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Background. The ultimate goal of genetic mapping of quantitative trait loci (QTL) is the positional cloning of genes involved
in any agriculturally or medically important phenotype. However, only a small portion (# 1%) of the QTL detected have been
characterized at the molecular level, despite the report of hundreds of thousands of QTL for different traits and populations.
Methods/Results. We develop a statistical model for detecting and characterizing the nucleotide structure and organization
of haplotypes that underlie QTL responsible for a quantitative trait in an F2 pedigree. The discovery of such haplotypes by the
new model will facilitate the molecular cloning of a QTL. Our model is founded on population genetic properties of genes that
are segregating in a pedigree, constructed with the mixture-based maximum likelihood context and implemented with the EM
algorithm. The closed forms have been derived to estimate the linkage and linkage disequilibria among different molecular
markers, such as single nucleotide polymorphisms, and quantitative genetic effects of haplotypes constructed by non-alleles of
these markers. Results from the analysis of a real example in mouse have validated the usefulness and utilization of the model
proposed. Conclusion. The model is flexible to be extended to model a complex network of genetic regulation that includes
the interactions between different haplotypes and between haplotypes and environments.
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INTRODUCTION
The basic principle for quantitative trait locus (QTL) mapping is

the cosegregation of the alleles at a QTL with those at one or a set

of known polymorphic markers genotyped on a genome in an

experimental cross [1,2]. If a QTL is cosegregating with molecular

markers, the genetic effects of the QTL on a quantitative trait and

its genomic position can be estimated from the marker genotypes

and phenotypic values of the trait. This estimation process

particularly assumes the QTL to be located within an interval

constructed by a pair of flanking markers in which a test statistics

calculated under the reduced (there is no QTL) and full model

(there is a QTL) is used to test the existence of the QTL and

estimate its position. This so-called interval mapping approach

and its extensions [3–5] is robust and powerful for the detection of

major QTL and presents the most efficient way to utilize marker

information when marker maps are sparse [6]. However, interval

mapping is limited by its incapacity to infer any information about

the sequence structure and organization of the QTL. Partly for

this reason, only a few QTL mapped from markers have been

successfully cloned [7–9], despite a considerable number of QTL

reported in the literature.

Interval QTL mapping also has an unsolved statistical difficulty

when it is used with a high-density linkage map. With more

markers genotyped, a genetic map for QTL identification has

tended to be infinitely dense. For such an infinitely dense map in

which markers are located everywhere over the genome, test

statistics at nearby intervals are not independent any more. Thus,

the critical threshold used to acclaim the existence of a QTL by

interval mapping will be difficult to analytically determine.

Although an empirical alternative based on permutation tests

has been proposed for threshold determination [10], extensive

computing may affect the use efficiency of interval mapping.

Despite its unsuitability for interval mapping of QTL, an

infinitely dense map provides an important tool for characterizing

genetic variants that contribute to quantitative variation via the

analysis of haplotypes composed of non-alleles at a set of highly

linked markers. Recent genetic studies suggest that a gene may

determine a complex trait, such as body weight or drug response,

through its haplotype rather than genotype [11,12]. The

completion of the genome projects for several important organ-

isms, Arabdopsis, chicken, human, mouse and poplar, has made

massive amounts of DNA sequence data available. In particular,

single nucleotide polymorphisms (SNPs), being the most common

type of variant in the DNA sequence, provide a powerful means

for genotyping the whole genome or any part of it. This facilitates

the identification of specific SNP-constructed haplotypes which are

responsible for quantitative traits. A set of SNPs that cause

quantitative differences among individuals are called quantitative

trait nucleotides (QTNs). Liu et al. [13] proposed a statistical

model for estimating and testing haplotype effects at a QTN in

a random sample drawn from a natural population. This model is

based on the population genetic properties of gene segregation.

Through the implementation of the EM algorithm, population

genetic parameters of SNPs, such as haplotype frequencies, allele

frequencies and linkage disequilibria, and quantitative genetic

parameters, such as haplotype effects of a QTN, are estimated

with closed forms.
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The motivation of this work is to derive a statistical model for

haplotype discovery responsible for quantitative variation in

a mapping population derived an experimental cross. Unlike

a natural population in which gene co-segregation analysis is based

on linkage disequilibria [14], experimental crosses, such as the

backcross or F2, have usually been analyzed in terms of the linkage

between different markers and QTL. In this article, we will frame

a general statistical model for estimating the linkage between

different SNPs and testing haplotype effects within the context of

linkage disequilibrium analysis in an F2 pedigree. We show that

the new model can test for the dependence of SNPs when a multi-

point analysis is performed. We have derived closed forms for the

EM algorithm to estimate a variety of genetic parameters. A

worked example is used to validate the usefulness and utilization of

the model.

METHODS

Haplotype and diplotype
A haplotype represents a linear arrangement of nucleotides

(alleles) at different SNPs on a single chromosome, or part of

a chromosome. The pair of haplotypes is called a diplotype. The

observed phenotype of a diplotype is called a genotype. A

diplotype is always constructed by two haplotypes, one from the

maternal parent and the other from the paternal parent. Suppose

there are two different SNPs on the same genomic region, one

with two alleles A and a and the other with two alleles B and b,

respectively. Allele A from SNP 1 and allele B from SNP 2 are

located on the first homologous chromosome, whereas allele

a from SNP 1 and allele b from SNP 2 located on the second

homologous chromosome. Thus, [AB] is one haplotype and [ab]

is a second haplotype, and both constitute a diplotype [AB][ab]

(Fig. 1).

In a practical genetic analysis, we can only observe the

genotype expressed as Aa/Bb. However, the double heterozygote

may be one (and only one) of two possible diplotypes [AB][ab]

and [Ab][aB]. But these two diplotypes cannot be directly

observed and should be inferred from SNP genotype data

(Fig. 2). In practice, it is important to estimate haplotype effects

on a quantitative trait based on the diplotypes and therefore

genotypes. For example, if an animal carries haplotype [AB], it

will grow better than other animals that carries any other

haplotypes, [Ab], [aB] and [ab]. For this reason, the same

genotype Aa/Bb may perform differently, depending on what

diplotype it carries. If this genotype is diplotype [AB][ab], then it

will have a better growth. If the animal is diplotype [Ab][aB], its

growth will be poorer. The statistical model being developed will

be used to determine which diplotype is associated with better

growth in experimental crosses.

