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Programmed death receptor 1 (PD-1) or programmed death ligand 1 (PD-L1) blocking
therapy has completely changed the treatment pattern of malignant tumors. It has been
tested in a wide range of malignant tumors and achieved clinical success. It might be a
promising cancer treatment strategy. However, one of the important disadvantages of
PD-1/PD-L1 blocking therapy is that only a few patients have a positive response to it. In
addition, primary or acquired drug resistance can also lead to cancer recurrence in
patients with clinical response. Therefore, it is very important to overcome the resistance
of PD-1/PD-L1 blocking therapy and improve the overall response rate of patients to the
immunotherapy. T cell immunoglobulin and mucin domain molecule 3 (Tim-3) belongs to
the co-inhibitory receptor family involved in immune checkpoint function. Due to adaptive
resistance, the expression of Tim-3 is up-regulated in PD-1/PD-L1 blocking therapy
resistant tumors. Therefore, blocking the immune checkpoint Tim-3 might antagonize the
resistance of PD-1/PD-L1 blocking therapy. This review systematically introduces the
preclinical and clinical data of combined blockade of Tim-3 and PD-1/PD-L1 in cancer
immunotherapy, and discusses the prospect of overcoming the drug resistance of PD-1/
PD-L1 blockade therapy through blockade of Tim-3.
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INTRODUCTION

Co-inhibitory receptors play the following important roles in cells: regulating T cell response and
maintaining immune homeostasis (1). However, co-inhibitory receptors also limit the ability of T
cells to respond effectively to tumors or pathogens. T cells express a variety of co-inhibitory
receptors: CTLA-4 (cytotoxic T lymphocyte associated protein 4 or CD152), PD-1 (programmed
death ligand 1 or CD279), Tim-3 (T cell immunoglobulin and mucin containing protein 3 or
CD366), TIGIT (T cell immune receptor with immunoglobulin and ITIM domains), LAG-3
(lymphocyte activation gene 3 or CD223) and Vista (T cell activation inhibitor containing V
domain immunoglobulin) (2–4).

Tim-3 is a type I transmembrane protein which is encoded by gene havcr2 (hepatitis A virus
cellular receptor 2) (5, 6). Its extracellular domain is composed of the N-terminal immunoglobulin
(IgV) domain at the distal end of the membrane, followed by the membrane mucin domain
containing O-linked glycosylation potential (7). Tim-3 is expressed in a variety of immune related
cells, such as CD4+ and CD8+ T cells (5), regulatory T cells (Tregs), natural killer (NK) cells,
macrophages, mast cells and dendritic cells (DC) (8–12).
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LIGANDS AND SIGNALING PATHWAYS
OF Tim-3

So far, four ligands have been identified to interact with different
regions of Tim-3 extracellular immunoglobulin V domain:
galectin-9 (Gal-9), phosphatidylserine (PtdSer), high-mobility
group protein B1 (HMGB1), and cell adhesion molecule bound
to carcinoembryonic antigen 1 (CEACAM1) (2, 13).

The Tim-3 IgV domain are composed of two anti-parallel
b-sheets with A, G, F, C, C’ and C’ b-strands in one sheet (GFC
b-sheet) and the short b-strands, B, E and D in the other sheet
(BED b-sheet) (Figure 1, right upper panel). It contains six
conserved Cys residues, and the first and last of these six Cys
residues bridge the b-sheets. The four additional Cys residues
form two additional disulfide bonds that fix the long CC’ loop
Frontiers in Oncology | www.frontiersin.org 2
folded upwards onto the GFC b-sheet. The critical feature of
Tim-3 IgV domain is a deep binding pocket flanked by two
hydrophobic loops that can extend into a membrane (Figure 1,
right lower panel). The tip of the CC’ loop projects parallel to the
FG loop in the IgV domain, generating a pocket that is used for
recognition of ligands (6, 14). The binding of Tim-3 to Gal-9
induces the phosphorylation of two key tyrosine residues,Y265
and Y272 (Y256 and Y263 in mice), which in turn promotes the
release of BAT3 from the cytoplasmic tail of Tim-3 (15, 16). After
BAT3 release, Src kinase binds and promotes the subsequent
negative regulation of T-cell receptor (TCR) signal transduction
(16, 17). CEACAM1 and Gal-9 bind to different IgV domains,
but both ligands induce the phosphorylation of the same two
tyrosine residues which are required for the functional activity of
Tim-3 (17–25). PtdSer is a non-protein ligand that is shared
FIGURE 1 | Combined targeting Tim-3 and PD-1 pathway in cancer with resistance to PD-1/PD-L1 blockade. Right panel showed the ribbon diagram and surface
view of the of human Tim-3 IgV domain crystal structure. The b strands are labeled with uppercase letters and loops are highlighted in italics.
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among different Tim family members and released from
apoptotic cells (13, 26–28). It have been reported that Tim-3
recognizes apoptotic cells through the FG loop in the IgV
domain (Figure 1) (14, 29–34). The last one ligand is HMGB1
(35, 36). Binding of Tim-3 with HMGB1 interfered with the
recruitment of nucleic acids into DC endosomes, which lead to
the attenuated therapeutic efficacy of DNA vaccination and
chemotherapy by diminishing the immunogenicity of nucleic
acids released from dying cancer cells (35).
Tim-3 EXPRESSION AND ITS ROLE IN
REGULATING ANTI-TUMOR IMMUNITY

