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Abstract: Integrating multigenomic data to recognize cancer subtype is an important task in bioin-
formatics. In recent years, some multiview clustering algorithms have been proposed and applied
to identify cancer subtype. However, these clustering algorithms ignore that each data contributes
differently to the clustering results during the fusion process, and they require additional clustering
steps to generate the final labels. In this paper, a new one-step method for cancer subtype recognition
based on graph learning framework is designed, called Laplacian Rank Constrained Multiview
Clustering (LRCMC). LRCMC first forms a graph for a single biological data to reveal the relationship
between data points and uses affinity matrix to encode the graph structure. Then, it adds weights to
measure the contribution of each graph and finally merges these individual graphs into a consensus
graph. In addition, LRCMC constructs the adaptive neighbors to adjust the similarity of sample
points, and it uses the rank constraint on the Laplacian matrix to ensure that each graph structure
has the same connected components. Experiments on several benchmark datasets and The Cancer
Genome Atlas (TCGA) datasets have demonstrated the effectiveness of the proposed algorithm
comparing to the state-of-the-art methods.

Keywords: cancer subtype recognition; Laplacian Rank Constrained; multiview clustering; graph learning

1. Introduction

Tumor is a malignant heterogeneous disease caused by changes in cellular components
at the levels of expression, epigenetics, transcription and proteomics. The heterogeneity
will be reflected in that the same cancer will produce the subtypes with different pheno-
types, which will affect the clinical treatment and prognosis [1,2]. With the development
and maturity of new generation sequencing technologies, large amounts of biological data
are collected in public databases that are easily accessible to researchers [3]. For example,
The Cancer Genome Atlas (TCGA), a landmark cancer genomics project, stores information
on biological processes such as mRNA expression data, DNA methylation data, miRNA
expression data and mutation data for more than 30 cancers and thousands of cancer pa-
tients [4]. Therefore, in order to solve the problem of cancer subtype recognition, building a
multiview clustering model that makes full use of biological information plays a significant
role.

In order to implement the task of clustering, scholars initially focus on dimensionality
reduction, matrix decomposition and linear regression technologies. They all use different
strategies to project high-dimensional data into low-dimensional feature space, and then
achieve clustering by k-means [5–10]. For example, an effective classical method, iClus-
ter [5], builds a Gaussian latent variable model and its modified version, iClusterPlus [6],
considers different variable types following different linear probabilistic relationships to
build a regression model. Both of them achieve a low-dimensional space with the combi-
nation of different biological characteristics. The other method, Pattern Fusion Analysis
(PFA) [10], first uses an improved Principal Component Analysis (PCA) to find out a
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low-dimensional matrix of each sample, and then uses an adaptive alignment algorithm
to build a fused low-dimensional feature space. However, these methods may further
dilute the already low signal-to-noise ratio and increase the noise pollution to the results.
Considering that the sample (patient) size of the biological data is much smaller than the
feature (gene) size, some graph-based learning methods for cancer subtype recognition are
designed [11–17]. These methods use the sample points to quickly construct the similar-
ity graph, which can be converted into the problem of spectral clustering. For example,
a widely mentioned algorithm, Similarity Network Fusion (SNF) [11], constructs the global
and local similar networks for each data, and then integrates them into the final similar
network based on the strategy of information propagation to dilute low similarity and
enhance high similarity. Inspired by SNF, Ma et al. provided Affinity Network Fusion
(ANF) [12], which constructs patients’ k-nearest neighbor similar network for each data
type, and then fuses these networks based on the random walk method. In addition, Yu
et al. proposed Multiview Clustering using Manifold Optimization (MVCMO) [17], and
solved the problem of spectral clustering optimization by using the line search method on
Stiefel manifold space.

However, most existing graph-based multiview clustering methods separate the data
clustering process from graph learning process [18,19]. In some methods, the construction
of the graph is independent of the clustering task, resulting in its performance being highly
dependent on the predefined graph. Recently, some adaptive graph learning methods
using a rank constraint on the Laplacian matrix have been able to directly reveal the
clustering structure, which makes the graph construction closely related to the clustering
task [20–24]. In addition, the similarity between sample points may commonly behave
differently in different views in the process of graph fusion. Some existing algorithms
simply take the average of the affinity graph of multiple views to represent the result of the
fusion graph [25,26]. Therefore, the rich heterogeneous information is not fully utilized.

To sum up, we designed a graph-based multiview clustering algorithm, called Lapla-
cian Rank Constrained Multiview Clustering (LRCMC). Firstly, the Laplacian Rank Con-
straint (LRC) algorithm [27] is used to simultaneously find the affinity graph and the
embedding matrix in each view to ensure that the graph structure is on the same connected
components. Then, based on the method of Nie et al. [24], we use LRC method to obtain the
consistent graph, whose connected components are the same as the affinity graph of each
view. Finally, the clustering structure is obtained. In the process of graph fusion, the inverse
distance weighting scheme is employed to design different weights for each view’s affinity
graph [24], so as to adjust the structure of the consistent graph more effectively. Moreover,
the processes of graph learning, graph fusion and clustering are coupled into an optimiza-
tion problem to update the more accurate consistent graph and improve the results of the
clustering. In order to evaluate the effectiveness of the proposed method, experiments
were carried out on four benchmark datasets and four TCGA datasets. Four start-of-the-art
methods were used for comparison. The values of Accuracy (ACC), Normalized Mutual
Information (NMI) and Purity on benchmark datasets, which are commonly used metrics
in clustering analysis, and the p value obtained from survival analysis on the TCGA dataset
can all show that the proposed LRCMC approach achieves considerable improvement
over the state-of-the-art baseline methods. In the analysis of the Glioblastoma Multiforme
(GBM) subtypes, we found these clusters have biological significance, e.g., the Proneural
subtype granted by G-CIMP phenotype has a better survival advantage. The source code
and datasets can be found in the Supplementary File 1.

