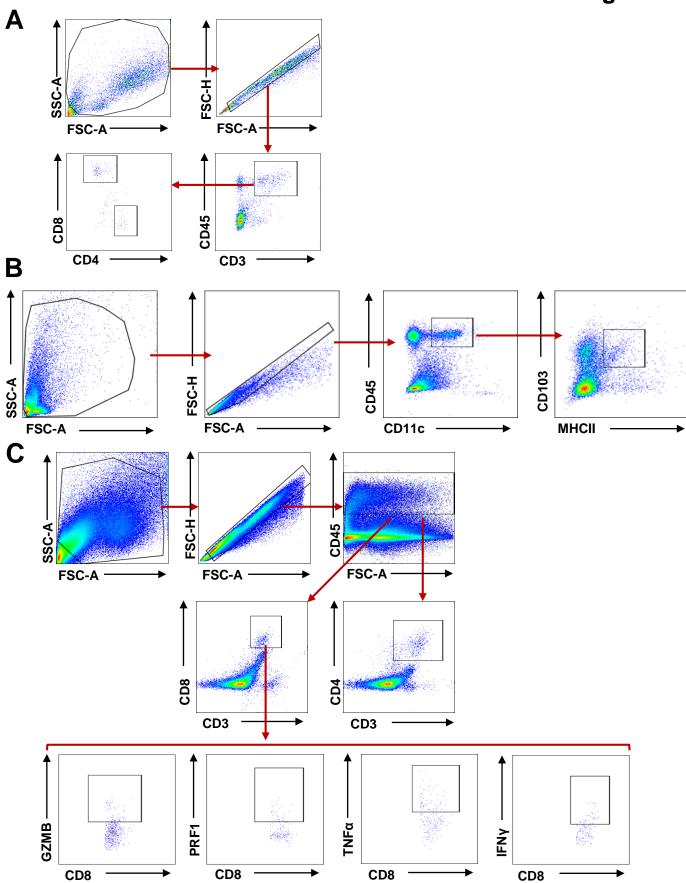


Figure S5. The gating strategies for flow cytometry.

- **A.** Gating strategy for tumor-infiltrating CD4⁺ and CD8⁺T lymphocytes.
- **B.** Gating strategy for DCs.
- C. Gating strategy for cytotoxic molecules of tumor-infiltrating CD8⁺T cells.

Table S1

Primers used in RT-PCR

Murine Isg15-R

Primer name Sequence (5'-3')

AGCTTGTCATCAACGGGAAG Murine *Gapdh-*F Murine *Gapdh*-R TTTGATGTTAGTGGGGTCTCG Murine *Ifna*-F ATTTCCCCTGACCCAGGAAGATG Murine Ifna-R CCCAGCACATTGGCAGAGG Murine *Ifnb*-F AGCTCCAAGAAAGGACGAACA Murine Ifnb-R GCCCTGTAGGTGAGGTTGAT Murine Cxcl10-F CCAAGTGCTGCCGTCATTTTC Murine Cxcl10-R GGCTCGCAGGGATGATTTCAA Murine *Hmgb1*-F GGCGAGCATCCTGGCTTATC Murine *Hmgb1*-R **GGCTGCTTGTCATCTGCTG** Murine Ddit3-F CTGGAAGCCTGGTATGAGGAT Murine *Ddit3*-R CAGGGTCAAGAGTAGTGAAGGT Murine *Irf7*-F TACCATCTACCTGGGCTTCG Murine Irf7-R **GCTCCATAAGGAAGCACTCG** Murine Pdl1-F GCTCCAAAGGACTTGTACGTG Murine Pdl1-R TGATCTGAAGGGCAGCATTTC Murine Isg15-F GGAACGAAAGGGGCCACAGCA

Murine gDNA Tert-F CTAGCTCATGTGTCAAGACCCTCTT

CCTCCATGGGCCTTCCCTCGA

Murine gDNA Tert-R

Murine gDNA Polg1-F

Murine gDNA Polg1-R

Murine mtDNA Dloop 1-F

Murine mtDNA Dloop 1-R

Murine mtDNA Dloop 2-F

Murine mtDNA Dloop 2-R

GCCAGCACGTTTCTCTCGTT

GATGAATGGGCCTACCTTGA

CCCTTCCCCATTTCTACAGC

CCCTTCCCCATTTGGTCT

TGGTTTCACGGAGGATGG

CCCTTCCCCATTTGGTCT

TGGTTTCACGGAGGATGG