Tim-3was initially identified as expressed on cytotoxicT cells (Tc1)
and T helper type 1 (Th1) cells and acts mainly as a negative
regulator of type 1 immunity (5). Tim-3 is also highly expressed in
NK cells, macrophages and dendritic cells (37–42). The binding of
Gal-9 on Tim-3 promotes the production of IFN-g by NK cells,
while blocking Tim-3 by specific antibody will inhibit IFN-g
production (40). Tim-3 expression on macrophages is down
regulated in response to TLR4 stimulation and has an inhibitory
effect during sepsis (43). In dendritic cells, the binding of Tim-3 to
HMGB1 inhibits dendritic cells activation by interfering with the
nucleic acid sensing (35).

Increased expression of Tim-3 in human tumors, particularly
on immune cells, might be a potential prognostic biomarker for a
variety of tumors. For example, in patients with hepatitis B virus
related hepatocellular carcinoma (HCC), the expression of Tim-
3 on CD4+ and CD8+ T cells was increased. Tim-3+ T cells were
replicative senescent and expressed surface and genetic markers
for senescence (44–46). In addition, the number of tumor
infiltrating cells in Tim-3+ was negatively correlated with the
survival rate of HCC patients (47, 48). In prostate cancer, the
expression of Tim-3 is higher than that of adjacent benign
tissues, and the high expression of Tim-3 is an independent
predictor of recurrence free and progression free survival (49–
53). It has been shown that the abnormal expression of Tim-3 in
tumor was closely related to the depletion of T cells (52, 54–57).
For example, in a variety of mouse tumor models, Tim-3 is
widely expressed on CD8+ tumor infiltrating lymphocytes (58).
In mice bearing the solid tumor CT26 colon carcinoma, it shows
that among CD8+ TILs, cells that coexpress Tim-3 and PD-1
comprise the major population (∼50%) with cells expressing PD-1
alone or neither Tim-3 nor PD-1 comprising smaller populations
(∼30% and ∼20%, respectively) (59).This phenomena was also
observed in mice bearing two other solid tumors: 4T1 mammary
adenocarcinoma and B16F10 melanoma (59). Tim-3+ PD-1+
tumor infiltrating lymphocytes showed the most severe failure
phenotype, which was characterized by the inability to proliferate
and produce IFN-g, IL-2 and TNF-a (44, 51, 58–61).

Tim-3 also participates in the progression of tumor by
regulating Tim-3+ Foxp3+ Treg cells and innate immune cells
(62–65). For example, Tim-3+ Foxp3+ CD4+ cells are widely
found in non-small-cell lung carcinoma (NSCLC), HCC,
cervical, colorectal and ovarian cancer et al. (66–70). In
NSCLC, about 70% of Tim-3+ CD4+TILs expressed Foxp3, and
Frontiers in Oncology | www.frontiersin.org 3
about 60% of Foxp3+ tumor infiltrating lymphocytes were Tim-3
positive (9, 71). It is important that the T cells expressed Tim-3
on CD4+ are associated with lymph node metastasis and
advanced cancer staging (62). In patients with HCC, the
expression of Tim-3 in peripheral blood mononuclear cells and
tumor-associated macrophages (TAM) increased significantly,
and that is closely related to higher tumor grade and poor
survival for patients with HCC (44, 72, 73). In addition, the
interference of Tim-3 in macrophages significantly inhibited the
alternative activation of macrophages, and inhibited the growth
of HCC cells in vitro and in vivo (44, 72, 73).