2. Methods

The overall flow of LRCMC is shown in Figure 1. Specifically, given a set of omics
data with m views X1, . . . , Xm, a set of affinity graph matrices S1, . . . , Sm are constructed,
respectively, according to X1, . . . , Xm. It should be emphasized that the process of learn-
ing the affinity matrix in LRCMC is different from most multiview clustering algorithms.
S1, . . . , Sm are not calculated directly from the original matrix, but are constructed, respec-
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tively, from a set of embedding matrices F1, . . . , Fm by the LRC method. Therefore, each
affinity graph matrix is constrained to the same connected components, which ensures that
each affinity graph has a similar structure before the fusion process. Then, the proposed
fusion method is applied to the affinity graph matrices of all views in order to learn a
consistent graph matrix Z. Simultaneously, each view is automatically assigned a different
weight w1, . . . , wm to represent its contribution to Z during the fusion process. Finally, the
learned consistent graph matrix Z is used to optimize the affinity graph matrix for each
view. The LRC method is also imposed to constrain that the number of connected com-
ponents in the Z is equal to the required number of clusters c by constructing the fusion
embedded matrix U. Our LRCMC improves the affinity matrix of each view, builds a fused
consistent graph matrix and obtains clustering results simultaneously.
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2.1. Construction of Affinity Graph Based on LRC

Given a single biological data Xv =
{

xv
1, . . . , xv

n
}
∈ Rdv×n denotes the v-th view data

with dv features, where n is the number of data points. Sv ∈ Rn×n represents the similar
relationship between the sample points in the graph learning framework. The smaller the
distance between a pair of vertices in the graph is, the greater the similarity between the
pair of vertices will be, the greater the corresponding weight will be, and vice versa. Based
on the manifold structure of graph, the most traditional way to build Sv is by generating a
k-nearest neighbor graph for it. A pair of vertices are considered connected if they are near
neighbors. There are other effective strategies to design more accurate affinity graph Sv,
e.g., smooth representation [28], Gaussian kernel for similarity learning [29], etc. For the
purpose of clustering, if the sample points can be assigned to the c categories, the obtained
Sv should contain exact c connected components. Based on the following Theorem 1, Sv

can be realized.

Theorem 1. Multiplicity c of zero eigenvalues of Laplacian matrix Lv is equal to the number of
connected components of its similarity matrix Sv.

When all the elements in Sv satisfy the non-negative condition, its Laplacian matrix
Lv has the above property [30,31].

Theorem 1 means if
c
∑

i=1
λi =0, where λi is i-th smallest eigenvalue of Lv, the data

points on Sv have been ideally assigned to c categories [32], Laplacian rank meets the
constraint condition rank(Lv) = n − c. Therefore, based on the Ky Fan’s theorem [33],
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we can minimize
c
∑

i=1
λi approximately meeting the requirement of Theorem 1. The objective

function is written as:

c

∑
i=1

λi = min
Fv∈Rn×c ,(Fv)TFv=I

Tr
(
(Fv)TLvFv

)
(1)

where Fv ∈ Rn×c is obtained by the c eigenvectors of Lv corresponding to the c smallest
eigenvalues. Tr( .) denotes the trace operator, Lv = Dv−

[(
(Sv)T + Sv

)
/2
]

is the Laplacian

matrix, Dv is a diagonal matrix and its elements are column sums of
[(

(Sv)T + Sv
)

/2
]
.

However, the solution to Fv in Equation (1) is actually to solve trivial solution to Sv.
Therefore, a `2-norm regularization term is employed to obtain smooth Sv and each column
of Sv satisfies 1Tsv

j = 1, where sv
j is the jth column of Sv [21]. Finally, we can obtain the

objective function related to Fv and Sv simultaneously:

min
Fv ,Sv

2Tr
(
(Fv)TLvFv

)
+ α‖Sv‖2

F

s.t.(Fv)TFv = I, ∀j, 1Tsv
j = 1, sv

j ≥ 0, sv
jj = 0

(2)

where α is the regularization parameter.
A set of the affinity graph matrices S1, . . . , Sm and the embedded matrices F1, . . . , Fm

are obtained through Equation (2) without the participation of the original data. However,
these affinity matrices are unrelated; if they are simply stacked together for clustering, the
graphs will be badly damaged and the algorithm performance will degrade. Therefore, we
need to introduce a graph fusion strategy to construct a consistent graph matrix with the
unified connected components.

