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Purpose. To investigate the value of SUVmetrics and radiomic features based on the ability of 18F-FDG PET/CT in differentiating
between breast lymphoma and breast carcinoma.Methods. A total of 67 breast nodules from 44 patients who underwent 18F-FDG
PET/CT pretreatment were retrospectively analyzed. Radiomic parameters and SUV metrics were extracted using the LIFEx
package on PETand CT images. All texture parameters were divided into six groups: histogram (HISTO), SHAPE, gray-level co-
occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), neighborhood gray-level different matrix (NGLDM), and
gray-level zone-length matrix (GLZLM). Receiver operating characteristics (ROC) curves were generated to evaluate the dis-
criminative ability of each parameter, and the optimal parameter in each group was selected to generate a new predictive variable
by using binary logistic regression. PET predictive variable, CT predictive variable, the combination of PET and CT predictive
variables, and SUVmax were compared in terms of areas under the curve (AUCs), sensitivity, specificity, and accuracy. Results.
Except for SUVmin (p � 0.971), the averages of FDG uptake metrics of lymphoma were significantly higher than those of
carcinoma (p≤ 0.001), with the followingmedian values: SUVmean, 4.75 versus 2.38 g/ml (P< 0.001); SUVstd, 2.04 versus 0.88 g/ml
(P � 0.001); SUVmax, 10.69 versus 4.76 g/ml (P � 0.001); SUVpeak, 9.15 versus 2.78 g/ml (P< 0.001); TLG, 42.24 versus 9.90
(P< 0.001). In the ROC curves analysis based on radiomic features and SUVmax, the AUC for SUVmax was 0.747, for CT texture
parameters was 0.729, for PETtexture parameters was 0.751, and for the combination of CTand PETtexture parameters was 0.771.
Conclusion. .e SUVmetrics in 18FDG PET/CT images showed a potential ability in the differentiation between breast lymphoma
and carcinoma..e combination of SUVmax and PET/CTtexture analysis may be promising to provide an effectively discriminant
modality for the differential diagnosis of breast lymphoma and carcinoma, even for the differentiation of subtypes of lymphoma.

1. Introduction

Breast nodules have been investigated with many imaging
technologies, including ultrasonography, mammography,
and MRI, PET/CT. Great progress has been made in
functional imaging technology in the past decade, allowing
the screening for tumors to be noninvasive and efficient.
With the development of these new functional technologies,
it is becoming easier and easier for radiologists to distinguish
malignant lesions from benign ones. Furthermore, the

diagnostic sensitivity and specificity of imaging technologies
for tumors have been improved dramatically at the same
time. However, as discussed above, current studies on the
use of imaging technologies mainly focus on the differen-
tiation between benign and malignant lesions [1–3]. Mostly,
malignant nodules in the breast were considered as breast
carcinoma at the time of diagnosis, while breast lymphoma
was usually neglected due to its rarity.

Primary breast lymphoma makes up about 2.2% of
extranodal lymphomas and accounts for less than 0.5% of
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breast malignancies. Although breast lymphoma is relatively
uncommon, the incidence of breast lymphoma has been
increasing over the last four decades and will continue to
increase in younger women [4]. .e clinical and imaging
presentations of breast lymphoma mimic those of breast
carcinoma. .ey both present as painless breast mass, oc-
casionally accompanied with erythema and edema in physical
examination, and both show solitary mass with irregular
margin on images [5, 6]. Fine needle biopsy is considered the
golden standard for the diagnosis of breast cancer, while the
pathological diagnosis of breast lymphoma is challenging
because of its rare incidence and its difficulty in differentiating
the lymphoid cells from reactive lymphocytes in the core
needle biopsy samples [7]. Due to the diagnostic difficulties
and great differences lying in the treatments of breast car-
cinoma and breast lymphoma, mistakes could be made fre-
quently in the management of these two different breast
malignancies. Surgery is the main treatment in the man-
agement of early stage breast carcinoma [8], but for patients
with breast lymphoma, mastectomy has been reported to offer
no benefits, or even bring poor survival [9, 10]. However, in
this retrospective research, we found that about 55% patients
with breast lymphoma were misdiagnosed as breast carci-
noma and received inappropriate mastectomy. Furthermore,
the clinical outcome of these two breast malignancies differs a
lot. Since the introduction of rituximab, the prognosis of
lymphoma has been improved significantly [11–14].