In addition, Tim-3 was also directly expressed in tumor cells
(62). For example, Tim-3 is expressed in osteosarcoma and
triggers tumor cells to obtain aggressive EMT characteristics
(62). In clear cell renal cell carcinoma, Tim-3 was expressed on
cancer cells and CD204+ tumor related macrophages. The higher
expression level of Tim-3 was positively correlated with the short
progression free survival (PFS) of patients with clear cell renal
cell carcinoma (74). In acute myeloid leukemia (AML), Tim-3
was not expressed on normal hematopoietic stem cells, but
mainly on leukemic stem cells in most types of AML (75).
Recently, a number of studies have found that the mutation of
Tim-3 might be related to the occurrence of subcutaneous
panniculitis like T-cell lymphoma (76–79).
RATIONALE FOR TARGETING BOTH PD-1
AND Tim-3

Cancer immunotherapy with monoclonal antibodies to PD-1
and PD-L1 has achieved significant therapeutic effects in various
cancers (80–84). However, it is worth noting that patients who
receive anti PD-1 or anti PD-L1 monoclonal antibody treatment
will confront with the drug resistance problems, which leads to
cancer recurrence in many patients (85).

First, in the chronic lymphocytic choriomeningitis virus infection,
virus-specificCD8Tcells retainedhighTim-3expression throughout
chronic infection. The majority (65% to 80%) of lymphocytic
choriomeningitis virus-specific CD8 T cells in lymphoid and
nonlymphoid organs coexpressed Tim-3 and PD-1. This
coexpression was associated with more severe CD8 T-cell
exhaustion in terms of proliferation and secretion of effector
cytokines such as IFN-gamma, TNF-alpha, and IL-2. Interestingly,
CD8 T cells expressing both inhibitory receptors also produced the
suppressive cytokine IL-10.Most importantly, combined blockade of
Tim-3 and PD-1 pathways in vivo synergistically improved CD8 T
cell responses and viral control in chronically infected mice. Taken
together, it suggests that targetingbothPD-1andTim-3 is an effective
immune strategy for treating chronic viral infections.

Second, Anderson et al. found that CD8+ TILs that coexpress
Tim-3 and PD-1 not only represent the most abundant TIL
population in multiple solid tumors but also represent the most
dysfunctional or exhausted population of TILs (59). They treated
CT26 tumor-bearing mice with an anti–Tim-3 antibody, anti-
PD-L1 antibody, anti–Tim-3 plus anti–PD-L1 antibodies, or
control immunoglobulins (59). They found that treatment with
anti–Tim-3 alone had little or no effect and treatment with anti–
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PD-L1 alone showed a trend toward delayed tumor growth, but
this varied between experiments and did not reach statistical
significance. However, combined treatment with anti–Tim-3 and
anti–PD-L1 resulted in a dramatic reduction in tumor growth,
with 50% of the mice exhibiting complete tumor regression (59).
Similarly, a recent study has found that simultaneous targeting of
the Tim-3 and PD-1 pathways also rescues CD8+ T cells from
exhaustion in a model of chronic infection (85). Together, these
findings support combined targeting of the Tim-3 and PD-1
pathways as an effective treatment not only for cancer but also
for other chronic immune conditions where T cell exhaustion is
known to occur.

Third, a preclinical investigation evaluated the effects of dualPD-1
and Tim-3 blockade with radiation in human glioblastoma
multiforme. C57BL/6 mice were implanted with murine glioma cell
line GL261-luc2 and randomized into 8 treatment arms: (i) control,
(ii) SRS(stereotactic radiosurgery), (iii) anti-PD-1 antibody, (iv) Tim-
3 antibody, (v) anti-PD-1 + SRS, (vi) Tim-3 + SRS, (vii) anti-PD-1 +
Tim-3, and (viii) anti-PD-1 + Tim-3 + SRS. It showed that neither
Tim-3 nor SRS alone had significant treatment effect, whereas anti-
PD-1 improvedmedian survival (33days) comparedwith control (22
days, P < 0.0001). Adding Tim-3 to anti-PD-1 therapy improved
median survival from33days (anti-PD-1alone) to100days (Tim-3+
anti-PD-1) and improved overall survival (OS) from27.8% to 57.9%,
respectively (86). Therefore, combined targeting of the Tim-3 and
PD-1 pathways is more effective in suppressing tumor growth than
any single target pathway.