Linkage disequilibrium in the F2 intercross
A general model: Haplotype analysis in the backcross is

straightforward because the diplotype is determined for all the

backcross genotype. Simple analysis of variance can be used to

detect haplotype effects on a quantitative trait. In the F2, this is not

a case in which the double heterozygote is a mixture of two

possible diplotypes.

Suppose many SNPs are genotyped each of which is

segregating in a 1:2:1 Mendelian ratio in the F2 population.

As seen in the human genome [15], these SNPs are divided into

different haplotype blocks. For a given block, there are

a particular number of representative SNPs or htSNPs that

uniquely identify the common haplotypes in this block or QTN.

Several algorithms have been developed to identify a minimal

subset of htSNPs that can characterize the most common

haplotypes [16–18]. Consider a QTN that contains L htSNPs

among which there exist linkage disequilibria of different orders.

The two alleles, 1 and 0, at each of these SNPs are symbolized

by r1,…,rL, respectively. For a cross initiated with two inbred

parents, the allele frequencies for each of these htSNPs should be

1/2. A haplotype frequency, denoted as pr1r2���rL
, is decomposed

into the following components:

pr1r2 ...rL

~pr1
pr2

. . . prL
No LD

z({1)rL{1zrL pr1
. . . prL{2

D(L{1)Lz . . .

z({1)r1zr2 pr3
. . . prL

D12 Digenic LD

z({1)rL{2zrL{1zrL pr1
. . . prL{3

D(L{2)(L{1)L

z . . . z({1)r1zr2zr3 pr4
. . . prL

D123 Trigenic LD

z . . .

z({1)L({1)r1z...zrL D1...L L� genic LD

ð1Þ

where D’s are the linkage disequilibria of different orders among

particular SNPs.

Figure 1. Haplotype configuration of a diplotype for two hypothe-
sized SNPs.
doi:10.1371/journal.pone.0000732.g001

Figure 2. Diplotype configuration of a genotype for two hypothe-
sized SNPs.
doi:10.1371/journal.pone.0000732.g002
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Totally, L SNPs form 2L haplotypes expressed as [r1…rL],

2L21(2L+1) diplotypes, i.e., a pair of maternally- (m) and

paternally-derived haplotypes (p), expressed as [r1
m…rL

m]

[r1
p…rL

p] (r1
m, r1

p,…;rL
m,rL

p = 1,0) and 3L genotypes expressed

as r1r91/…/rLr9L (r1$r91,…,rL$r9L = 1,0). Only genotypes can be

observed. The number of diplotypes is smaller than the number of

genotypes because the genotypes that are heterozygous at two or

more SNPs contain multiple different diplotypes. Diplotype (and

therefore genotype) frequencies can be expressed in terms of

haplotype frequencies. We use P½rm
1
:::rm

L
�½rp

1
:::rp

L
� and Pr1 r01 =...=rL r0L to

denote the diplotype and genotype frequencies, respectively, and

nr1 r01 =...=rL r0L to denote genotype observation.

A special case: Two-point linkage disequilibrium: For

two given SNPs (S1 and S2), there are four different haplotypes in

a cross population. According to the definition given above, these

four haplotypes are denoted as [11], [10], [01] and [00], whose

frequencies in a cross population are, respectively, expressed as

p11~
1

4
zD,

p10~
1

4
{D,

p01~
1

4
{D,

p00~
1

4
zD:

ð2Þ

Assume that the two SNPs are linked with a recombination

fraction r. The haplotype frequencies can be expressed in terms of

r, i.e., p11~
1

2
(1{r), p10~

1

2
r, p01~

1

2
r and p00~

1

2
(1{r). Com-

bining equation (2), this establishes the relation between the

linkage disequilibrium and recombination fraction as

D~
1

4
(1{2r), ð3Þ

or

r~
1

2
(1{4D): ð4Þ

A special case: Three-point linkage disequilibrium: For

three given SNPs (S1, S2, and S3), there are eight different

haplotypes, i.e., [111], [110], [101], [100], [011], [010], [001],

and [000]. The haplotype frequencies in a cross population are,

respectively, expressed as

p111~
1

8
z

1

2
D23z

1

2
D13z

1

2
D12zD123

p110~
1

8
{

1

2
D23{

1

2
D13z

1

2
D12{D123

p101~
1

8
{

1

2
D23z

1

2
D13{

1

2
D12{D123

p100~
1

8
z

1

2
D23{

1

2
D13{

1

2
D12zD123

p011~
1

8
z

1

2
D23{

1

2
D13{

1

2
D12{D123

p010~
1

8
{

1

2
D23z

1

2
D13{

1

2
D12zD123

p001~
1

8
{

1

2
D23{

1

2
D13z

1

2
D12zD123

p000~
1

8
z

1

2
D23z

1

2
D13z

1

2
D12{D123

ð5Þ

where D12, D23 and D13 are the linkage disequilibria between SNP

S1 and S2, between S2 and S3 and between S1 and S2, respectively,

and D123 is the linkage disequilibrium among the three SNPs. The

four disequilibrium coefficients can be estimated, by solving

equation (5), as

D12 ~
1

4
½(p111zp110zp001zp000){(p101zp100zp011zp010)�

D23 ~
1

4
½(p111zp011zp100zp000){(p110zp010zp101zp001)�

D13 ~
1

4
½(p111zp101zp010zp000){(p110zp100zp011zp001)�

D123 ~
1

8
½(p111zp100zp010zp001){(p110zp101zp011zp000)�

ð6Þ

The first three first-order linkage disequilibria can be used to

describe the linkage between different SNPs and crossover

interference, whereas the last second-order linkage disequilibrium

is thought to be associated with chromatid interference.

Haplotyping a trait with two SNPs
Our interest is to search for the haplotype diversity that can

explain phenotypic variation in a complex trait. The association

between haplotype diversity and phenotypic variation has been

detected in several studies of drug responses [11,12]. This allows us

to assume that a particular haplotype is different from other

haplotypes for a given trait. Here, our focus will be on modelling

haplotype effects in experimental crosses. Although haplotypes

(comprising diplotypes) can be directly observed in the backcross,

this is not possible for the F2 because their heterozygous genotypes

are not concordant with diplotypes or haplotypes. For the F2

population, the effects of different haplotypes on the phenotype

need be postulated from observed zygotic genotypes. The

inference of diplotypes for a particular genotype is statistically

a missing data problem that can be formulated by a finite mixture

model.