.erefore, it is critical for clinical doctors to distinguish
breast lymphoma from breast cancer since their manage-
ment differs a lot. Texture analysis has been reported to be an
efficient tool to quantify tissue gray-level patterns, pixel
interrelationships, spectral properties, and tumor hetero-
geneity [15, 16]. Studies have reported that texture analysis
applied in computed tomography (CT), ultrasonography
(US), and magnetic resonance imaging (MRI) could provide
better differentiation between benign and malignant lesions
in the breast [17, 18], lung [19], and kidney [20, 21]. Recently,
texture analysis of 18F-FDG PET/CT have been conducted
on differentiating nodules, and it showed better diagnostic
value than previous routine parameters such as SUVmetrics
[22]. Also, a research showed that PET radiomic features
could be promising for identification of primary and met-
astatic lung cancers [23]. While another research reported
that the SUV metrics extracted from PET/CT images might
be useful in differentiating renal cell carcinomas from renal
lymphomatous involvement [24, 25]. Hence, we hypothe-
sized that the combination of texture analysis and SUV
metrics on 18F-FDG PET/CT in differentiating cancer and
lymphoma in the breast might be useful in the future. In the
present research, we sought to investigate the value of SUV
metrics and texture analysis based on 18F-FDG PET/CT in
differentiating breast carcinoma and breast lymphoma.

2. Methods

2.1. Study Population. In this retrospective study, we ana-
lyzed 67 breast nodules from 44 patients who underwent 18F-
FDG PET/CT for staging between October 2013 and March
2018 at West China Hospital, Sichuan University. Patients

with pathological diagnosis of breast lymphoma or breast
carcinoma were included. Patients were excluded when
having (1) any kinds of treatment before 18F-FDG PET/CT
scanning including surgery, chemotherapy, and radiotherapy;
(2) inconclusive diagnosis due to inadequate biopsy sample;
and (3) other types of cancers apart from breast cancer and
lymphoma. A total of 44 patients (19 patients with breast
lymphoma and 25 patients with breast carcinoma) were in-
cluded in our present study. For all patients, available patients’
clinical characteristics are summarized in Table 1. .is study
was approved by Medical Ethics Committee, Sichuan Uni-
versity. All procedures were conducted in accordance with the
Declaration of Helsinki and its later amendments. Written
informed consent was provided by every participant.

2.2. Image Acquisition and Texture Analysis. Whole-body
18F-FDG PET/CT examinations were administrated in all
patients on a Gemini GXL PET/CT scanner equipped with a
16-slice CT (Philips Medical System, Cleveland, Ohio, USA).
All patients fasted for at least 6 h before intravenous injection of
190–375MBq of 18F-FDG (5.18MBq/kg). Blood glucose levels
of all patients were controlled to be lower than 8.0mmol/L at
the time of examination. A low-dose CT (5mm slice thickness;
tube voltage, 120 kV; tube current, 40mAs) was performed for
attenuation correction, immediately followed by PETemission
scan without changing the position of patients. PET and CT
images were acquired from head to extremities. Radiomic
parameters and SUV metrics extraction of the breast nodules
were performed using the LIFEx package [26] on PETand CT
images. Whole-body PET/CT images were interpreted and
delineated by an experienced radiologist who was blind to
patients’ clinical and pathological information..e volume-of-
interest (VOI) was manually contoured in all subsequent slices
on PET images, and the same VOI was applied on CT images.
Before extracting parameters, intensity discretization was au-
tomatically performed by the software with the number of gray
levels of 64 bins and the intensity rescaling was defined as
absolute scale bounds between 0 and 20 for PET images.
Similarly, intensity discretization for CTimages was performed
with the number of gray levels of 400 bins and absolute scale
bounds between −1000 and 3000 HU. Features including
conventional SUV metrics (SUVmin, SUVmean, SUVmax,
SUVpeak, and TLG) and radiomic parameters (both first and
second order features) were extracted from PET and CT im-
ages, respectively, with the whole layers in 3D volume-of-
interest (VOI). .e mathematical definitions of features are
summarized in Supplementary Table 1.