Last, another independent studyused twogenetically engineered
mouse models of lung adenocarcinomas corresponding to the two
most common oncogene drivers in human lung adenocarcinoma,
KRAS and EGFR. The EGFR and Kras models were treated with a
therapeutic anti-PD-1 antibody until tumors demonstrated
progression by magnetic resonance imaging and evaluated
immune profiles. It found that upregulation of other immune
checkpoints, most notably Tim-3, on therapeutic antibody-bound
T cells as a marker of treatment resistance. To determine whether
blockade of Tim-3 at the time of resistancemight be therapeutically
efficacious, TIM-3-blocking treatment in these mice were
performed and demonstrated a clinical benefit. Moreover, to
extend these results and determine their applicability to patients
treated with anti-PD-1 antibodies, specimens from two patients
who showed an initial response to PD-1 blockade but ultimately
developed progressive disease were analyzed. These cases exhibited
similar upregulationofTim-3on therapeutic antibody-boundTILs.
These results suggest that targeting alternate immune checkpoints
such as Tim-3 upregulated in the context of PD-1 therapy may
extend the benefit of PD-1 blockade in responsive tumors
(87) (Figure 1).
CLINICAL TRIALS OF TARGETING BOTH
PD-1 AND Tim-3 IN HUMAN TUMORS

At present, there are several ongoing clinical trials to explore the
application of combined blocking Tim-3 and PD-1 in advanced
solid tumors (Table 1).
Frontiers in Oncology | www.frontiersin.org 4
A phase I/II study evaluated the safety and efficacy of
sabatomimab with or without spartalizumab in patients with
advanced solid tumors (88). Among 219 patients, the most
common were ovarian cancer (17%) and colorectal cancer (7%).
133 patientswere treatedwith sabatolimab, 86 patientswere treated
with sabatomimab combined with spartalizumab. The most
common adverse event suspected to be treatment-related was
fatigue (9%, sabatolimab; 15%, combination). No responses were
seen with sabatolimab. Five patients receiving combination
treatment had partial responses (6%; lasting 12-27 months) in
colorectal cancer (n = 2), non-small cell lung cancer (NSCLC),
malignant perianal melanoma, and SCLC. Of the five, two patients
had elevated expression of immune markers in baseline biopsies;
another three had >10% TIM-3-positive staining, including one
patient with NSCLC who received prior PD-1 therapy (88). It
suggested that sabatomimabcombinedwith spartalizumabwaswell
tolerated and showed preliminary signs of antitumor activity.

LY3321367 is a novel Tim-3 monoclonal antibody. An open
label, multicenter, phase Ia/b solid tumor study explored the safety,
tolerability, recommended phase II dose, pharmacokinetics/
pharmacodynamics, immunogenicity and efficacy of LY3321367
alone or in combination with anti-PD-L1 antibody LY300054 (89).
No dose limiting toxicity was observed in the dose escalation of
monotherapy (n = 30) or combination therapy (n = 28). The
treatment-related adverse events of LY3321367 (≥2 patients)
mainly included pruritus, fatigue, rash, anorexia and infusion
related reactions. In the non-small cell lung cancer monotherapy
expansion cohort, outcomes varied by prior anti-PD-1 therapy
response status: anti-PD-1/L1 refractory patients (m= 23, objective
response rate (ORR) 0%, disease control rate (DCR) 35%,
progression-free survival (PFS) 1.9 months) versus anti-PD-1/L1
responders (n = 14, ORR 7%, DCR 50%, PFS 7.3 months). In
combination expansion cohorts (n = 91), ORR and DCR were 4%
and 42% (89). LY3321367 showed acceptable safety and good
pharmacokinetics/pharmacodynamics, but its anti-tumor activity
needs further study. Besides, this study has limitations. The small
sample size and the unselected enrollment of patients might result
in statistical bias and limit the statistical power of this study to
some degree.

