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Reactive oxygen species (ROS) play a crucial role in the regulation of tumor occurrence and
development. As a main source of ROS, NADPH oxidases are key enzymes that mediate
electron transport within intracellular membranes. Of the NOX members that have been
reported to be dysregulated in a wide variety of tumors, NOX4 is the member to be most
frequently expressed. Numerous studies have elucidated that NOX4 gets involved in the
regulation of tumor proliferation, metastasis, therapy resistance, tumor-stromal interaction
and dysregulated tumor metabolism. In this review, we primarily discussed the biological
function of NOX4 in tumorigenesis and progression of multiple cancer models, including its
role in activating oncogenic signaling pathways, rewiring the metabolic phenotype and
mediating immune response. Besides, the development of NOX4 inhibitors has also been
unraveled. Herein, we discussed the interplay between NOX4 and tumorigenesis,
proposing NOX4 as a promising therapeutic target waiting for further exploration.
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INTRODUCTION

The NOX family of NADPH oxidases are enzymes that mediate electron transport via intracellular
membranes (Brandes et al., 2014a). NOX family was initially discovered in the membrane of
phagocytes (Bedard et al., 2007). Currently, six members of the NOX family has been identified,
including NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2 (Vermot et al., 2021). These enzymes
share common structure of six transmembrane domains and a C-terminus with a NADPH binding
region, with each member exhibiting a specific tissue distribution (Bedard et al., 2007). The
regulatory mechanisms for activation of each NOX member are diverse. Various mechanisms
have been reported to regulate NOXs activity including post-translational modifications, lipids,
calcium level, etc (Rossary et al., 2007; Brandes et al., 2014b; Douda et al., 2015). NOXs also function
as reactive oxygen species- (ROS-) producing enzymes to regulate a series of biological function,
comprising redox-dependent signaling pathways, oxygen sensor, metabolic reprograming, and
immune defense (Bedard and Krause, 2007; Leto et al., 2009). Moreover, downstream ROS
production are key regulators of cell differentiation, transformation, growth and death, which
are actively engaged in the occurrence and development of multiple cancers (Klaunig, 2018).

Several NOX members have been found to be dysregulated in diverse cancer models, with NOX4
being the member most frequently expressed. Numerous studies have shown that NOX4 plays a crucial
role in tumorigenesis and tumor development by supporting cancer cell transformation, proliferation,
migration, invasion, and epithelial–mesenchymal transition (EMT). To date, NOX4 has been observed to
participate in multiple malignancies, including lung cancer, renal cell cancer (RCC), colorectal cancer
(CRC), gastric cancer (GC), pancreatic cancer, glioblastoma, and ovarian cancer, etc (Zeng et al., 2016;
Meitzler et al., 2017; Shanmugasundaram et al., 2017; Du et al., 2018; Liu et al., 2021; Shen et al., 2020).
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NOX4, ROS, AND CANCER

The sources of ROS are the electron transport chain, producing
ROS as a byproduct, as well as NOXs. Besides, endoplasmic
reticulummembranes and peroxisomes express enzymes that can
generate H2O2 are also considered as an indispensable supply of
intracellular ROS (Brieger et al., 2012). In multiple cancer models,
elevated ROS generation has been detected in tumor cells
resulting from hypoxic environment, increased metabolic rates
or altered redox-related gene expression (Zhang et al., 2016; Wu
et al., 2021). Moreover, elevated ROS production also play diverse
roles in tumor development, which can activate oncogenic
signaling pathway, drive DNA damage and genetic instability,
reprogram metabolic phenotype and mediate immune response
(Yang et al., 2013; Schieber and Chandel, 2014; Moloney and
Cotter, 2018). ROS could regulate a variety of signaling pathways,

including PI3K/AKT, hypoxia-inducible factor-1α (HIF-1α),
c-myc, NF-κB, and STAT3, and other molecules, thus linking
to growth, metastasis, angiogenesis and chemoresistance of
tumor (Zhang et al., 2014; Prasad et al., 2017).