2.3. Statistical Analysis. Since not all of the radiomic pa-
rameters were helpful for the differential diagnosis of breast
lymphoma and breast carcinoma, we divided these pa-
rameters into six groups: histogram (HISTO), SHAPE, gray-
level co-occurrence matrix (GLCM), gray-level run-length
matrix (GLRLM), neighborhood gray-level different matrix
(NGLDM), and gray-level zone-length matrix (GLZLM)
group. According to the performances of these parameters in
the receiver operating characteristics (ROC) curves test, the
most discriminative parameters in each group were selected,
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as shown in Table 2. Since the gross heterogeneity of a tumor
is consisted of multiple texture patterns, a single parameter is
not sufficient to describe its whole characteristics. A new
predictive variable (a combination of the six optimal pa-
rameters on PETor CTimages) was obtained by using binary
logistic regression. .us, besides conventional SUV metrics,
we developed three more discriminative methods: two of
which were based on the optimal parameters extracted from
PETor CT images, and the third is the combination of both
PET and CT texture parameters (Table 3).

.e differences between breast lymphoma and carci-
noma in each SUV metric were evaluated using the
Mann–Whitney U test. A comparing ROC analysis was
conducted on SUVmax, CT predictive variable, PET pre-
dictive variable, and combined CT and PET predictive
variables..e area under the curve (AUC) was used to assess
the discriminative ability of each method. All statistical
analyses were performed using SPSS Statistics Version 22.0
and MedCalc (MedCalc Software bvba, Acacialaan, Bel-
gium). P value< 0.05 was considered significant.

3. Results

3.1. Patient Characteristics. Forty-four patients with sixty-
seven nodules were included in our study. All of the patients
were women with a median age of 55.5 years old (range from
26 to 80 years old). Of the 44 patients, 25 (56.82%) were with
breast carcinoma, and the subtypes of carcinoma included
18 invasive ductal carcinomas, 2 invasive lobular breast
carcinomas, 3 ductal carcinomas in situ (DCIS) of breast,
and 2 other special subtypes of breast carcinoma. .e
remaining 19 (43.18%) nodules were identified as lym-
phomas, 15 of the breast lymphomas were diffuse large B cell
lymphoma, 2 were NK/T cell lymphoma, 1 was a Hodgkin
lymphoma, 1 was a intravascular B cell lymphoma (Table 1).

3.2. FDG Uptake Metrics. .e results of ROC analysis of
FDG uptake metrics for breast lymphoma versus breast
carcinoma are summarized in Table 4. Except for SUVmin
(p � 0.971), all the averages of FDG uptake metrics of
lymphoma were significantly higher than that of carcinoma
(p≤ 0.001), with the following median values: SUVmean, 4.75

versus 2.38 g/ml (P< 0.001); SUVstd, 2.04 versus 0.88 g/
ml(P � 0.001); SUVmax, 10.69 versus 4.76 g/ml (P � 0.001);
SUVpeak, 9.15 versus 2.78 g/ml (P< 0.001); TLG, 42.24 versus
9.90 (P< 0.001). Significant diagnostic value could be found
in SUVmean with an AUC of 0.747 (P � 0.001); in SUVstd
with an AUC of 0.755 (P< 0.001); in SUVmax with an AUC
of 0.747 (P � 0.001); in SUVpeak with an AUC of 0.749
(P< 0.001); in TLG with an AUC of 0.754 (P< 0.001),
whereas no significance was observed in SUVmin (AUC,
0.437, p � 0.379).

3.3. Radiomic Parameters. .e three predictive models
constructed using optimal parameters from each group by
binary logistic regression were as follows:

3.3.1. PET Predictive Model
PREPET � −2.380HISTO Entropy log10

− 0.001SHAPE Volume(VX)

+ 0.093GLCM Entropy log10

− 0.013GLRLM HGRE− 2.085NGLDM Contrast

+ 0.016GLZLM HGZE + 2.903.

(1)

3.3.2. CT Predictive Model
PRECT � −0.012HISTO_Kurtosis

− 0.057SHAPE_Volume(mL)

+ 1.277GLCM_Homogeneity

+ 0.001GLRLM_RLNU− 0.472NGLDM_Busyness

+ 5.31 × 10−9GLZLM_LZHGE + 0.246.

(2)

3.3.3. Combined Predictive Model
PREcombination � 0.256SUVmax− 2.505HISTO Entropy log10

− 0.001SHAPE Volume(VX)

− 0.294GLCM Entropy log10

− 0.015GLRLM HGRE

− 3.674NGLDM Contrast

+ 0.015GLZLM HGZE + 2.468

− 0.006HISTO Kurtosis

− 0.011SHAPE Volume(mL)

+ 1.772GLCM Homogeneity

+ 2.15 × 10−4GLRLM_RLNU

− 0.457NGLDM Busyness + 1.36

× 10−9GLZLM LZHGE.