Mixture model: The statistical method for the genomewide

scan of QTN is formulated on the basis of a finite mixture model.

The mixture model assumes that each observation comes from one

of an assumed set of distributions. The mixture model derived to

detect haplotype effects on a quantitative trait based on SNP

genotype data contains three major parts: (1) the mixture

proportions of each distribution, denoted as the relative frequen-

cies of different diplotypes for the same SNP genotype, (2) the

mean for each diplotype in the density function, and (3) the

residual variance common to all diplotypes.

For simplicity, we consider a QTN that is composed of only two

SNPs each with two alleles designated as 1 and 0. These two SNPs

segregating in the F2 population form four haplotypes whose

frequencies are arrayed in vector Hp = (p11, p10, p01, p00). All the

genotypes are consistent with diplotypes, except for the double

heterozygote, 10/10, that contains two different diplotypes

[11][00] with a frequency of 2 p11p00 and [10][01] with a frequency

of 2 p10p01 (Table 1). The relative frequencies of different

diplotypes for the double heterozygote are a function of haplotype

frequencies.

A total of n individuals in the F2 are classified into 9 genotypes

for the two SNPs, each genotype with observation generally

expressed as nr1 r01 =r2 r02 (r1$r91,r2$r92,r3$r93 = 1,0). The frequency

of each genotype can be expressed in terms of haplotype

frequencies (Table 1). Considering a quantitative trait controlled

by diplotype (rather than genotype) diversity, the phenotypic value

Quantitative Trait Haplotyping
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of the trait (yi) for individual i is expressed by a linear model, i.e.,

yi~
X1

rm
1

~0

X1

r
p

1
~0

X1

rm
2

~0

X1

r
p

2
~0

jiu½rm
1

rm
2
�½rp

1
r
p

2
�
zei, ð7Þ

where ji is the indicator variable defined as 1 if a diplotype

considered is compatible with subject i and as 0 otherwise,

u½rm
1

rm
2
�½rp

1
r

p

2
�~u½rp

1
r

p

2
�½rm

1
rm

2
� is the genotypic value for diplotype

½rm
1 rm

2 �½r
p
1r

p
2 �, and ei is the residual error distributed as N(0,s2).

Assume that this QTN triggers an effect on the trait because at

least one haplotype is different from the remaining seven. Without

loss of generality, let [11] be such a distinct haplotype, called risk

haplotype, designated as A. All the other non-risk haplotypes, [10],

[01] and [00], are collectively expressed as Ā. The risk and non-

risk haplotypes form three composite diplotypes AA (2), AĀ (1) and ĀĀ

(0). Let m2, m1 and m0 be the genotypic value of the three composite

diplotypes, respectively (Table 1). The means for different

composite diplotypes and residual variance are arrayed by

a quantitative genetic parameter vector Hq = (m2, m1, m0, s2).

Likelihoods: With the above notation, we construct two

likelihoods, one for haplotype frequencies (Hp) based on SNP data

(S) and the other for quantitative genetic parameters (Hq) based on

haplotype frequencies (Hp), phenotypic (y) and SNP data (S). They

are, respectively, expressed as

logL(HpjS)~ log L(HpjHq,y,S)~

z2n11=11 log p11

Pn11=11

i~1

log f2(yi)

zn11=10 log (2p11p10) z
Pn11=10

i~1 log f 1(yi)

z2n11=00 log p10 z
Pn11=00

i~1 log f0(yi)

zn10=11 log (2p11p01) z
Pn10=11

i~1 log f1(yi)

zn10=10 log (2p11p00z2p10p01) z
Pn10=10

i~1 log½wf1(yi)z(1{w)f0(yi)�
zn10=00 log (2p10p00) z

Pn10=00

i~1 log f0(yi)

z2n00=11 log p01 z
Pn00=11

i~1 log f0(yi)

zn00=10 log (2p01p00) z
Pn00=10

i~1 log f0(yi)

z2n00=00 log p00 z
Pn00=00

i~1 log f0(yi)

ð8Þ

where f j (yi) is a normal distribution density function of composite

diplotype j (j = 2,1,0), i.e.,

fj(yi)~
1ffiffiffiffiffiffi
2p
p

s
exp {

(yi{mj)
2

2s2

" #
:

It can be seen from the above likelihood functions that, although

most zygote genotypes contain a single component (diplotype), the

double heterozygote is the mixture of two possible diplotypes

weighted by w and 1-w, expressed as

w~
p11p00

p11p00zp10p01

, ð9Þ

which represents the relative frequency of diplotype [11][00] for

the double heterozygote.

It should be noted that L(Hp, Hq | y, S) relies on the haplotype

frequencies defined in L(Hp|S) and, thus, the latter is thought to be

nested within the former. The estimates of parameters that

maximize L(Hp|S) can also maximize the L(Hp, Hq | y, S).

The EM algorithm: A closed-form solution for the EM

algorithm has been derived to estimate the unknown parameters

that maximize the two likelihoods of (26) [13]. The estimates of

haplotype frequencies are based on the log-likelihood function

L(Hp|M), whereas the estimates of diplotype genotypic means and

residual variance are based on the log-likelihood function L(Hp, Hq

| y, M). These two different types of parameters can be estimated

using a two-stage hierarchical EM algorithm.