NOX family members are transmembrane proteins that share
the capacity to transport electrons across the biological
membrane and to produce superoxide and other downstream
ROS (Bedard et al., 2007). Conclusively, oxygen is regarded as
electron acceptor and superoxide is the product of the electron
transfer reaction. Thus, the main biological function of NOX
family member is considered as ROS production. NOX4, the
most frequently expressed member of NOX family, thus has a
potential role in activating diverse signaling pathways and
mediating metabolic plasticity through manipulating tumoral
ROS level to participate in tumor occurrence and development
(Vermot et al., 2021). Therefore, the diverse function of NOX4

FIGURE 1 | Representation of biological functions of NOX4 in cancer. JAK2, Janus kinase 2; ASK1, apoptosis signal-regulating kinase 1; ANGPTL4, Angiopoetin-
like 4; CAFs, cancer-associated fibroblasts; EMP1, epithelial membrane protein 1; GLUT1, glucose transporter 1; HK2, hexokinase 2; PKM2, pyruvate kinase isoform 2;
LDHA, lactate dehydrogenase A.
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and downstream ROS production during tumor progression
make it a promising therapeutic target, and it is imperative to
thoroughly understand the molecular mechanisms in different
cancer models (Figure 1).

ROLE OF NOX4 IN DIVERSE
MALIGNANCES

Lung Cancer
Recent statistics have revealed that lung cancer is the second most
frequently diagnosed cancer and the primary cause of cancer-
related morality worldwide, comprising both small cell lung
cancer and non-small cell lung cancer (NSCLC) (Mao et al.,
2016; Sung et al., 2021). Even though significant advances have
been achieved in targeted therapy and immunotherapy of
NSCLC, which accounts for the majority of lung cancers,
exploiting promising therapeutic targets for lung cancer
treatment is still urgently needed to improve the prognosis of
these patients (Nagano et al., 2019). NOX4 is abundantly
expressed in NSCLC tissues and contribute to tumor
development through diverse oncogenic mechanisms (Zhang
et al., 2019). For instance, NOX4 could reprogram the
metabolic phenotype of NSCLC cells to enhance glycolysis and
pentose phosphate pathway in A549 and H460 cells. Specifically,
NOX4 upregulates the expression of c-Myc, a crucial
transcriptional factor for activating glycolytic enzymes,
including glucose transporter 1, hexokinase 2, pyruvate kinase
isoform 2 and lactate dehydrogenase A, to support the glycolytic
phenotype of A549 cells via ROS/PI3K/Akt activation (Zeng et al.,
2016; Fang et al., 2019). Nuclear factor erythroid 2-related factor 2
(Nrf2) mediates the modulation of redox adaptation in NOX4-
overexpressed NSCLC cells. NOX4-induced ROS maintains the
stability of Nrf2 protein by preventing ROS-related proteasomal
degradation via PI3K activation (Wu et al., 2017). Besides,
NOX4-induced ROS could also elevate cytokine production via
PI3K/Akt signaling-dependent manner to increase tumor-
associated macrophage infiltration and exert pro-tumor
function in NSCLC (Zhang et al., 2019). Cisplatin-based
chemotherapy has been regarded as a traditional and primary
treatment to prevent the relapse of NSCLC and improve the
clinical outcomes of NSCLC patients. However, cisplatin
resistance remains a huge obstacle for therapeutic response in
NSCLC patients. In NSCLC, EF-hand domain-containing protein
D2 (EFHD2) could upregulate NOX4-induced ROS production
of A549 and H1299 cells, which ultimately increases transporter
ATP-binding cassette subfamily C member 1 expression to
elevate cisplatin efflux. A non-steroidal anti-inflammatory drug
ibuprofen, which can degrade EFHD2 and thus inhibit EFHD2
expression, could improve the therapeutic response of NSCLC to
cisplatin via inhibiting NOX4-ROS-ABCC1 axis (Fan et al.,
2020). Hence, NOX4 inhibition may serve as a promising
treatment for NSCLC patients.

Renal Cell Cancer
RCC, which commonly exhibits loss of Von Hippel-Lindau
(VHL) suppressor gene, represents the majority of cases with