(3)

Table 1: Patient characteristics.

Characteristic Value
Age (y), median (range) 55.5 (26–80)
Sex
Male 0
Female 44

Histologic findings
Hodgkin’s lymphoma 1
Diffuse large B-cell lymphoma 15
Intravascular large B-cell lymphoma 1
NK/T-cell lymphoma 2
Invasive ductal carcinoma 18
Invasive lobular breast carcinoma 2
Ductal carcinoma in situ (DCIS) of breast 3
Other special subtypes of breast carcinoma 2
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Table 5 displays a comparison of differential di-
agnostic ability among the three radiomic predictive
variables and the SUV method (see also in Figure 1). .e
SUV method showed a sensitivity of 61.11%, specificity of
87.10%, and accuracy of 70.15%; compared with the SUV
method, CT and PET predictive variables both showed an
improved sensitivity (80.00% and 94.44%), but a de-
creased specificity (59.38% and 48.39%). .e combination

of CT and PET predictive variables showed a relatively
better performance, with sensitivity of 83.33%, specificity
of 64.52%, and accuracy of 74.63%, compared with the
SUV method (p< 0.0001). Among the four diagnostic
models, the PET predictive variable showed the highest
sensitivity but the lowest specificity. On the contrary, the
SUVmax method showed the highest specificity but the
lowest sensitivity.

Table 2: .e results of ROC analysis of potentially optimal texture parameters in PET and CT images for breast lymphoma versus breast
carcinoma.

Variable
Lymphoma Carcinoma

AUC P value
Median Range Median Range

Radiomic parameters on PET
HISTO_entropy_log10 1.36 0.64–1.76 0.97 0.32–1.66 0.740 0.001
SHAPE_volume(# vx) 183.00 22.00–6334.00 71.00 11.00–4241.00 0.725 0.002
GLCM_entropy_log10 2.04 1.00–3.19 1.54 0.59–3.03 0.730 0.001
GLRLM_HGRE 287.95 17.14–1919.15 75.66 9.96–862.28 0.752 <0.001
NGLDM_Contrast 0.33 0.04–2.32 0.16 0.00–0.59 0.712 0.003
GLZLM_HGZE 266.62 17.53–1593.64 83.77 9.67–832.22 0.754 <0.001

Radiomic parameters on CT
HISTO_Kurtosis 5.02 1.90–217.17 2.84 1.49–97.34 0.660 0.024
SHAPE_volume (mL) 11.38 1.07–403.07 4.40 0.73–272.41 0.728 0.001
GLCM_Homogeneity 0.49 0.08–0.60 0.44 0.33–0.65 0.628 0.072
GLRLM_RLNU 977.06 135.49–24346.21 507.35 80.31–19527.32 0.685 0.009
NGLDM_Busyness 0.53 0.04–6.04 0.38 0.13–2.77 0.602 0.152
GLZLM_LZHGE 14709543.63 77721.12–1603305720.99 1385779.22 44958.07–435410392.46 0.681 0.011

Abbreviations: HISTO, histogram; GLCM, gray-level co-occurrencematrix; GLRLM, gray-level run-lengthmatrix; HGRE, high gray-level run emphasis; GLZLM,
gray-level zone-length matrix; HGZE, high gray-level zone emphasis; RLNU, run-length nonuniformity; LZHGE, long-zone high gray-level emphasis.

Table 3: Parameters used in each differential model.

Method Parameters
SUV metrics SUVmax

CT predicted variable
HISTO_kurtosis SHAPE_volume (mL)

GLCM_homogeneity GLRLM_RLNU
NGLDM_busyness GLZLM_LZHGE

PET predicted variable
HISTO_entropy_log10 SHAPE_volume(# vx)
GLCM_entropy_log10 NGLDM_contrast

GLRLM_HGRE GLZLM_HGZE

Combination of PET and CT texture parameters

HISTO_kurtosis SHAPE_volume (mL)
GLCM_homogeneity GLRLM_RLNU
NGLDM_busyness GLZLM_LZHGE

HISTO_entropy_log10 SHAPE_volume(# vx)
GLCM_entropy_log10 NGLDM_contrast

GLRLM_HGRE GLZLM_HGZE
Abbreviations: HISTO, histogram; GLCM, gray-level co-occurrencematrix; GLRLM, gray-level run-lengthmatrix; HGRE, high gray-level run emphasis; GLZLM,
gray-level zone-length matrix; HGZE, high gray-level zone emphasis; RLNU, run-length nonuniformity; LZHGE, long-zone high gray-level emphasis.