2.2. Graph Fusion with LRC

Integrating these basic graphs to form the fused affinity graph Z ∈ Rn×n, two intuitive
points should be considered: (1) The designed graph Sv for each view can be considered
as the consistent graph Z with noise representation and outlier interference. (2) Sv closer
to Z should be given greater weight to reduce the perturbation of the low-quality graphs
on the fusion graph. In this way, Z can accurately capture the true similarity hidden in
the multiview data. Therefore, we employed the proposed method of Nie et al. [24] to
optimize Z as follows:

min
Z

m

∑
v=1

wv‖Z− Sv‖2
F (3)

where wv is the weight of the single affinity graph Sv. The inverse distance weighting
scheme is designed to calculate wv. The Lagrange function of Equation (3) can be written
as:

min
Z

m

∑
v=1

wv‖Z− Sv‖2
F + ς(Λ, Z) (4)

where Λ is the Lagrange multiplier, ς(Λ, Z) is the formal term derived from constraint
condition. Taking the derivative of Equation (4) w.r.t Z and setting the derivative to zero,
we can obtain:

m

∑
v=1

wv
∂‖Z− Sv‖2

F
∂Z

+
∂ς(Λ, Z)

∂Z
= 0 (5)

where wv is given as follows:

wv =
1

2
√
‖Z− Sv‖2

F

(6)

Here, a set of weights w1, . . . , wm and a consistent graph matrix Z are obtained from
Equation (3). In order to make the learned Z also have c connected components for
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clustering, the LRC term is added to Equation (3) according to Theorem 1 and Ky Fan’s
Theorem. The objective function is as follows:

min
Z

m
∑

v=1
wv‖Z− Sv‖2

F + 2βTr
(
UTLZU

)
s.t. UTU = I, ∀j, 1Tzj = 1, zj ≥ 0, zjj = 0

(7)

where U ∈ Rn×c is obtained by the c eigenvectors of LZ corresponding to the c smallest
eigenvalues, i.e., the embedded matrix corresponding to Z. LZ = DZ −

[(
ZT + Z

)
/2
]

is the Laplacian matrix, DZ is a diagonal matrix and its elements are column sums of[(
ZT + Z

)
/2
]
. β is the regularization parameter.

2.3. LRCMC Algorithm

As described in Sections 2.1 and 2.2, the LRC operation is used to guarantee the
structures of S1, . . . , Sm and Z. Therefore, we can combine Equations (2) and (7) into a final
objective function, i.e., the proposed Laplacian Rank Constrained Multiview Clustering
(LRCMC). It is represented as:

min
Fv ,Sv ,wv ,Z,U

m
∑

v=1
2Tr((Fv)TLvFv) + α‖Sv‖2

F+wv‖Z− Sv‖2
F + 2βTr

(
UTLZU

)
s.t. (Fv)TFv = I, UTU = I,

∀j, 1Tsv
j = 1, sv

j ≥ 0, sv
jj = 0, 1Tzj = 1, zj ≥ 0, zjj = 0

(8)

Here, we complete the tasks of graph construction, graph fusion and clustering in
one step through the integrated model. In this way, the learning of S1, . . . , Sm and Z can
help each other embedded in a joint coupling problem. The objective function Equation (8)
enjoys the following properties:

• Our method can effectively learn a set of affinity graph matrices with c connected
components, instead of most multiview clustering methods requiring predefined
graphs;

• In the graph fusion process, we assign the weight to each view to represent their con-
tribution to the consistent graph Z, rather than simply superimposing then together;

• We use LRC to constantly adjust the structures of S1, . . . , Sm and Z, and at the same
time complete the task of clustering.

2.4. Optimization Algorithm of LRCMC

Obviously, since the variables in Equation (8) are coupled to each other, we use
alternating iterative method and Augmented Lagrange Multiplier (ALM) scheme to solve
S1, . . . , Sm, F1, . . . , Fm, w1, . . . , wm, Z, U. The specific solution process is as follows:

1. Fix F1, . . . , Fm, w1, . . . , wm, Z and U, solve S1, . . . , Sm;

The Equation (8) becomes:

min
Sv

m
∑

v=1
2Tr((Fv)TLvFv) + α‖Sv‖2

F+wv‖Z− Sv‖2
F

s.t. ∀j, 1Tsv
j = 1, sv

j ≥ 0, sv
jj = 0

(9)

Due to Tr((Fv)TLvFv) = 1
2 ∑

i,j
‖fv

i − fv
j ‖

2
2
sv

ij, where fv
i and fv

j denote the i-th and j-th

column of Fv, respectively, sv
ij denotes the (i, j)th element of Sv, the Equation (9) can be

written in vector form as:

min
sv

j

n
∑

i=1
‖fv

i − fv
j ‖

2
2
sv

ij + α‖sv
j ‖

2
2
+ wv‖zj − sv

j ‖
2
2

s.t. sv
jj = 0, sv

j ≥ 0, 1Tsv
j = 1

(10)
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Denote pv
ij = ‖f

v
i − fv

j ‖
2
2
, Equation (10) is obviously written as:

min
sv

j

n
∑

i=1
pv

ijs
v
ij + α‖sv

ij‖
2
2
+ wv‖zij − sv

ij‖
2
2

s.t. sv
jj = 0, sv

j ≥ 0, 1Tsv
j = 1

(11)