At a higher hierarchy of the EM algorithm, the E step is aimed

to calculate the relative frequency (w) of diplotype [11][00] in the

double heterozygote is calculated by equation (9). The M step is

aimed to estimate the haplotype frequencies based on the

probabilities calculated in the previous iteration using

p̂p11 ~
1

2n
(2n11=11zwn10=10zn11=10zn10=11)

p̂p10 ~
1

2n
½2n11=00zn11=10z(1{w)n10=10zn10=00�

p̂p01 ~
1

2n
½2n00=11zn10=11z(1{w)n10=10zn00=10�

p̂p00 ~
1

2n
(2n00=00zwn10=10zn01=00zn10=00)

ð10Þ

Table 1. Diplotypes and their frequencies for each of nine genotypes at two SNPs within a QTN, haplotype composition
frequencies for each genotype, and composite diplotypes for four possible risk haplotypes.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Genotype Diplotype
Relative diplotype frequency

Risk haplotype

Configuration Frequency [11] [10] [01] [00]

11/11 [11][11] p2
11 1 AA ĀĀ ĀĀ ĀĀ

11/10 [11][10] 2p11p10 1 AĀ AĀ ĀĀ ĀĀ

11/00 [10][10] p2
10 1 ĀĀ AA ĀĀ ĀĀ

10/11 [11][01] 2p11p01 1 AĀ ĀĀ AĀ ĀĀ

10/10 ½11�½00�
½10�½01�

�
2p11p00

2p10p01

�
w

1{w

�
AAA

AAAA

�
AAAA

AAA

�
AAAA

AAA

�
AAA

AAAA

�
10/00 [10][00] 2p10p00 1 ĀĀ AĀ ĀĀ AĀ

00/11 [01][01] p2
01 1 ĀĀ ĀĀ AA ĀĀ

00/10 [01][00] 2p01p00 1 ĀĀ ĀĀ AĀ AĀ

00/00 [00][00] p2
00 1 ĀĀ ĀĀ ĀĀ AA

Two alleles for each of the two SNPs are denoted as 1 and 0, respectively. Genotypes at different SNPs are separated by a slash. Diplotypes are the combination of two
bracketed maternally and paternally derived haplotypes. By assuming different haplotypes as a risk haplotype, composite diplotypes are accordingly defined and their
genotypic values are given.
doi:10.1371/journal.pone.0000732.t001..
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At a lower hierarchy of the EM algorithm, the E step is derived

to calculate the posterior probability (V[11][00]i) of individual i with

the double heterozygous genotype to be diplotype [11][00] by

V½11�½00�i~
wf½11�½00�(yi)

wf½11�½00�(yi)z(1{w)f½10�½01�(yi)
:

Note that for all the other genotypes, such posterior probabilities

do not exist.

By assuming that [11] is a risk haplotype, the M step is derived

to estimate the genotypic values (mj) for each composite diplotype

and the residual variance based on the calculated posterior

probabilities by

m̂m2 ~

Pn11=11

i~1
yi

n11=11
,

m̂m1 ~

P _nn

i~1
yiz
Pn10=10

i~1
V½11�½00�iyi

_nnz
Pn10=10

i~1
V½11�½00�i

,

m̂m0 ~

P€nn

i~1
yiz
Pn10=10

i~1
(1{V½11�½00�i)yi

€nnz
Pn10=10

i~1
(1{V½11�½00�i)

,

ð12Þ

ŝs2 ~ 1
n
f
Pn11=11

i~1

(yi{ m̂m2 )2z
P_nn
i~1

(yi{ m̂m1 )2z
P€nn
i~1

(yi{ m̂m0 )2

z
Pn10=10

i~1

V½10=10�i(yi{ m̂m1 )2z(1{V½10=10�i)(yi{ m̂m0 )2
� �

g,
ð13Þ

where

_nn~n11=10zn10=11,

€nn~n11=00zn10=00zn01=01zn01=00zn00=00:

Iterations including the E and M steps are repeated at the higher

hierarchy between equations (9) and (10) and at the lower

hierarchy among equations (12) and (13) until the estimates of the

parameters converge to stable values. The sampling errors of these

parameters can be estimated by calculating Louis’ [19] observed

information matrix.

Haplotype frequencies can be expressed as a function of allelic

frequencies and linkage disequilibrium. Based on equation (2), we

solve the linkage disequilibrium between two SNPs by

D̂D~p̂p11{
1

4

~
1

4
{p̂p10:

ð14Þ

With the genotypic means of composite diplotypes, we can

estimate the overall mean (m) and additive (a) and dominant

genetic effects (d) due to the QTN detected, respectively, by

m̂m ~
1

2
(m̂m2zm̂m0)

âa ~
1

2
(m̂m2{m̂m0)

d̂d ~ m̂m1{
1

2
(m̂m2zm̂m0)

Model selection: The likelihood L(Hp, Hq | y, S) is formulated

by assuming that haplotype [11][11] is a risk haplotype. However,

a real risk haplotype is unknown from raw data (y, S). An

additional step for the choice of the most likely risk haplotype

should be implemented. The simplest way to do so is to calculate

the likelihood values by assuming that any one of the four

haplotypes can be a risk haplotype (Table 1). Thus, we obtain four

possible likelihood values under different risk haplotypes; that is,

(1) L1( ĤHp , ĤH1q jy,S) for [11], (2) L2( ĤHp , ĤH2q jy,S) for [10], (3)

L3( ĤHp , ĤH3q jy,S) for [01], and (4) L4( ĤHp , ĤH4q jy,S) for [00].

Under each possible risk haplotype, we estimate the quantitative

genetic parameters ĤHkq (k = 1,…,4). The largest likelihood value

calculated is thought to correspond to the most likely risk

haplotype.

In practice, it is also possible that there exist more than one risk

haplotypes for a QTN. Relative to the bi-‘‘allelic’’ QTN with one

risk haplotype, such a QTN is called a multi-‘‘allelic’’ QTN. If

there are two risk haplotypes, we will have six composite

diplotypes. Assuming that [11] (denoted by A1) and [10] (denoted

by A2) are risk haplotypes and the remaining haplotypes [10] and

[01] are non-risk haplotypes (denoted by A3), then six composite

diplotypes, expressed as A1A1, A1A2, A1A3, A2A2, A2A3 and A3A3,

can be specified according to the diplotype distribution as shown

in Table 1. Totally, there are six such haplotype combinations for

a two-SNP QTL, each combination corresponding to a likelihood

value. Based on the calculated likelihoods, we can determine

a most likely risk and non-risk haplotype combination. If there are

three risk haplotypes, we will have 10 different composite

diplotypes. The optimal risk and non-risk haplotype combination

will be selected from three combinations based on the likelihoods.

The likelihood can be used as a criterion to select the optimal

risk and non-risk haplotype combination when the number of risk

haplotype is the same. However, when the number of risk

haplotype is different, an AIC- or BIC-based model selection

strategy [20] should be used because of different numbers of

parameters being estimated in this case.