Table 4: .e results of ROC analysis of FDG uptake metrics for breast lymphoma versus breast carcinoma.

Variable
Lymphoma Carcinoma

Pa value AUC Pb value
Median Range Median Range

SUVmin 0.80 0.12–2.84 0.96 0.35–1.77 0.971 0.437 0.379
SUVmean 4.75 1.03–17.02 2.38 0.79–8.29 <0.001 0.747 0.001
SUVstd 2.04 0.33–12.30 0.88 0.15–3.61 0.001 0.755 <0.001
SUVmax 10.69 2.10–43.21 4.76 1.05–18.43 0.001 0.747 0.001
SUVpeak 9.15 0.00–40.65 2.78 0.00–16.33 <0.001 0.749 <0.001
TLG 42.24 2.24–4031.99 9.90 0.55–2240.40 0.001 0.754 <0.001
Note. Pa refers to the significance for ROC curves, Pb is for Mann–Whitney U tests between breast lymphoma and breast carcinoma.
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Figures 2 and 3 are two examples of lymphoma that
were misdiagnosed as carcinoma by all the three radiomic
predictive models and the SUV method. .e FDG uptakes
in these two cases were relatively low, and the values of PET
and CT radiomic parameters were similarly to that of
carcinoma. Besides, we found another two cases which
were also misclassified by all of the four differential di-
agnosis methods. And then, we checked their pathological
subtypes and found that their pathological identifications
were NK/T cell lymphoma, Hodgkin’s lymphoma, and
intravascular B cell lymphoma. Apart from these four cases,
the nodules remaining were all diffuse large B cell lym-
phomas. .us, we continually compared the discriminant

ability of the three radiomic models and SUV model in
differentiating diffuse large B cell lymphoma and carci-
noma in the breast. .e Results are summarized in Table 6
and Figure 4. .e AUC, sensitivity, specificity, and accu-
racy of all kinds of methods improved significantly, es-
pecially for the specificity.

4. Discussion

Our results indicated that PET/CT SUV metrics and
radiomic parameters could assist in the differentiation of
breast carcinoma and breast lymphoma, especially between
breast carcinoma and breast diffuse large B cell lymphoma.

Table 5: Comparison of differential diagnostic ability of the three predictive models and the SUV methods.

AUC Sensitivity (%) Specificity (%) Accuracy (%) P value
SUVmax 0.747 61.11 87.10 70.15 <0.0001
CT predictive variable 0.729 80.00 59.38 68.66 0.0002
PT predictive variable 0.751 94.44 48.39 71.64 <0.0001
CT combined with PT predictive variables 0.771 83.33 64.52 74.63 <0.0001
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Figure 1: ROC curves of the three radiomic predictive models and SUV method in differentiating breast lymphoma and breast carcinoma.
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Most SUV metrics of breast lymphoma were significantly
higher than that of breast carcinoma. In the four discrim-
inative models, SUVmax showed the highest specificity, the
PETradiomic parameters showed the highest sensitivity, and
the combination of CTand PETradiomic parameters had the
best accuracy..e AUC, accuracy, and specificity of all these
four models improved significantly, when they were applied
in differentiating between breast DLBCL and breast
carcinoma.

To our knowledge, this is the first study on the use of
18FDG PET/CT SUV metrics and texture analysis in the
differential diagnosis of breast carcinoma and lymphoma.