Then, the Equation (11) can be written as:

min
sv

j

‖sv
j +

pv
j /2− zj

α + wv
‖

2

2
(12)

Therefore, the Lagrangian function of Equation (12) combined with its constraints can
be defined as:

`
(

sv
j , η,ϕ

)
=

1
2
‖sv

j +
pv

j /2− zj

α + wv
‖

2

2
+ η

(
1Tsv

j − 1
)
+ϕTsv

j (13)

where η is the Lagrangian coefficient scalar and ϕ is the Lagrangian coefficient vector.
Based on the Karush-Kuhn-Tucker (KKT) condition [34], the optimal solution of sv

j can be
estimated as:

sv
j =

(
pv

j /2− zj

α + wv
+ η

)
+

(14)

The study in [35] found that sparse representation is robust to noise and outliers.
In order to obtain the sparse affinity graph Sv, we can find the k nonzero adaptive neighbors
for sv

j to satisfy sv
jk > 0 and sv

j,k+1 = 0. Denote α + wv = δ, then, we arrive at:

−
pv

jk

2
+ wvzjk + δη > 0,−

pv
j,k+1

2
+ wvzj,k+1 + δη ≤ 0 (15)

Moreover, according to Equation (15) and the constraint condition 1Tsv
j − 1 = 0, η is

given:

η =
1
k

1 +
wv

δ
+

k
∑

l=1
pv

jl

2δ

 (16)

Therefore, according to Equations (15) and (16), the range of δ is obtained as follows:
δ >

kpv
jk−2kwvzjk−2wv−

k
∑

l=1
pv

jl

2

δ ≤
kpv

j,k+1−2kwvzj,k+1−2wv−
k
∑

l=1
pv

jl

2

(17)

Then, the parameter δ can be set as:

δ =

kpv
j,k+1 − 2kwvzj,k+1 − 2wv −

k
∑

l=1
pv

jl

2
(18)

Finally, according to Equations (15), (16) and (18), the optimal solution of sv
j in sv

ij is
represented as:

sv
ij =


pv

j,k+1−pv
ij+2wvzij−2wvzj,k+1

kpv
j,k+1−

k
∑

l=1
pv

jl−2kwvzj,k+1+2
k
∑

l=1
wvzjl

j ≤ k

0 j > k

(19)
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2. Fix S1, . . . , Sm, w1, . . . , wm, Z and U, solve F1, . . . , Fm;

Updating Fv in Equation (8) is converted to Equation (2). Therefore, Fv is updated
from Equation (1) in Section 2.1.

3. Fix S1, . . . , Sm, F1, . . . , Fm, Z and U, solve w1, . . . , wm;

Updating wv in Equation (8) is equivalent to Equation (3). Therefore, wv is updated
from Equation (6) in Section 2.2.

4. Fix S1, . . . , Sm, F1, . . . , Fm, w1, . . . , wm and U, solve Z.;

Updating Z in Equation (8) is converted to Equation (7). Due to Tr(UTLZU) =
1
2 ∑

i,j
‖ui − uj‖2

2zij, where ui and uj denote the i-th and j-th column of U, zij denotes the (i,

j)th element of Z, Equation (7) yields:

min
zj

m
∑

v=1

n
∑
i

{
wv‖zj − sv

j ‖
2
2
+ β‖ui − uj‖2

2zij

}
s.t. 1Tzj = 1, zj ≥ 0, zjj = 0

(20)

Denote qij = ‖ui − uj‖2
2, we have:

min
zj

m
∑

v=1
‖zj − sv

j +
β

2mwv
qj‖

2

2

s.t. 1Tzj = 1, zj ≥ 0, zjj = 0
(21)

Based on the Karush–Kuhn–Tucker (KKT) condition [34], the closed form solution of
zj can be estimated as:

zj =

(
sv

j −
β

2mwv
qj + η

)
+

(22)

Equation (22) can be solved by an efficient optimization method proposed in [35].

5. Fix S1, . . . , Sm, F1, . . . , Fm, w1, . . . , wm and Z, solve U.

According to the method of finding Fv, U is obtained as follows:

min
U∈Rn×c ,UTU=I

Tr
(

UTLZU
)

(23)

The final solution of U is the c eigenvectors of LZ corresponding to the c smallest
eigenvalues.

3. Experiments’ Results

In order to verify effectiveness of LRCMC in cancer subtype recognition, LRCMC was
compared with four state-of-the-art clustering algorithms, i.e., ANF [12], SNF [11], PFA [10]
and MVCMO [17]. Since biological omics data are not labeled, we first downloaded
four widely used benchmark datasets containing real labels, i.e., 3-source, Calt-7, MSRC,
WebKB, to verify that proposed LRCMC can achieve good clustering effect. Furthermore,
we applied LRCMC to the datasets downloaded and preprocessed by Wang et al. [11] from
TCGA. The datasets contain four types of cancer, i.e., GBM, Breast Invasive Carcinoma
(BIC), Lung Squamous Cell Carcinoma (LSCC) and Colon Adenocarcinoma (COAD).