Hypothesis tests: We can test two major hypotheses in the

following sequence: (1) the association between two SNPs by

testing their linkage disequilibrium, and (2) the difference of a given

haplotype from the remaining haplotypes by testing the signifi-

cance of haplotype additive and dominant effects on the trait. The

linkage disequilibrium between two given SNPs can be tested

using two alternative hypotheses:

H0 :D~0 vs: H1 : D=0

The log-likelihood ratio test statistic for the significance of LD is

calculated by comparing the likelihood values under the H1 (full

model) and H0 (reduced model) using

LR1~{2½logL(p11~p10~p01~p00~
1

4
jS){logL( ĤHp jS)�, ð16Þ

The LR1 is considered to asymptotically follow a x2 distribution

with one degree of freedom.

Diplotype or haplotype effects on the trait, i.e., the existence of

a QTN, can be tested using the following hypotheses expressed as

H0 : mj:m vs: H1 : at least one equality in H0 does not hold, j~2,1,0 ð17Þ

The log-likelihood ratio test statistic (LR2) under these two

hypotheses can be similarly calculated,

LR2~{2½logL( ~HHp ,~mmjy,S){logL( ĤHp , ĤHq jy,S)�, ð18Þ

(15)
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where the tildes and hats denote the MLEs of parameters

under the null and alternative hypotheses of (17), respectively.

Although the critical threshold for determining the existence of

a QTN can be based on empirical permutation tests, the LR2 may

asymptotically follow a x2 distribution with two degrees of

freedom, so that the threshold can be obtained from the x2

distribution table.

Haplotyping a trait with multiple SNPs
Haplotype structure: The statistical method for QTN

mapping is exemplified by a set of three SNPs, S1–S3, for

a QTN. Two alleles 1 and 0 at each SNP are symbolized by r1,

r2 and r3, respectively. Eight haplotypes, [111], [110], [101],

[100], [011], [010], [001] and [000], formed by these three

SNPs, have the frequencies arrayed in Hp = (p111, p110, p101, p100,

p011, p010, p001, p000). Some genotypes are consistent with

diplotypes, whereas the others that are heterozygous at two or

more SNPs are not. Each double heterozygote contains two

different diplotypes. One triple heterozygote, i.e., 10/10/10,

contains four different diplotypes, [111][000] (in a probability of

2p111p000), [110][001] (in a probability of 2p110p001), [101][010]

(in a probability of 2p101p010) and [100][011] (in a probability of

2p100p011). The relative frequencies of different diplotypes for this

double or triple heterozygote are a function of haplotype

frequencies (Table 2).

In the F2 population, there are 27 genotypes for the three SNPs.

Let nr1 r01 =r2 r02 =r3 r03 (r1$r91,r2$r92,r3$r93 = 1,0) be the number of

offspring for a genotype. As seen in Table 2, the frequency of each

genotype is expressed in terms of haplotype frequencies. Similar to

equation (25), the phenotypic value of the trait for individual i is

expressed, at the diplotype level, as

yi~
X1

rm
1
~0

X1

r
p

1
~0

X1

rm
2
~0

X1

r
p

2
~0

X1

rm
3
~0

X1

r
p

3
~0

jiu½rm
1

rm
2

rm
3
�½rp

1
r
p

2
r
p

3
�
zei, ð19Þ

where ji is the indicator variable defined as 1 if a diplotype

considered is compatible with subject i and as 0 otherwise,

u
½rm

1
rm
2

rm
3
�½rp

1
r
p

2
r
p

3
�
~u

½rp

1
r
p

2
r
p

3
�½rm

1
rm
2

rm
3
�

is the genotypic value for diplotype

[r1
mr2

mr3
m][r1

pr2
pr3

p], and ei is the residual error distributed as

N(0,s2). Note that m and p stand for the maternally and paternally

derived alleles, respectively.

By assuming [111] as a risk haplotype (labelled by A) and all

the others as non-risk haplotypes (labelled by Ā), Table 2

provides the formulation of genotypic values for three

composite diplotypes, m2 for AA, m1 for AĀ and m0 for ĀĀ.

The haplotype effect parameters and residual covariance

matrix are arrayed by a quantitative genetic parameter vector

Hq = (m2, m1, m0,s2).

Likelihoods and algorithms:With the above notation, we

construct two likelihoods, one for haplotype frequencies (Hp) based

on SNP data (S) and the other for quantitative genetic parameters

(Hq) based on haplotype frequencies (Hp), phenotypic (y) and SNP

data (S). They are, respectively, expressed as

logL(Hp jS)~constant logL(HqjHp ,y,S)~

z2n11=11=11 logp111

Pn11=11=11

i~1

logf2(yi)

zn11=11=10log(2p111p110) z
Pn11=11=10

i~1

logf1(yi)

z2n11=11=00 logp110 z
Pn11=11=00

i~1

logf0(yi)

zn11=10=11log(2p111p101) z
Pn11=10=11

i~1

logf1(yi)

zn11=10=10 log(2p111p100z2p110p101) z
Pn11=10=10

i~1

log½w1f1(yi)z �ww1 f0(yi)�

zn11=10=00 log(2p110p100) z
Pn11=10=00

i~1

logf0(yi)

z2n11=00=11logp101 z
Pn11=00=11

i~1

logf0(yi)

zn11=00=10 log(2p101p100) z
Pn11=00=10

i~1

logf0(yi)

z2n11=00=00logp100 z
Pn11=00=00

i~1

logf0(yi)

zn10=11=11 log(2p111p011) z
Pn10=11=11

i~1

logf1(yi)

zn10=11=10 log(2p111p010z2p110p011) z
Pn10=11=10

i~1

log½w2f1(yi)z �ww2 f0(yi)�

zn10=11=00 log(2p110p010) z
Pn10=11=00

i~1

logf0(yi)

zn10=10=11 log(2p111p001z2p101p011) z
Pn10=10=11

i~1

log½w3f1(yi)z �ww3 f0(yi)�

zn10=10=10log(2p111p000z2p101p010

z2p110p001z2p100p011) z
Pn10=10=10

i~1

log½w4f1(yi)z �ww4 f0(yi)�

zn10=10=00 log(2p110p000z2p100p010) z
Pn10=10=00

i~1

log½w5f0(yi)z �ww5 f0(yi)�

zn10=00=11 log(2p101p001) z
Pn10=00=11

i~1

logf0(yi)

