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A B S T R A C T   

The COVID-19 pandemic caused by SARS-CoV-2 has created an unprecedented global health emergency. As of 
July 2021, only three antiviral therapies have been approved by the FDA for treating infected patients, high-
lighting the urgent need for more antiviral drugs. The SARS-CoV-2 3CL protease (3CLpro) is deemed an attractive 
drug target due to its essential role in viral polyprotein processing and pathogenesis. Indeed, a number of 
peptidomimetic 3CLpro inhibitors armed with electrophilic warheads have been reported by various research 
groups that can potentially be developed for treating COVID-19. However, it is currently impossible to compare 
their relative potencies due to the different assays employed. To solve this, we conducted a head-to-head 
comparison of fifteen reported peptidomimetic inhibitors in a standard FRET-based SARS-CoV-2 3CLpro inhi-
bition assay to compare and identify potent inhibitors for development. Inhibitor design and the suitability of 
various warheads are also discussed.   

In December 2019, a spate of pneumonia clusters were reported by a 
number of healthcare facilities in Wuhan, Hubei province, China, with 
symptoms such as a sore throat, dry cough, fever, headache, fatigue and 
breathing.1,2 Genome sequencing revealed that the disease was caused 
by a coronavirus with 80% nucleotide sequence identity to the severe 
acute respiratory syndrome coronavirus (SARS-CoV), the pathogen 
responsible for the 2002–2004 pandemic which originated from Foshan, 
Guangdong province, China.3–7 This novel coronavirus was named ‘se-
vere acute respiratory syndrome coronavirus 2′ (SARS-CoV-2) by the 
International Committee on Taxonomy of Viruses8 and the disease was 
named ‘coronavirus disease 2019′ (COVID-19) by the World Health 
Organization (WHO) in 2020. SARS-CoV-2 has since spread globally, 
infecting more than 182 million people worldwide and killing more than 
3.9 million as of 3 July 2021.9 Although a number of vaccines have been 
granted authorization, only three antiviral therapies (Remdesivir, 
Casirivimab + Imdevimab and Sotrovimab) have so far been approved 
by the United States Food and Drug Administration (FDA) for treating 
infected patients.10–12 On 20 November 2020, the WHO recommended 
against the use of Remdesivir for hospitalized SARS-CoV-2 patients citing 
the lack of evidence that it improves survival and other outcomes,13 

highlighting the urgent need for more effective antiviral drugs. 
The SARS-CoV-2 3C-like protease (3CLpro; also known as main 

protease or Mpro) is deemed an attractive drug target due to its 
involvement in cleaving the viral polyprotein at a minimum 11 sites to 
form essential viral proteins required for virus replication and patho-
genesis.14–17 In addition, it has no reported human homologues, hence 
reducing the risk of off-target side-effects by 3CLpro inhibitors.17 This 
cysteine protease recognizes and binds Leu-Gln, Phe-Gln and Val-Gln 
peptide sequences and cleaves the peptide bond at the C-terminus of 
Gln.16–18 Hence, such peptides designed with C-terminal electrophilic 
warheads have been shown to inhibit CoV 3CLpro (Fig. 1). Examples of 
electrophilic warheads include aldehydes,19–21 ethyl propenoate,19 

hydroxymethylketone,22 hydroxymethyl sulfonic acid,16,23 ketoa-
mides,16,24,25 and ketobenzothiazoles.26,27 This peptide-warhead strat-
egy has led to the approval of Boceprevir and Telaprevir in 2011 (Fig. 1), 
antiviral drugs that target the hepatitis C virus (HCV) NS3 protease and 
used for treating HCV infections,28 suggesting the same strategy can be 
applied for SARS-CoV-2 antiviral drugs. 

Although no peptidomimetic inhibitors have so far been approved 
for treating SARS-CoV-2 infections, they have been reported by various 
research groups (see Table 1 and references cited therein). Intriguingly, 
HCV NS3 protease inhibitors Boceprevir and Telaprevir were also re-
ported to inhibit SARS-CoV-2 3CLpro, suggesting that they can be 
repurposed for treating COVID-19.16,25,29 
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Unfortunately, it is currently impossible to compare their relative 
inhibitory potencies due to the different experimental protocols and 
protease constructs used by the various research groups. To solve this, 
we conducted a head-to-head comparison of fifteen reported coronavi-
rus 3CLpro peptidomimetic inhibitors using a fluorescence resonance 
energy transfer (FRET)-based CoV-2 3CLpro inhibition assay. IC50s were 
then compared to identify potent inhibitors that have the potential for 
further development as antiviral drugs. In addition, inhibitor design and 
the suitability of various electrophilic warheads will also be discussed. 