3.1. Comparison Experiments on Benchmark Datasets

The benchmark datasets are described as follows:

• 3-source [20]: It contains 169 news that were reported by three news magazines, i.e.,
BBC, Reuters, and The Guardian. There are six different thematic labels for each news;

• Calt-7 [36]: The object recognition dataset is drawn from the Caltech101 dataset to
screen 7 widely used classes, i.e., faces, motorbikes, dollar bill, Garfield, stop sign, and
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Windsor chair. Each class has 1474 images. Each image is described by 6 features, i.e.,
GABOR, wavelet moment (WM), CENT, HOG, GIST and LBP;

• MSRC [37]: The scene recognition dataset contains 7 classes of aircraft, car, bicycle,
cow, faces, tree, and building. Each image is described by 5 features, i.e., color moment
(CMT), HOG, LBP, CENT, GIST;

• WebKB [20]: It collects 203 web pages in 4 classes from the University’s Computer
science department. Each page has 3 features, i.e., the content of the page, the anchor
text of the hyperlink, and the text description in the title.

Table 1 is an overview of these datasets, where n, m, and c describe the number of
samples, views, and classes for each dataset, respectively, dv denotes the i-th feature of
these datasets.

Table 1. Overview of four benchmark datasets.

Dataset n m c d1 d2 d3 d4 d5 d6

3-
source 169 3 6 3560 3631 3638 - - -

Calt-7 1474 6 7 48 40 254 1984 512 928
MSRC 210 5 7 48 100 256 1302 512 -
WebKB 203 3 4 1703 230 230 - - -

Three commonly used evaluation metrics, i.e., Accuracy (ACC), Normalized Mutual
Information (NMI) and Purity, are used to quantitatively measure the clustering perfor-
mance of the algorithms. The metrics compare the resulting labels with the real labels
provided by the dataset. The larger the value obtained, the better the clustering results.
To ensure the fairness of the comparison experiments, each algorithm was run 10 times
to reduce the impact of randomness. The mean and standard deviation of the obtained
metrics were calculated. In addition, the neighbor k required by ANF, SNF, MVCMO
and LRCMC was set within the range of [5, 50], and other parameters were specified as
the default values provided by the authors. Only one parameter β needs to be set in our
LRCMC algorithm, which is caused by the introduction of LRC. In order to achieve rapid
convergence of Algorithm 1, we adopt a dynamic parameter updating method proposed by
Nie et al. [23]. β is set in the range of [1,30]. If the number of connected components of Z is
greater than c, we will shrink β (β = β/2). On the contrary, if less than c, we will increase β
(β = 2× β) until finding the right components for Z. Table 2 shows the final evaluation met-
rics obtained by these algorithms in the four datasets. It is obvious that LRCMC achieves
better clustering performance in the multiview clustering task than the other methods.

Algorithm 1. LRCMC algorithm

Input: Original data X1, . . . , Xm with m views, the number of clusters c, the number of neighbors
k, the regularization parameter β.
Output: The learned consensus matrix Z.
Initialize the affinity matrices S1, . . . , Sm for each view by solving the following problem:

min
sv

j

n
∑

i=1
‖xi − xj‖2

2sv
ij + α‖sv

j ‖
2
2
;

Initialize the embedded matrices F1, . . . , Fm for each view by using Equation (1);
Initialize the weights w1, . . . , wm for each view by wv = 1/m;
Initialize Z by connecting S1, . . . , Sm with w1, . . . , wm;
Initialize the fused embedded matrix U by using Equation (23);
Repeat
Fix F1, . . . , Fm, w1, . . . , wm, Z and U, update S1, . . . , Sm by using Equation (19);
Fix S1, . . . , Sm, w1, . . . , wm, Z and U, update F1, . . . , Fm by using Equation (1);
Fix S1, . . . , Sm, F1, . . . , Fm, Z and U, update w1, . . . , wm by using Equation (6);
Fix S1, . . . , Sm, F1, . . . , Fm, w1, . . . , wm and U, update Z by using Equation (22);
Fix S1, . . . , Sm, F1, . . . , Fm, w1, . . . , wm and Z. update U by using Equation (23);
Until Satisfy Theorem 1 or the maximum iteration reached.
The learned consensus matrix Z with exact c connected components, which are the final clusters.
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Table 2. The clustering performance comparison in terms of ACC, NMI and Purity on the four real
datasets.