zn10=00=10 log(2p101p000z2p100p001) z
Pn10=00=10

i~1

log½w6f0(yi)z �ww6 f0(yi)�

zn10=00=00 log(2p100p000) z
Pn10=00=00

i~1

logf0(yi)

z2n00=11=11logp011 z
Pn00=11=11

i~1

logf0(yi)

zn00=11=10 log(2p011p010) z
Pn00=11=10

i~1

logf0(yi)

z2n00=11=00logp010 z
Pn00=11=00

i~1

logf0(yi)

zn00=10=11 log(2p011p001) z
Pn00=10=11

i~1

logf0(yi)

zn00=10=10 log(2p011p000z2p010p001) z
Pn00=10=10

i~1

log½w7f0(yi)z �ww7 f0(yi)�

zn00=10=00 log(2p010p000) z
Pn00=10=00

i~1

logf0(yi)

z2n00=00=11logp001 z
Pn00=00=11

i~1

logf0(yi)

zn00=00=10 log(2p001p000) z
Pn00=00=10

i~1

logf0(yi)

z2n00=00=00logp000 z
Pn00=00=00

i~1

logf0(yi)

ð20Þ

where w.’s (w̄. = 12w) are defined below, and f j ( yj) (j = 2, 1, 0) is

a normal distribution density function of composite diplotype j.

A two-stage hierarchical EM algorithm is derived to estimate

haplotype frequencies and quantitative genetic parameters. At the

higher hierarchy of the EM framework, we calculate the

proportions of a particular diplotype within double or triple

heterozygous genotypes (E step) by

w1 ~ p111p100

p111p100zp101p110
, for genotype 11=10=10

w2 ~ p111p010

p111p010zp011p110
, for genotype 10=11=10

w3 ~ p111p001

p111p001zp101p011
, for genotype 10=10=11

w4 ~ p111p000

p111p000zp101p010zp110p001zp100p011
, for genotype 10=10=10

w
0

4 ~ p101p010

p111p000zp101p010zp110p001zp100p011
, for genotype 10=10=10

w
00

4 ~ p110p001

p111p000zp101p010zp110p001zp100p011
, for genotype 10=10=10

w
000

4 ~ p100p011

p111p000zp101p010zp110p001zp100p011
, for genotype 10=10=10

w5 ~ p110p000

p110p000zp100p010
, for genotype 10=10=00

w6 ~ p101p000

p101p000zp001p100
, for genotype 10=00=10

w7 ~ p011p000

p011p000zp001p010
, for genotype 00=10=10

ð21Þ

The calculated relative proportions by equation (21) were used to

estimate the haplotype frequencies with
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p̂p111 ~
1

2n
(2n11=11=11zn11=11=10zn11=10=11zn10=11=11

z w1n11=10=10zw2n10=11=10zw3n10=10=11zw4n10=10=10)

p̂p110 ~
1

2n
(2n11=11=00zn11=11=10zn11=10=00zn10=11=00

z �ww1 n11=10=10z
�ww2 n10=11=10zw

00

4n10=10=10zw5n10=10=00)

p̂p101 ~
1

2n
(2n11=00=11zn11=10=11zn11=00=10zn10=00=11

z �ww1 n11=10=10z
�ww3 n10=10=11z w04 n10=10=10zw6n10=00=10)

p̂p100 ~
1

2n
(2n11=00=00zn11=10=00zn11=00=10zn10=00=00

z w1n11=10=10z w0004 n10=10=10z
�ww5 n10=10=00z

�ww6 n10=00=10)

p̂p011 ~
1

2n
(2n00=11=11zn10=11=11zn00=10=11zn00=11=10

z �ww2 n10=11=10z
�ww3 n10=10=11z w0004 n10=10=10zw7n00=10=10)

p̂p010 ~
1

2n
(2n00=11=00zn10=11=00zn00=11=10zn00=10=00

z w2n10=11=10z w04 n10=10=10z
�ww5 n10=10=00z

�ww7 n00=10=10)

p̂p001 ~
1

2n
(2n00=00=11zn10=00=11zn00=10=11zn00=00=10

z w3n10=10=11z w004 n10=10=10z
�ww6 n10=00=10z

�ww7 n00=10=10)

p̂p000 ~
1

2n
(2n00=00=00zn00=00=10zn00=10=00zn10=00=00

z w5n00=10=10zw6n10=00=10zw7n10=10=00zw4n10=10=10):

ð22Þ

Table 2. Possible diplotypes and their frequencies for each of 27 genotypes at three SNPs within a QTN, and genotypic value
vectors of composite diplotypes (assuming that [111] (A) is the risk haplotype and the others (Ā) are the non-risk haplotype).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Genotype Diplotype Composite diplotype