LY3415244 is a bispecific antibody against Tim-3/PD-L1. A
phase I, multicenter, open label study evaluated the safety and
efficacy of combined blockade of Tim-3 and PD-L1 in patients with
advanced solid tumors (90). A total of 12 patients were included in
this study and received at least onedose ofLY3415244.Twopatients
(16.7%) developed clinically significant anaphylactic infusion-
related reactions and all patients developed treatment-emergent
antidrug antibodies (TE-ADA). ADA titers were sometimes very
high and negatively impacted soluble TIM-3 target engagement in
most patients. ADA epitope specificitywas against bothTIM-3 and
PD-L1 arms of the bispecific antibody (90). This TIM-3 and PD-L1
bispecific format was associated with unexpected immunogenicity
targeting both arms of the bispecific antibody, which might be
responsible for the early study termination. Therefore, this
experience emphasizes the importance of thorough analyses for
preexisting ADAs as part of immunogenicity risk assessment of
novel antibodies.
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In addition, sabatomimab and spartalizumab are humanized
IgG4 monoclonal antibodies. Sabatomimab blocks the binding of
Tim-3 to PtdSer, while spartalizumab blocks the binding of PD-1 to
PD-L1/2.A phase II clinical trial (NCT02608268) explored the dose
expansion of sabatomimab combined with spartalizumab in
patients with NSCLC and melanoma. Thirty three patients
received combination therapy, including 16 patients with
melanoma and 17 patients with NSCLC. The preliminary results
showed that sabatomimab combined with spartalizumab was well
tolerated, but the efficacy of combination of sabatomimab and
spartalizumab in patients with melanoma and NSCLC needs
further data (91).
CONCLUSION AND PERSPECTIVES

The activation of naive T cells requires both the stimulation of
the TCR by MHC-peptide complex and co-stimulatory signaling
by co-stimulatory receptors with their corresponding ligands on
antigen-presenting cells (92–95). There are stimulatory and
inhibitory co-receptors on the cell-surface which positively or
negatively regulate TCR driven signals, respectively (95). To date,
many co-stimulatory receptors have been identified including
CD28, ICOS, 4-1BB, CD226, OX-40, and GITR (95). For
Frontiers in Oncology | www.frontiersin.org 5
example, the co-stimulatory receptor CD28 on T cells and its
ligand B7-1 or B7-2 on activated APCs amplify TCR signaling,
leading to T-cell proliferation and IL-2 production (95, 96).
When T cells are being activated and expanded, the expression of
co-inhibitory receptors is up-regulated. Co-inhibitory receptors
includes PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT (95). They
play an important role in activated T cells, regulatory T cells, and
exhausted T cells. These receptors suppress T-cell function in the
tumor microenvironment, thereby making the T cells
dysfunctional. Therefore, blockade of co-inhibitory receptors
(such as PD-1) has emerged as a successful treatment option for a
numberofhuman cancers (97).However, primaryor acquireddrug
resistance may eventually lead to cancer progression in patients
with clinical response (3). Therefore, resistance to PD-1/PD-L1
blockade remains a major challenge to its further application.
Accumulating evidence supports the importance of targeting
Tim-3 in the treatment of cancer. Importantly, a number of
preclinical studies have shown that, compared with the use of
anti-PD-1 antibody alone, the combined treatment of blocking
Tim-3 and PD-1 can significantly improve the survival rate ofmice
(59, 87). Moreover, several ongoing clinical trials have also
evaluated the safety and efficacy of the combination therapy (88,
89). Therefore, the combined blockade of Tim-3 andPD-1 pathway
might be a promising strategy for tumor immunotherapy.
TABLE 1 | Main ongoing clinical trials of anti-Tim-3 combined with anti-PD-1 antibody.

NCT Number Title Tumor type Interventions Phases

NCT03680508 TSR-022 and TSR-042 in Patients With Liver Cancer Liver Cancer Drug: TSR-022 and TSR-
042

Phase II

NCT04139902 Neoadjuvant PD-1 Inhibitor Dostarlimab (TSR-042) vs. Combination of TIM-3 Inhibitor
TSR-022 and PD-1 Inhibitor Dostarlimab (TSR-042) in Melanoma

Melanoma Drug: Dostarlimab (TSR-
042) (singly)|Drug:
Dostarlimab (TSR-042)
and TSR-022
(combination)

Phase II

NCT03708328 A Dose Escalation and Expansion Study of RO7121661, a PD-1/TIM-3 Bispecific
antibody, in Participants With Advanced and/or Metastatic Solid Tumors

Solid Tumors Drug: RO7121661 Phase I

NCT04931654 A Study to Assess the Safety and Efficacy of AZD7789 in Participants With Advanced or
Metastatic Solid Cancer

Non-Small-Cell
Lung cancer

Drug: AZD7789 Phase I/II

NCT04370704 Study of Combination Therapy With INCMGA00012, INCAGN02385, and INCAGN02390
in Participants With Select Advanced Malignancies

Melanoma Drug: INCAGN02385|
Drug: INCAGN02390|
Drug: INCMGA00012.