Datasets Methods ACC NMI Purity

3-source

ANF 0.4970 (0.0000) 0.2804 (0.0000) 0.5325 (0.0000)
SNF 0.7811 (0.0000) 0.6942 (0.0000) 0.8166 (0.0000)
PFA 0.4562 (0.0761) 0.2247 (0.0713) 0.7160 (0.0578)

MVCMO 0.4221 (0.0123) 0.3035 (0.0128) 0.5266 (0.0118)
LRCMC 0.8107 (0.0000) 0.7218 (0.0000) 0.8462 (0.0000)

Calt-7

ANF 0.6696 (0.0000) 0.6203 (0.0000) 0.8684 (0.0000)
SNF 0.6601 (0.0000) 0.5637 (0.0000) 0.8562 (0.0000)
PFA - - -

MVCMO 0.6654 (0.0100) 0.5179 (0.0355) 0.8464 (0.0083)
LRCMC 0.8548 (0.0000) 0.7694 (0.0000) 0.8921 (0.0000)

MSRC

ANF 0.8048 (0.0000) 0.7297 (0.0000) 0.8143 (0.0000)
SNF 0.8429 (0.0000) 0.7514 (0.0000) 0.8429 (0.0000)
PFA - - -

MVSCO 0.7800 (0.0544) 0.6711 (0.0628) 0.7838 (0.0462)
LRCMC 0.8905 (0.0000) 0.7922 (0.0000) 0.8905 (0.0000)

WebKB

ANF 0.6798 (0.0000) 0.1718 (0.0000) 0.6946 (0.0000)
SNF 0.7044 (0.0000) 0.2407 (0.0000) 0.7192 (0.0000)
PFA 0.7143 (0.0000) 0.3191 (0.0000) 0.8128 (0.0000)

MVCMO 0.7652 (0.0346) 0.3548 (0.0448) 0.7833 (0.0323)
LRCMC 0.8079 (0.0000) 0.5081 (0.0000) 0.8424 (0.0000)

- means that the metrics cannot be calculated, the best results have been highlighted in bold.

3.2. Comparison Experiments on TCGA Datasets

To demonstrate the effectiveness of LRCMC in identifying cancer subtype, the de-
signed LRCMC was applied to four cancer omics datasets, i.e., GBM, BIC, LSCC, and
COAD. Each cancer subtype contains three types of expression data from different plat-
forms, i.e., mRNA expression data, DNA methylation data and miRNA expression data.
Table 3 shows the number of samples (patients) and features (genes) held by each cancer
subtype.

Table 3. Overview of the TCGA datasets.

Datasets N mRNA
Expression

DNA
Methylation

miRNA
Expression

GBM 213 12,042 1305 534
BIC 105 17,814 23,094 354

LSCC 106 12,042 23,074 352
COAD 92 17,814 23,088 312

To ensure that the identified cancer labels conform to the true clinical diagnosis, we
specified that the number of samples in each cluster should be at least 3. We used the
number of subtypes of GBM, BIC, LSCC, and COAD specified by Wang et al., which were
3, 5, 4 and 3, respectively. Then, the p values based on Cox log-rank model were used
to evaluate the clustering results of these algorithms in survival analysis [38]. If the p
value is smaller, the survival rate between different groups is more significant and the
difference is greater, which means the cluster is considered to have different characteristics
of the underlying cancer subtypes. Cancer survival curves can also represent heterogeneity
between different subtypes. As shown in Table 4, LRCMC obtained the best p value
in BIC, GBM, KRCCC and COAD. Other algorithms also had good results in specific
datasets, but they were all lower than our algorithm. Therefore, we believe that LRCMC is
significantly advantageous in the topic of cancer subtype recognition. Figure 2 shows the
Kaplan–Meier survival analysis curves of the four cancers. Each curve depicts trends in
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the survival time of each cancer cluster and the number of samples for each cluster is also
shown in the figure.

Table 4. p values of survival analysis in Cox log-rank model for different clustering methods of four
cancers on The Cancer Genome Atlas (TCGA) datasets.

Methods GBM BIC LSCC COAD

ANF 5.8 × 10−4 3.6 × 10−4 8.9 × 10−3 9.0 × 10−3

SNF 5.0×10−5 6.9×10−4 7.8 × 10−3 1.6 × 10−3

PFA 1.8×10−4 3.1×10−4 1.1 × 10−2 2.4 × 10−2

MVCMO 1.4×10−3 3.5×10−4 9.1 × 10−3 8.5 × 10−3

LRCMC 1.3 × 10−5 3.7 × 10−5 3.8 × 10−3 1.2 × 10−3

The best results have been highlighted in bold.

3.3. Analysis on GBM Dataset

GBM is the most malignant glioma among astrocytomas. It has been studied and
analyzed at the genetic level by many scholars, and specific subtypes and treatment
protocols have been proposed. For example, according to the mRNA expression data,
Verhaak et al. [39] reported that GBM is divided into Mesenchymal, Classical, Neural
and Proneural subtypes, and the heterogeneous subtypes were also verified in somatic
mutations and copy number variations (CNVs). Another study divided GBM patients
into two subtypes, i.e., G-CLMP and non-G-CLMP, based on the difference of CpG Island
methylator phenotype (CLMP) [40]. Table 5 shows the distribution of the cluster results
obtained by LRCMC on the subtype identified by these two studies. From Table 5, there
are more patients in cluster 1 than in cluster 3, and all of them are assigned to non-G-CLMP
subtype—also they have four subtypes identified based on mRNA expression. The point is
that the Proneural subtype in these two clusters belong to non-G-CLMP subtype. However,
cluster 2, with a smaller number of patients, is almost the Proneural subtype, and also
belongs to G-CLMP subtype.
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sive Carcinoma (BIC), (c): Lung Squamous Cell Carcinoma (LSCC) and (d): Colon Adenocarcinoma
(COAD), respectively.
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Table 5. The identified clusters are compared with mRNA-expression-based subtypes and
methylation-based subtypes.