Daoud et al. [27] investigated 64 benign tumors and 46
malignant tumors on breast ultrasound images by using
multiple-region-of-interest (ROI) texture analysis and
demonstrated that the proposed texture analysis was ef-
fective in differentiating between benign and malignant
tumors. Hodgdon et al. [20] found that texture analysis
could accurately distinguish fat-poor angiomyolipoma
from renal cell carcinoma, but failed to differentiate sub-
types of renal cell carcinoma on unenhanced CT images.
Using the combination of CT texture and shape features,
Bayanati et al. [28] found 71% benign and 84% malignant
mediastinal lymph nodes could be correctly classified.
Studies on MRI texture analysis also showed radiomics
could precisely differentiate among glioma subtypes [29–
31]. However, most studies focus on the differentiation
between benign and malignant tumors, possibly because
the heterogeneity between benign and malignant tumors
differs a lot. Researches in the setting of differentiation
among malignant tumors and subtypes of cancers are
limited. Ma et al. [32] demonstrated that CT-based
radiomic signature has the potential to distinguish Borr-
mann type IV gastric cancer from primary gastric lym-
phoma. Kirienko et al. [23] proved PET radiomic features
were able to classify the primary and metastatic lung lesions
and even were promising for identifying subtypes of pri-
mary lung cancers. Nevertheless, the ability of radiomics
based on 18FDG PET/CT in differentiating breast malig-
nant lesions was not clear. Our study showed that radiomic
features and conventional SUV metrics could provide a
promising noninvasive tool for differential diagnosis of
breast malignancies in clinical practice.

Recent studies have investigated the ability of SUV
metrics (SUVmean and SUVmax) in differentiating renal cell
carcinomas (RCCs) and kidney involved lymphoma and
suggested that RCCs were significantly less FDG avid than
renal lymphomatous involvement [24, 25]. In our study,
except for SUVmin, SUV metrics of breast lymphoma in-
cluding SUVmax, SUVmean, SUVstd, and TLG were signifi-
cantly higher than those of breast carcinoma, which was
consistent with previous studies. In addition, SUVmax
exhibited a much higher specificity than any of other
methods in distinguishing lymphoma from carcinoma in

Table 6: Comparison of discriminant ability of the three radiomic
predictive and the SUV method in breast DLBCL and carcinoma.

AUC Sensitivity
(%)

Specificity
(%)

Accuracy
(%) P value

SUVmax 0.812 58.30 96.3 73.02% <0.0001
CT
predictive
variable

0.773 72.22 74.07 74.19% <0.0001

PT
predictive
variable

0.818 94.44 55.56 76.19% <0.0001

CT
combined
with PT
predictive
variables

0.845 86.11 66.67 76.19% <0.0001
Figure 2: An example of lymphoma that was misdiagnosed
as carcinoma by the three radiomic predictive models and the
SUV method (SUVmax� 6.4, PET radiomic parameters: HISTO_
Entropy_log10�1.14, SHAPE_volume (# vx)� 183, GLCM_Entropy_
log10�1.95, GLRLM_HGRE� 99.7, NGLDM_contrast� 0.147,
GLZLM_HGZE� 143.1; CT radiomic parameters: HISTO_kurtosis�

1.92 SHAPE_volume (mL)� 11.380, GLCM_homogeneity� 0.453,
GLRLM_RLNU � 1119.4, NGLDM_busyness � 0.903, GLZLM_
LZHGE � 4040958.550).

Figure 3: An example of lymphoma that was misdiagnosed as
carcinoma by the three radiomic predictive models and the SUV
method (SUVmax� 2.1, PET radiomic parameters: HISTO_
Entropy_log10� 0.74, SHAPE_volume (# vx)� 34, GLCM_Entropy_
log10�1.07, GLRLM_HGRE� 17.1, NGLDM_contrast� 0.158,
GLZLM_HGZE� 17.5; CT radiomic parameters: HISTO_kurtosis�

21.11. SHAPE_volume (mL)� 2.325, GLCM_homogeneity� 0.382,
GLRLM_RLNU � 279.2, NGLDM_busyness � 0.050, GLZLM_
LZHGE � 183718.048).
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our study. Especially in the comparison of breast DLBCL
and carcinoma, the specificity was up to 96.3%.

It is still a confounding problem why different tumors
show different FDG uptakes. Some researchers believe that
the FDG uptake differences may be a reflection of tumor’s
proliferation [33, 34]. Shou et al. [35] investigated the
correlation between FDG uptake and tumor-proliferating
antigen Ki-67 in lymphomas. .eir results suggested that
greater proliferative ability was the leading cause for higher
FDG uptakes, and tumors of high proliferation such as
DLBCL often showed a significantly high FDG uptake; in
contrast, FDG uptake was relatively low in tumors of in-
dolent proliferation. .erefore, the differences in pro-
liferation may be a possible explanation to the different FDG
uptakes between breast carcinoma and lymphoma.