kidney cancer (D’Avella et al., 2020; Sung et al., 2021). Higher
NOX4 expression has been found to be correlated with
unfavorable survival in RCC (Kaushik et al., 2020). Precious
study has revealed that NOX4 expression in RCC tissues mediates
the expression and activity of hypoxia-inducible factor 2α (HIF-
2α), a crucial transcriptional factor of tumor glycolysis and
various malignant behavior, to support renal tumorigenesis
(Maranchie and Zhan, 2005; Hoefflin et al., 2020; Singhal
et al., 2021). It is worth noting that NOX4 could alter the
distribution of HIF-2α via redox adaptation. Specifically,
NOX4 silencing in 786-0 and RCC4 NS cells could reduce
nuclear accumulation of HIF-2α under both normal and
hypoxic oxygen conditions, indicating NOX4 as an alternative
activating signal for HIF-2α translocation (Gregg et al., 2014). It is
demonstrated that NOX4 also serves as a mitochondrial energetic
sensor engaged in reprogramming tumor metabolism for drug
resistance. Of note, NOX4 has an ATP-binding motif to directly
bind to ATP, which negatively regulates NOX4 activity in VHL-
deficient RCC. Further, NOX4-induced ROS in 786-O and A498
cells could reduce the acetylation of pyruvate kinase-M2 isoform
from being degraded mediated by P300/CBP-related factor.
NOX4 inhibition, through pyruvate kinase-M2, sensitizes 786-
O and A498 cells to drug-induced cell death in xenograft models
and ex vivo cultures (Shanmugasundaram et al., 2017). Recent
study also elucidated that NOX4 as a renal-enriched ROS-
generating enzyme essential for lipid peroxidation and
ferroptosis in RCC. The expression of NOX4 can be induced
by activation of Hippo-YAP/TAZ pathway to further enhance
lipid peroxidation, which mediates susceptibility of RCC4 and
786O cells to ferroptosis (Yang et al., 2019; Yang and Chi, 2019).
Besides, NOX4 could increase hypoxia-induced IL-6 and IL-8
production in RCC, linking NOX4 to inflammation-induced
RCC metastasis and making NOX4 a therapeutic target to
reduce IL-6- and IL-8-induced inflammation and invasion in
RCC (Fitzgerald et al., 2012). According to these observations,
NOX4 blockade might aid the development of therapeutic
intervention of RCC, especially in TAZ-activated CRC cells.

Gastrointestinal Cancer
GC is the fifth most frequently diagnosed malignancies and
fourth common cause of cancer-related deaths globally (Sung
et al., 2021). NOX4 exhibits upregulated expression in GC
tumor tissue compared with adjacent normal tissues (Du
et al., 2019). Moreover, anoikis-resistant MKN-45 and AGS
cells exhibit enhanced malignant phenotypes, which can be
attenuated by NOX4 blockade. This can be explained by the
finding that detachment from the ECM drives NOX4
overexpression, and NOX4-induced ROS could directly
upregulate EGFR expression, further increasing anoikis
resistance of GC cells (Du et al., 2018). Besides, NOX4
mediates the upregulation of GLI1, a transcription regulator
for the Hedgehog signaling pathway (Doheny et al., 2020).
NOX4 overexpression could promote MKN-45 and AGS cell
proliferation via activation of the GLI1 pathway, while GLI1
knockdown reverses the malignant phenotype induced by
NOX4 overexpression (Tang et al., 2018). Thus, NOX4 is a
promising therapeutic target for blockage of GC development.
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CRC represents the third most frequent cancer, but second in
terms of mortality (Sung et al., 2021). Upregulation of NOX4
expression has been found to be strongly correlated with
myofibroblastic cancer-associated fibroblasts (CAFs). In
fibroblasts, NOX4 inhibition abrogates ROS production,
blocking myofibroblast differentiation and CAF accumulation.
NOX4 inhibition can revert the myofibroblastic-CAF
phenotype, which indicates NOX4 inhibition as a stromal-
targeted approach for CRC (Hanley et al., 2018). Besides, CRC
development are highly correlated with metabolic disorders, like
dyslipidemia (Chen et al., 2021). It is demonstrated that NOX4
regulate oleic acid (OA)-drived CRC metastasis. OA-induced
ANGPTL4 upregulates NOX4 expression via the activation of
c-Jun, which further increase ROS production to promote
SW480, and HT-29 cell metastasis (Shen et al., 2020). Targeting
this ANGPTL4/NOX4 axis may provide promising therapeutic
opportunity for dyslipidemia-associated CRC metastasis. Recent
study has investigated the role of NOX4 in the survivin-associated
adaptive response in colorectal cells. NOX4 inhibition induces the
reversal of HCT116 cell TP53 WT and HCT116 cell Mut adaptive
responses from pro-survival to radio-sensitization (Murley et al.,
2018). Besides, the anti-tumor effect of silver nanoparticles (AgNP)
has also been investigated in CRC tumors. AgNPs induce ROS
production and endoplasmic reticulum stress responses through
NOX4, leading to HCT116 cell apoptosis (Quan et al., 2021). All
these evidences prove that NOX4 blockade could be a potential
target in CRC treatment.