Our
Cluster

mRNA-Expression-Based Subtypes Methylation-Based
Subtypes

Mesenchymal Classical Neural Proneural G-CLMP Non-G-
CLMP

cluster 1 46 54 27 30 0 155
cluster 2 1 0 1 19 20 1
cluster 3 12 11 7 7 0 37

The values represent the number of patients counted.

To further analyze the identified clusters, we downloaded clinical data, somatic
mutation data and CNV data for all patients from the cBio Cancer Genomis Portal database
(http://www.cbioportal.org/ accessed on 15 December 2020). The age profiles of the
three clusters (Figure 3), differential gene statistics of CNVs and mutations (Table 6),
and Kaplan–Meier survival curves of Temozolomide (TMZ) (Figure 4) in GBM patients
were obtained. Figure 3 shows that the diagnosis age of patients in cluster 2 with the best
survival advantage is also lower than that of patients in cluster 1 and cluster 3. The genetic
variant signatures associated with GBM in terms of mutation (IDH1) and CNVs (CDKN2A,
CDKN2B, C9orf53, MTAP, EGFR) are significantly different in the three identified clusters.
In particular, IDH1 mutation only occurs in cluster 2, while EGFR amplification is 0. Then,
we divided the patients within the three clusters into two groups: patients treated with
TMZ and those not treated with TMZ, then we compared the drug response. TMZ is a
drug that is commonly used to treat GBM, but only responds well to a subset of patients.
The p values of survival analysis in Cox log-rank model of the three cluster comparison
experiments are 2.0 × 10−6, 0.76 and 0.01, respectively, which indicates that TMZ treatment
has no effect on the patients in cluster 2. Therefore, in summary, we can infer that the
subtype belonging to G-CLMP subtype and Proneural subtype might be a potentially new
subtype. This also verified by the fact that that the Proneural subtype granted by the
G-CIMP phenotype proposed by Canmenron et al. has unique properties [41].
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Table 6. Distribution of genetic variant signatures for the identified clusters.

Our
Cluster CDKN2A.del.CDKN2B.del. C9orf53.del. MTAP.del. EGFR.ampl. IDH1

cluster 1 84 (56.4%) 84 (56.4%) 80 (53.7%) 57 (38.3%) 70 (47.0%) 0 (0%)
cluster 2 6 (28.6%) 6 (28.6%) 6 (28.6%) 5 (23.8%) 0 (0%) 10 (66.7%)
cluster 3 24 (68.9%) 23 (62.2%) 24 (68.9%) 21 (56.8%) 19 (51.4%) 0 (0%)

The values indicate the number of variations, and the values in parentheses indicate the frequencies of variations
after removing statistical missing. ‘ampl.’: amplification, ‘del.’: deletion.

In addition, mRNA expression data and DNA methylation data were used to compare
the differentially expressed genes in cluster 1 and 3 to look for the heterogeneity between
them. We compared the genes in the two clusters using ANOVA (the lower the p-value,
the higher the ranking). The gene differences in miRNA expression data were not significant
enough (p values were all greater than 0.1) and were omitted from consideration. Figure 5
shows the heatmaps of the top 20 differentially expressed genes in the mRNA expression
data and the DNA methylation data, respectively. It is obvious that cluster 1 and cluster
3 are different in gene expression level, and some of the genes on the heatmaps have been
shown to be linked to GBM., e.g., PRKAA1 overexpressed in Cluster 3, also known as
AMPK, induces antitumor activity in GBM cells and has become a possible tumor control
target [42]. MUC1 overexpressed in cluster 1 is a pathogenic gene that induces GBM and
can be used as a target for cellular immunotherapy [43].
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Figure 4. The Kaplan–Meier survival curves of the identified clusters (a): cluster 1, (b): cluster 2 and
(c): cluster 3) of Temozolomide (TMZ) response. “Untreated” expresses the group which did not
receive TMZ treatment and “Treated” expresses the group which received TMZ treatment.

Finally, we compared the three clusters with normal samples and screened for differ-
entially expressed genes using ANOVA. We did Gene Ontology (GO: BP), KEGG pathway
and Disease Ontology (DO) enrichment analysis using the top 100 differential genes in
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ToppGene Suite database (https://toppgene.cchmc.org/enrichment.jsp accessed on 20
December 2020). From Table 7, it is clear that the biological processes of cluster 1 are
related to “epithelium development” and “cell adhesion”, while the biological processes
of cluster 2 and 3 are mostly related to “protein targeting” and “protein localization”.
Moreover, it is interesting to note that all three clusters are associated with anemia in
DO enrichment analysis. It is possible that GBM patients treated with TMZ will develop
aplastic anemia [44].