At present, the interpretation of medical images is based
on qualitative criteria and is heavily dependent on the ex-
perience of radiologists. However, increasingly accumulat-
ing evidences showed that medical images contained some
important information that was usually neglected by naked

eyes [36]. .us, a more subjective and quantitative way for
radiographic image evaluation was needed. Radiomics as an
emerging field provided such a way of objectively measuring
tumor heterogeneity by quantifying underlying tissue gray-
level patterns. In our study, PETradiomic features proved to
be useful in distinguishing breast carcinoma from lym-
phoma, with a sensitivity of 94.44% and an accuracy of
71.64% (p< 0.0001). .e previous study postulated that the
texture features in PET images might reflect tumor het-
erogeneity associated with cell proliferation, hypoxia, ne-
crosis, perfusion, and calcification [37]. It is well known that
the biological behaviors of breast carcinoma and lymphoma
differ dramatically [5, 38]. In our past investigation, lym-
phomas showed greater proliferative abilities but with less
hemorrhage, less tissue calcification, and cell necrosis when
compared with breast carcinoma.

In our findings, CTradiomic features did not perform as
good as PET radiomic features, with a sensitivity of only
80.00%, specificity of 59.38%, and accuracy of 68.66%
(p value< 0.0001). But the combination of PET and CT
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Figure 4: Comparison of the discriminant ability among the three radiomic predictive models and the SUV method in breast DLBCL and
carcinoma.
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texture parameter could improve diagnostic accuracy up to
74.63%. Previous data indicated that the performance of CT
texture analysis was better than that of PET texture analysis,
but our results were in agreement with the findings of
Kirienko et al. [23]; both of our results showed that the
radiomic features from CT images were inferior to features
from PET images in the differential diagnosis. Currently, no
definitive correlation of a particular radiomic parameter
with underlying biological process has been investigated
clearly. According to the results in our research, we spec-
ulated that PETtexture features could still provide additional
information to CT texture analysis on tumor’s metabolism
even after SUV metrics were excluded from the PET texture
data.

18FDG PET/CT is a promising modality for functional
imaging in evaluating tumor metabolism. SUVmax is the
most commonly used parameter in metabolism evaluation
in the clinical routine. In our results, SUVmax exhibited the
highest specificity in differentiating between lymphoma and
breast carcinoma. .e PET texture parameters possessed the
highest sensitivity, while the combination of CT and PET
texture features showed the best accuracy. .us, we spec-
ulated that the combination of SUVmax and texture analysis
of PET/CT images might be a potentially promising and
noninvasive tool in the differential diagnosis of breast
carcinoma and lymphoma. SUVmax could provide in-
formation on tumor metabolism, while the PET and CT
radiomic features could show spatial variation of tumor
structure and tumor heterogeneity, which may not be
perceived by naked eyes. Moreover, the texture analysis is a
computational postprocessing technique, and data could be
acquired during routinely clinical imaging protocols; ad-
ditionally, useful information could be extracted without
increasing cost for the healthcare system. Furthermore, al-
though biopsy is considered as the golden standard for the
diagnosis of breast nodules, small samples of biopsy are not
always reliable in the diagnosis of lymphoma. In addition,
the differentiation of newly found breast nodules in patients
with previous lymphoma or cancer history is really chal-
lenging. .erefore, the conventional FDG uptake parameter
SUVmax combined with PET/CT texture analysis may help a
lot in this situation.

However, there are several limitations in our study we
have to admit. Firstly, this is a retrospective and single-
institutional study. Secondly, as breast lymphoma is a rare
entity, it could not be frequently encountered. Moreover, we
only included patients who underwent 18FDG PET/CT
scanning before receiving any treatments, so we had a
relatively small sample. .irdly, as DLBCL is the pre-
dominant histological subtype of breast lymphoma, ac-
counting for 78.95% in our study, only 4 cases of other
subtypes were included apart from DLBCL. .is, to some
extent, may lead to bias in the comparison of breast DLBCL
and carcinoma. But, the potential value of SUVmax and PET
texture parameters were still obvious in differentiating
DLBCL from breast carcinoma, or even in the character-
ization of subtypes of lymphoma.

In conclusion, the SUV metrics in 18FDG PET/CT im-
ages showed a potential ability in the differentiation of breast

lymphoma and carcinoma. And, the combination of SUVmax
and PET/CT texture analysis may be promising to provide
an effectively discriminant modality for the differential di-
agnosis of breast lymphoma and carcinoma and even for the
differentiation of subtypes of lymphoma. Further in-
vestigation and validation with a larger sample is warranted
to confirm our findings.
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