Phase I/II

NCT03961971 Trial of Tim-3 in Combination With anti-PD-1 and SRS in Recurrent GBM Glioblastoma
Multiforme

Drug: sabatomimab Phase I

NCT03311412 A Phase 1, Open-Label, Multicenter Trial Investigating the Safety, Tolerability, and
Preliminary antineoplastic Activity of Sym021 as Monotherapy, in Combination With
Either Sym022 or Sym023, and in Combination With Both Sym022 and Sym023 in
Patients With Advanced Solid Tumor Malignancies or Lymphomas

Metastatic Cancer,
Solid Tumor,
Lymphoma

Drug: Sym021|Drug:
Sym022|Drug: Sym023

Phase I

NCT03744468 Study of BGB-A425 in Combination With Tislelizumab in Advanced Solid Tumors Solid Tumors Drug: BGB-A425|Drug:
tislelizumab

Phase I/II

NCT04641871 Sym021 in Combination With Either Sym022 or Sym023 in Patients With Advanced Solid
Tumor Malignancies

Solid Tumors Drug: Sym021|Drug:
Sym022|Drug: Sym023

Phase I

NCT04785820 A Study of RO7121661 and RO7247669 Compared With Nivolumab in Participants With
Advanced or Metastatic Squamous Cell Carcinoma of the Esophagus

Esophageal
Squamous Cell
Carcinoma

Drug: RO7121661|Drug:
RO7247669|Drug:
Nivolumab

Phase II

NCT02817633 A Study of TSR-022 in Participants With Advanced Solid Tumors (AMBER) Solid Tumors Drug: TSR-022,Nivolumab Phase I
NCT02608268 Phase I-Ib/II Study of sabatomimab as Single Agent and in Combination With PDR001 in

Patients With Advanced Malignancies
Advanced
Malignancies

Drug: Sabatomimab|Drug:
PDR001|Drug: Decitabine

Phase I/II
Septemb
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TSR-022, Tim-3 antibody; TSR-042, anti-PD-1 antibody; RO7121661, PD1-Tim-3 bispecific antibody; RO7247669, PD1-LAG3 bispecific antibody; AZD7789, anti-PD-1 and Tim-3
bispecific antibody; INCMGA00012, anti-PD-1 antibody; INCAGN02385, anti-LAG-3 antibody; INCAGN02390, Tim-3 antibody; BGB-A425, humanized immunoglobulin gamma-1 (IgG1)-
variant monoclonal antibody against Tim-3; Tislelizumab, humanized immunoglobulin G4 (IgG4)-variant monoclonal antibody against PD-1; TSR-022,Tim-3 antibody; Sabatomimab,
Tim-3 antibody.
le 731175

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Tian and Li Targeting Tim-3 in Cancer
Although a number of preclinical and clinical studies have
shown that, compared with the use of anti-PD-1 antibody alone,
the combined treatment of blocking Tim-3 and PD-1 might be a
better strategy for tumor immunotherapy, there are still more
challenges and questions to be answered. First, there is a lack of
valid biomarkers which can predict successful treatment with
this combination currently. Recently studies showed that the
even expression level of PD-L1 does not necessarily predict
successful treatment (31, 98). Therefore, this combination
should be approved on the basis of these biomarkers to limit
ineffective treatments in the future. Next generation sequencing
and nanostring analysis showing the results of total mutational
burden or certain immune signatures present promising tests
with the potential to discriminate between immune responsive or
unresponsive patients, thus requiring further studies to confirm
their utility as a predictive marker. Second, combinations will
have to be patient tailored since they are likely to be more toxic
than single agents and more expensive. Third, cells usually have
functionally redundant pathways which could override and
compensate for each other. Exhausted T cells upregulate
several exhaustion markers (LAG-3,TIGIT and Tim-3 et al)
Frontiers in Oncology | www.frontiersin.org 6
and that targeting one of these will simply lead to an
overexpression of another. The combination strategies should
be carefully designed and should take into account T cell
activation or exhaustion status. Notably, as compared to the
two other immune checkpoints LAG-3 and TIGIT, Tim-3 is less
validated and more robust clinical trials are still needed.
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