Pancreatic Cancer
Pancreatic cancer ranks seventh in terms of mortality globally
with a usually poor prognosis, while pancreatic ductal
adenocarcinoma (PDAC) accounts for more than 80% of
pancreatic cancer cases (Sung et al., 2021). In the membrane
of endoplasmic reticulum (ER), high NADPH levels upregulates
NOX4 expression. Peroxiredoxin 4 (PRDX4), an antioxidant
protein expressed in the ER, is essential for growth and
survival of MIAPaCa-2 and PANC-1 cells depending on
NOX4-induced ROS production (Jain et al., 2021). In response
to hypoxia, HIF-1α could activate NOX4 to elevate the
methylation modification of histone H3, thus increasing the
transcriptional upregulation of EMT-related marker to
enhance metastasis. NOX4 blockade impairs the activation of
the HPAC and Panc1 cell survival kinase AKT by attenuating
phosphorylation of AKT (Li et al., 2021). NOX4 activates
phosphorylation of Janus kinase 2 to exert anti-apoptotic
effects. NOX4 activation could impair activity of protein
tyrosine phosphatases to increase Janus kinase 2 to impede
PaCa cell apoptosis (Lee et al., 2007). NOX4-induced ROS can
also protect tumor cells from apoptosis via AKT-dependent
phosphorylation of apoptosis signal-regulating kinase 1, thus
NOX4 blockade resulting in cell apoptosis (Mochizuki et al.,
2006). Oncogenic Kras and inactivation of p16 regulate the
expression of NOX4 in PDAC, which could enhance glycolysis
by increasing supplement of NAD+. NAD+ functions as a primary
substrate for GAPDH-mediated glycolysis to strengthen PDAC
growth (Ju et al., 2017). In cachectic muscles, tumor-induced
SIRT1 loss leads to the activation of NF-κB, which upregulates

NOX4 expression to exaggerate pancreatic tumor-induced
cachexia. Therefore, targeting the Sirt1-NOX4 axis in cachectic
muscles may provide a promising opportunity to overcome
cachexia in patients with pancreatic cancer.

Glioblastoma
Glioblastoma is one of the most lethal and common brain
tumors, with the 2-years overall survival of glioblastoma
patients exhibiting only 25% (Aldape et al., 2003; van
Tellingen et al., 2015). Increased NOX4 expression has
been observed in glioblastoma tissues (Shono et al., 2008).
Cycling hypoxia is an environmental cue for participating in
tumor progression. Cycling hypoxic glioblastoma cells
exhibit significantly upregulated NOX4 expression and
ROS production compared with normoxic cells (Hsieh
et al., 2012). Cycling hypoxia drives NOX4 expression to
promote resistance to radiotherapy in glioblastoma.
Ferroptosis is an important type of programmed cell death
and intensively related to iron-associated lipid peroxidation
and intracellular homeostasis, which is involved in
occurrence and development of tumor. In glioblastoma,
increased iron level induced by pseudolaric acid B
treatment via upregulation of transferrin receptor could
upregulate NOX4 expression, thus leading to accumulated
lipid peroxides (Wang et al., 2018). NOX4 also participates in
the regulation of TGF-β1-drived metabolic rewiring of
glioblastoma cells (Su et al., 2021a). NOX4-induced ROS
production further increases HIF-1α nuclear accumulation
and stability to enhance aerobic glycolysis and EMT program
of U87 and A172 cells. NOX4-induced ROS also increases
FOXM1 transcription to mediate HIF-1α stabilization to
enhance aerobic glycolysis (Su et al., 2021b). These
findings have elucidated NOX4 as a crucial factor for
supporting malignant behaviors of glioblastoma cells.

NOX4 and Other Malignancies
NOX4 also participates in the regulation of other cancer types,
including prostate cancer, gallbladder cancer, thyroid cancer, and
ovarian cancer (Sampson et al., 2018; Helfinger et al., 2019; Pan
et al., 2020; Liu et al., 2021). In human prostate cancer, NOX4
mediates TGFβ1-induced activation of primary fibroblasts to
acquire a CAF-associated phenotype. NOX4 blockade could
diminish CAF-associated marker expression and migrative
capabilities of CAFs (Sampson et al., 2018). NOX4 is highly
upregulated in gallbladder cancer cells and gallbladder CAFs,
which is associated with malignant behaviors and poor prognosis.
Specifically, gallbladder CAFs elevate vasculogenic mimicry
formation and tumor growth through increasing NOX4
expression via activating IL-6-JAK-STAT3 signaling (Pan
et al., 2020). In thyroid cancer, knockdown of NOX4 and
p22phox in hypoxia reduces ROS level, thus destabilizing
HIF1α to restraining glycolysis and cell growth of TPC-1 cells
(Helfinger et al., 2019). NOX4 also mediates the resistance to
chemotherapy and radiotherapy in ovarian cancer cells. NOX4
blockade could significantly elevate response of A2780 and
OVCAR3 cells to chemotherapy and radiotherapy by
downregulating HER3 and NF-κB p65 (Liu et al., 2021).
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Taken together, NOX4 displays great significance in wide variety
of cancers, indicating great potentials of NOX4 inhibitors as anti-
tumor therapy.