Configuration Frequency Relative frequency Symbol Mean

11/11/11 [111][111] P2
111 1 AA m2

11/11/10 [111][110] 2p111p110 1 AĀ m1

11/11/00 [110][110] P2
110 1 ĀĀ m0

11/10/11 [111][101] 2p111p101 1 AĀ m1

11/10/10 ½111�½100�
½110�½101�

�
2p111p100

2p110p101

�
w1

ww1

�
AAA

AAAA

�
m1

m0

�
11/10/00 [110][100] 2p110p100 1 ĀĀ m0

11/00/11 [101][101] P2
101 1 ĀĀ m0

11/00/10 [101][100] 2p2
101p100 1 ĀĀ m0

11/00/00 [100][100] P2
100 1 ĀĀ m0

10/11/11 [111][011] 2p111p011 1 AĀ m1

10/11/10 ½111�½010�
½110�½011�

�
2p111p010

2p110p011

�
w2

ww2

�
AAA

AAAA

�
m1

m0

�
10/11/00 [110][010] 2p110p010 1 ĀĀ m0

10/10/11 ½111�½001�
½101�½011�

�
2p111p001

2p101p011

�
w3

ww3

�
AAA

AAAA

�
m1

m0

�
10/10/10 ½111�½000�

½110�½001�
½100�½011�
½101�½010�

8>><>>:
2p111p000

2p110p001

2p100p011

2p101p010

8>><>>:
w4

w
0

4

w
00

4

w
000

4

8>><>>:
AAA

AAAA

AAAA

AAAA

8>><>>:
m1

m0

m0

m0

8>><>>:
10/10/00 ½110�½000�

½100�½010�

�
2p110p000

2p100p010

�
w5

ww5

�
AAAA

AAAA

�
m0

m0

�
10/00/11 [101][001] 2p101p001 1 ĀĀ m0

10/00/10 ½101�½000�
½100�½001�

�
2p101p000

2p100p001

�
w6

ww6

�
AAAA

AAAA

�
m0

m0

�
10/00/00 [100][000] 2p100p000 1 ĀĀ m0

00/11/11 [011][011] P2
011 1 ĀĀ m0

00/11/10 [011][010] 2p011p010 1 ĀĀ m0

00/11/00 [010][010] P2
010 1 ĀĀ m0

00/10/11 [011][001] 2p011p001 1 ĀĀ m0

00/10/10 ½011�½000�
½010�½001�

�
2p011p000

2p010p001

�
w7

ww7

�
AAAA

AAAA

�
m0

m0

�
00/10/00 [010][000] 2p010p000 1 ĀĀ m0

00/00/11 [001][001] P2
001 1 ĀĀ m0

00/00/10 [001][000] 2p001p000 1 ĀĀ m0

00/00/00 [000][000] P2
000 1 ĀĀ m0

doi:10.1371/journal.pone.0000732.t002..
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At the lower hierarchy of the EM framework, we calculate the

posterior probabilities of a double or triple heterozygous individual

i to be a particular diplotype (AĀ) (E step), for which where [111] is

assumed as the risk haplotype, expressed as

V11ji ~
w1 f1 (yi )

w1 f1 (yi )z w1 f0 (yi )
, V11ji~1{V11ji for genotype 11=10=10

V21ji ~
w2 f1 (yi )

w2 f1 (yi )z w2 f0 (yi )
, V21ji~1{V12ji for genotype 10=11=10

V31ji ~
w3 f1 (yi )

w3 f1 (yi )z w3 f0 (yi )
, V31ji~1{V13ji for genotype 10=10=11

V41ji ~
w4 f1 (yi )

w4 f1 (yi )z w4 f0 (yi )
, V41ji~1{V14ji for genotype 10=10=10

ð23Þ

With the calculated posterior probabilities by the above equation

(23), we then estimate the quantitative genetic parameters, Hq,

based on the log-likelihood equations. These equations have

similar, but more complicated, forms like equations (12) and (13).

Hypothesis tests can be made for linkage disequilibria among

three SNPs and haplotype effects. Four different linkage

disequilibria, D12, D13, D23 and D123, that describe the linkage

among three SNPs can each be tested using the null hypotheses

described by equation (21). The log-likelihood ratios for each

hypothesis are thought to follow a x2 distribution.

R-SNP model: The idea for haplotyping a quantitative trait is

described for two- and three-SNP models. It is possible that these

models are too simple to characterize genetic variants for

quantitative variation. With the analytical line for the two- and

three-SNP sequencing model, a model can be developed to

include an arbitrary number of SNPs whose sequences are

associated with the phenotypic variation. A key issue for the multi-

SNP sequencing model is how to distinguish among 2r21 different

diplotypes for the same genotype heterozygous at r loci. The

relative frequencies of these diplotypes can be expressed in terms

of haplotype frequencies. The integrative EM algorithm can be

employed to estimate the MLEs of haplotype frequencies. A

general formula for estimating haplotype frequencies can be

derived.

RESULTS
The statistical model described above can be used to map and

identify QTNs for a quantitative trait in an F2 population. Because

the marker data we have for mouse are microsatellites rather than

SNPs, we use these microsatellite markers as a surrogate of SNPs

for the purpose to demonstrate the utility of the model. Our

marker data were from Vaughn et al.’s [21] study in which

a linkage map composed of 19 chromosomes was constructed with

96 microsatellite markers for 502 F2 mice (259 males and 243

females) derived from two strains, the Large (LG/J) and Small

(SM/J). This map has a total map distance of ,1780 cM (in

Haldane’s units) and an average interval length of ,23 cM. The

F2 progeny was measured for their body mass at 10 weekly

intervals starting at age 7 days. The raw weights were corrected

for the effects of each covariate due to dam, litter size at birth,

parity and sex [21]. Here, only adult body weights at week 10 are

used for ‘‘QTN’’ analysis.

For each F2 mouse, the parental origin of alleles at each marker

can be discerned in molecular studies. Let L and S be the alleles

inherited from the Large (LG/J) and Small (SM/J) strains,

respectively. For any pair of markers, there are four different

haplotypes, LL, LS, SL and SS, whose frequencies are accordingly

denoted as

pLL~pSS~p

and

pLS~pSL~
1

2
{p:

By assuming all the four haplotypes as a risk haplotype,

respectively, the above model allows for the estimates of haplotype

frequencies by the EM iteration at the higher hierarchy and of

composite genotypic values by the EM iteration at the lower

hierarchy. The estimated haplotype frequencies are used to

estimate linkage disequilibrium based on equation (14) and the

recombination fraction (r) based on equation (4). This estimation

process is moved from the first (M1–M2) to last pair of markers

(M6–M7) on chromosome 1 and then from chromosome 1 to 19.

Table 3 tabulates the results of the MLEs of haplotype

frequencies and log-likelihoods under the assumptions of different

risk haplotypes. A total of 96 markers are sparsely located on 19

mouse chromosomes, with the estimated recombination fractions

from the linkage disequilibrium model [8] consistent with those

obtained from the linkage model [21]. Significant likelihood ratios

for testing haplotype effects were determined by critical values

obtained from the x2-square distribution with two degrees of

freedom with a Bonferroni adjustment to the type I error. The

adjusted critical values for the two- and three-marker QTN

models are 18.20 and 18.76, respectively, at the 5% significance

level. Significant haplotype effects are detected for a total of eight

marker pairs (Table 3), which include one pair on chromosome 4,

two consecutive pairs on chromosome 6, four consecutive pairs on

chromosome 7 and one pair on chromosome 14. For some pairs,

multiple significant risk haplotypes were detected. Risk haplotypes

purely composed of alleles inherited from the LG/J or SM/J

parent exert a positive or negative additive effect on body weight,

respectively. Based on the relative values of estimated additive and

dominant effects, the significant marker pairs detected display

partial dominant effects (Table 3).