Genes 2021, 12, x FOR PEER REVIEW 14 of 18 
 

 

In addition, mRNA expression data and DNA methylation data were used to com-

pare the differentially expressed genes in cluster 1 and 3 to look for the heterogeneity 

between them. We compared the genes in the two clusters using ANOVA (the lower the 

p-value, the higher the ranking). The gene differences in miRNA expression data were not 

significant enough (p values were all greater than 0.1) and were omitted from considera-

tion. Figure 5 shows the heatmaps of the top 20 differentially expressed genes in the 

mRNA expression data and the DNA methylation data, respectively. It is obvious that 

cluster 1 and cluster 3 are different in gene expression level, and some of the genes on the 

heatmaps have been shown to be linked to GBM., e.g., PRKAA1 overexpressed in Cluster 

3, also known as AMPK, induces antitumor activity in GBM cells and has become a possi-

ble tumor control target [42]. MUC1 overexpressed in cluster 1 is a pathogenic gene that 

induces GBM and can be used as a target for cellular immunotherapy [43]. 

 

(a) mRNA expression data 

 

(b) DNA methylation data 

Figure 5. Heatmaps of differentially expressed genes in (a): mRNA expression data and (b): DNA methylation data for 

the identified clusters. 
Figure 5. Heatmaps of differentially expressed genes in (a): mRNA expression data and (b): DNA
methylation data for the identified clusters.

https://toppgene.cchmc.org/enrichment.jsp


Genes 2021, 12, 526 14 of 17

Table 7. GO: BP, KEGG pathway, DO enriched terms for the identified cluster.

ENRICHMENT
Analysis Cluster 1 Cluster 2 Cluster 3

GO:BP enriched
terms

1. Epithelial cell
differentiation
2. Epithelium
development

3. Cell adhesion
4. Biological adhesion
5. cell–cell adhesion

1. Protein targeting to
ER

2. Establishment of
protein localization to

endoplasmic
reticulum

3. Protein localization
to endoplasmic

reticulum
4. Peptide metabolic

process
5. Protein targeting

protein targeting

1. SRP-dependent
cotranslational

protein targeting to
membrane

2. Cotranslational
protein targeting to

membrane
3.

Nuclear-transcribed
mRNA catabolic

process,
nonsense-mediated

decay
4. Protein targeting to

ER
5. Establishment of

protein localization to
endoplasmic

reticulum

KEGG enriched
pathway terms

1. Cell adhesion
molecules (CAMs)
2. Tight junction

3. Pathogenic
Escherichia coli

infection
4. Leukocyte

transendothelial
migration

1. Ribosome
2. Protein export 1. Ribosome

DO enriched terms

1. alphaThalassemia
2. Dysfibrinogenemia,

congenital
3. Afibrinogenemia,

congenital
4. Heinz body anemia

1. Diamond–Blackfan
anemia

1. Diamond–Blackfan
anemia

We put the GO: BP terms with ranking in the top 5, and KEGG pathway and DO terms with p-value less than
1.00E-4 in the table.

4. Discussion and Conclusions

Over the past decade, it has been widely recognized that the integration and mining
of different types of biological data provides meaningful insights into the causes and
complexity systems of cancer [45]. Now, the challenge is still how to capture the underlying
structure of the sample/features from the omics data for application to a wide range of
bioinformatics topics, e.g., the prediction of drug-target relationships [46], the recognition
of cancer driver genes [47], finding out about genotype–epigenetic interactions [48], etc.

In this paper, our proposed LRCMC algorithm has the ability to fuse multigenomic
data into the consensus graph of the exact connected components. In fact, the sample size
of a given cancer is generally relatively small, so the graph learning method can quickly
map the feature space into the structure of the affinity graph without the need for feature
prescreening. Based on the framework of graph learning, LRCMC uses the operation of
LRC to mine the structure of clustering while maintaining the graph structure. At the same
time, the graph obtained by the adaptive neighbors method is sparse, so that the weak
similarity relationship is even more sparse at 0, which ensures more accurate clustering
results. Compared with other start-of-the-art integration clustering algorithms for cancer
subtype recognition, LRCMC has the following two characteristics: (1) instead of simply
treating each view equally, a wealth of heterogeneous information is taken into account to



Genes 2021, 12, 526 15 of 17

provide appropriate weight for each view; (2) the tasks of constructing the affinity matrix
of each view, learning the fused matrix and clustering are completed simultaneously in
a system. Furthermore, LRCMC has the following two advantages in algorithm running:
(1) there is no need to spend a lot of time choosing the appropriate parameters; (2) the
final consensus graph has been assigned to the given categories without adding additional
base clustering algorithms. We demonstrated the power of LRCMC using four benchmark
datasets and four cancer datasets. The experiments show that LRCMC has a good clustering
evaluation. The cancer subtype recognition results on GBM data show that LRCMC can
effectively capture cancer subtypes with specific biological characteristics based on omics
data.

In addition, we must admit that LRCMC also has shortcomings and limitations. It is
not suitable for binary data (somatic mutation) or categorical data (copy number states:
loss/normal/gain), and has only limited application to continuous data (mRNA expression)
to identify cancer subtype. It also does not have the ability to find the gene modules that
affect differences in each subtype. Therefore, we will continue our efforts to improve and
extend the LRCMC algorithm to explore cancer heterogeneity.
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