Prospects of NOX4 Inhibitors in Cancer
Therapy
With the acknowledgements to the role of NOX4 in tumor
occurrence and development, NOX4 is an emerging
therapeutic target for development of anti-tumor drug. NOX4
inhibitors, including GKT137831, fulvene-5, and
diphenyleneiodonium (DPI), are being extensively studied.
Currently, GKT137831 is the only NOX4 inhibitors that has
been tested in clinical trials. GKT137831 can revert the
myofibroblastic-CAF phenotype and promote CD8+ T cell
infiltration (Hanley et al., 2018). GKT137831 also attenuates
prostate cancer cell-driven fibroblast activation to mediate
tumor stromal interactions (Sampson et al., 2018). In NSCLC,
NOX4 blockade by GKT137831 could reduce pro-tumoral M2-
like macrophage and immune infiltration to limit tumor growth
(Zhang et al., 2019). In tumors with high CAF levels, GKT137831
can increase immunotherapy response. Moreover,
immunotherapy resistance can be impeded by NOX4 blockade
and favor prognosis in multiple cancers (Ford et al., 2020).
Fulvene-5 has been confirmed to be a potential NOX4
inhibitor. In hemangioma, fulvene-5 impairs NOX4 activity
and inhibits hemangioma growth in vivo (Bhandarkar et al.,
2009). Fulvene-5 could revert adaptive responses of CRC cells
from pro-survival to radio-sensitization (Murley et al., 2018). As a
pan NOX inhibitor, DPI inhibits phosphorylation of STAT3 and
STAT5, and drives PARP1 cleavage in JAK2V617F-positive cells
(Lima et al., 2021). DPI can also eliminate ROS production to
inhibit tumor progression in ovarian, prostate and lung cancer
(Xia et al., 2007; Ma et al., 2021). Even though NOX4 inhibitors
have been evaluated in multiple cancer types for its anti-tumor
activity in vitro and vivo, it is still required to explore deeper to
identify the cancer types that can be effectively treated with
NOX4 inhibitors. Additionally, clinical trials should be
accelerated to evaluate the therapeutic effects of more novel
NOX4 inhibitors in different cancer types. Besides, it is

necessary to exploit potential biomarkers that sensitize tumor
cells for NOX4 blockade. Given the role of NOX4 in ROS
production, combination therapies with ROS scavenger should
be further explored.

CONCLUSION

Precious studies have clearly introduced NOX4 as a key regulator of
cancer occurrence and development in multiple cancer models.
Multiple underlying mechanisms by which NOX4-induced ROS
production have been elucidated. NOX4-induced ROS production
could activate various oncogenic signaling pathway, rewiremetabolic
phenotype of tumors and reprogram the tumor stroma. Tumor
microenvironment is a complex and dynamic network, which
contains a heterogeneous composition of immune cells,
endothelial cells, and fibroblasts, etc. Worth noticing, NOX4 is a
key interface to tumor-stromal cell interactions. For instance, NOX4
inhibitor could restrain fibroblast activation resulting from
stimulation of surrounding tumor cells, indicating the value of
NOX4 blockade as a stromal-targeted strategies. Currently, it is
well-recognized that tumor cells co-opt specific immune checkpoints
to regulate resistance to immunotherapy (Pardoll, 2012). Specifically,
αPD-1/PD-L1 immune-checkpoint immunotherapy have displayed
enormous potential in a wide variety of cancer types (Ai et al., 2020).
Thus, exploring underlyingly molecular mechanisms of resistance to
immunotherapy is critical for developing effective anti-tumor
strategies. NOX4 blockade has shown its potential for enhancing
the efficacy of immunotherapy, elucidating the therapeutic potential
of NOX4 inhibitor in combination with immunotherapy (Ford et al.,
2020). Taken together, NOX4, involved in a variety of biological
process in cancers, has promising prospective awaiting for further
exploration.
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