The results from the three-marker model are basically consistent

with those from the two-marker model (Table 4). The advantage

of the three-marker model is that it incorporates the interferences

between adjacent marker intervals into the estimation process and,

thus, can potentially increase the estimation precision of haplotype

effects.

DISCUSSION
Quantitative trait locus (QTL) mapping aims to identify narrow

chromosomal segments for a quantitative trait by using a statistical

method, and has proven its value to study the genetic architecture

of the trait in a variety of species [6–8]. The limitations of this

technique lie in its inability to characterize the structure and

organization of DNA sequences and statistical difficulty in deriving

the distribution of test statistics under the null hypothesis of no

QTL [22]. At least partly for these reasons, despite thousands of

QTL reported for different traits and populations, a very small

portion of them have been cloned [9]. With the completion of the

genome projects for several important organisms, a new line of

thought in the post genomic era has begun to emerge for the

identification of specific combinations of nucleotides or haplotypes

that contribute to a complex quantitative trait [13,23].

Theory and methods for haplotype discovery have well been

established for natural populations [13] in which the non-random

association among different single nucleotide polymorphims

(SNP), specified by the coefficients of linkage disequilibria, lays

a foundation for the mixture model of haplotyping a quantitative

trait. In this article, we derived a statistical model for detecting

haplotypes and estimating their effects on quantitative variation of
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a trait in experimental crosses. We used the principle of linkage

disequilibrium analysis to characterize the linkage among different

markers that is usually described by the recombination fractions in

a commonly used F2 population, initiated with two inbred lines.

We established an interchangeable relationship between the

linkage and linkage disequilibrium. The merit of this relationship

in trait haplotyping includes the incorporation of interferences

between adjacent marker intervals into the estimation and test of

haplotype effects when multiple markers are modelled simulta-

neously.

The haplotyping model developed in this article was used to

analyze a published F2 population of mouse [21], but we used

microsatellite markers as the surrogate of SNPs so that we can

detect the effects of haplotypes constructed by microsatellite

Table 3. The MLEs of haplotype frequencies and significant log-likelihood ratios (LR) by assuming different risk haplotypes in the F2

population of mice.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Marker pair
Association Selection of risk haplotype Haplotype effect

bDD brr Risk haplotype Frequency LR2 baa d̂d

D4Mit16-D4mMit13 0.16 0.17 LL 0.36 157.59 0.53 0.46

LS 0.08 152.57 0.60 20.91

SL 0.10 155.55 21.46 0.90

SS 0.47 153.26 20.35 0.18

D6Mit9-D6Nds5 0.18 0.14 LL 0.42 19.95 1.17 0.24

D6Nds5–D6Mit15 0.14 0.22 LL 0.38 25.14 1.25 0.44

SS 0.41 37.98 21.69 0.51

D7Mit21–D7Nds1 0.09 0.32 LL 0.34 30.84 0.93 1.41

SS 0.34 36.54 21.70 20.07

D7Nds1–D7Mit17 0.19 0.12 LL 0.44 46.87 1.66 0.59

SS 0.45 43.31 21.75 0.50

D7Mit17–D7Mit9 0.19 0.12 LL 0.43 33.41 1.42 0.57

SS 0.45 34.35 21.47 0.99

D7Mit9–D7Nds4 0.12 0.26 SS 0.38 19.84 21.15 1.09

D14Mit5–D14Mit7 0.17 0.16 LL 0.43 19.35 1.10 0.33

The results were obtained by using a two-SNP QTN model.
doi:10.1371/journal.pone.0000732.t003..
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Table 4. The MLEs of haplotype frequencies and significant log-likelihood ratios (LR) by assuming different risk haplotypes in the F2

population of mice.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Marker pair Selection of risk haplotype Haplotype effect

Risk haplotype Frequency LR2 âa d̂d

D4Mit45–D4Mit16–D4Mit13 LLL 0.29 124.70 0.40 0.61

LLS 0.07 121.34 1.08 21.00

LSL 0.01 122.58 21.88 22.56

LSS 0.07 122.08 20.44 1.40

SLL 0.07 122.14 0.80 0.12

SLS 0.01 132.86 - -

SSL 0.09 122.33 21.32 1.09

SSS 0.40 123.65 20.55 0.28

D6Mit9–D6Nds5–D6Mit15 SSS 0.34 22.65 21.51 0.39

D7Mit21–D7Nds1–D7Mit17 LLL 0.29 38.28 0.81 1.85

SSS 0.30 33.74 21.80 0.09

D7Nds1–D7Mit17–D7Mit9 LLL 0.38 34.39 1.48 0.47

SSS 0.40 32.18 21.61 0.61

D7Mit17–D7Mit9–D7Nds4 LLL 0.33 21.74 1.20 0.45

SSS 0.33 29.41 21.60 1.36

D14Nds1–D14Mit5–D14Mit7 LLL 0.30 19.55 1.44 20.50

The results were obtained by using a three-SNP QTN model.
doi:10.1371/journal.pone.0000732.t004..
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alleles. The whole-genome of mouse was scanned for haplotype

effects on body weight by a two- and multi-marker model,

respectively. Consistent results were observed from the two

models, which suggests that four regions in mouse chromosomes

4, 6, 7, and 14 contribute to variation in body weight. These

findings are in a good agreement with those from traditional

interval QTL mapping [21]. But our haplotype discovery is more

informative in terms of the characterization of specific haplotype

structure and organization responsible for trait variation.

We have proposed a new model for haplotyping a quantitative

trait in the F2 progeny population. The tenet of the model can be

extended to haplotype a complicated trans-generational pedigree,

founded with multiple original parents and involving individuals

with different relatedness. The model can also be modified to

dissect the epistatic effects of different genes [23] and the

interaction of genes with environment. For these extensions,

haplotype selection aimed to detect the risk haplotypes that are

expressed differently from the others present many challenges, but

is crucial for the facilitation of the process of detecting the

association between haplotype diversity and phenotypic variation.

Our haplotyping model offers a powerful tool for positional

cloning of QTL that are important for a complex trait. Flint et al.

[9] reviewed the potential of currently available cloning strategies,

such as probabilistic ancestral haplotype reconstruction, Yin-Yang

crosses and in silico analysis of sequence variants, to identify genes

that underlie QTL in rodents. Our model, in conjunction with

these strategies, may open a new gateway for the illustration of

a detailed picture of the genetic architecture for a complex trait.
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