Test compounds 2i, 3, 11a, 11b, 17, 25c, GC-373 and TG-0205221 
were synthesized based on reported procedures cited in Table 1 and 
their spectral data are found in the supplemental file. Boceprevir was 
purchased from Selleckchem (USA). Calpeptin, MG-115 and MG-132 
were purchased from Santa Cruz Biotechnology (USA). GC-376 and 
Telaprevir were purchased from BOC Sciences (China). PF-0835231 was 
custom-synthesized by WuXi AppTec (China). 

SARS-CoV-2 3CLpro expression and purification is based on a pub-
lished procedure16 and our modified protocol is found in the supple-
mentary file. A highly sensitive FRET based protease assay was 
developed to identify inhibitors of 3CL proteases based on a published 
protocol.30 The peptide substrate (Dabcyl)KTSAVLQSGFRKM(Glu) 
(EDANS) was synthesized by Genscript (USA). The test compounds were 

Nomenclature 

3CLpro 3C-like protease 
BLAST Basic Local Alignment Search Tool 
CoV coronavirus 
COVID-19 coronavirus disease 2019 
FDA Food and Drug Administration 
FRET fluorescence resonance energy transfer 
HCV hepatitis C virus 
HPLC high performance liquid chromatography 
IC50 half-maximal inhibitory concentration 
Mpro main protease 
NS3 non-structural protein 3 
RFU relative fluorescence units 
SARS severe acute respiratory syndrome 
WHO World Health Organization  

Fig. 1. Reported peptidomimetic coronavirus 3CLpro inhibitors.  
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3-fold serially diluted in 100% DMSO to 15 concentrations, starting at 
3.33 mM. 1.5 μl of the serially diluted compounds were transferred to a 
black 384 well assay plate (Cat. 781900, Greiner). 23.5 μl of 2.13X 
concentration of SARS-CoV-2 Chis-3CLpro enzyme prepared in assay 
buffer was added to the compounds and incubated for 30 mins at 25 ◦C. 
25 μl of 2X concentration of peptide substrate was added to the assay 
plate and incubated at 37 ◦C for 1.5 h. The final assay contained 12.5 nM 
of enzyme, 6 μM substrate and 3% DMSO in assay buffer containing 50 
mM HEPES at pH 7.5, 100 mM NaCl, and 0.01% Triton X-100 and 1 mM 
DTT. The starting test compound concentration started at 100 μM. The 
FRET signal was measured using an excitation wavelength of 340 nm 
(UV[TRF] 340/60 nm, Barcode 101), emission wavelength of 490 nm 
(DSPPsion 486/10 filter, Barcode 220) and Lance/DELFIA D400 single 
mirror (Barcode 412) on Envision plate reader (2104 EnVision Multi-
label Plate Readers, Perkin Elmer). The dose–response curves were fitted 
with a variable slope using GraphPad Prism software (GraphPad, USA) 
to determine a compound’s IC50. Experiments were conducted in du-
plicates and IC50s were determined from two independent experiments. 

The IC50s of the test compounds, along with their reported inhibitory 
data and literature references, are summarised in Table 1. 

The most potent compound in our test panel was identified to be 
Pfizer’s PF-083523122 (Table 1) with a reported IC50 close to our 
experimental results (8 vs. 4 nM respectively), making it a highly 
promising drug candidate. Indeed, PF-0835231 is currently being 
developed as an intravenous phosphate prodrug (PF-07304814), 
entering phase 1 clinic trials in September 2020 to evaluate safety and 
pharmacokinetics in hospitalized COVID-19 patients (clinical trials 

identifier: NCT04535167). X-ray diffraction studies revealed PF- 
07304814 binds tightly to the SARS-CoV-2 3CLpro active site 
involving 8 H-bonding interactions and a covalent bond to 3CLpro’s 
Cys145 (Fig. 2; PDB code 6XHM).22 

The second most potent compound is Taigen’s peptide aldehyde TG- 
0205221 (IC50 9 nM; Table 1) originally developed for SARS-CoV-1 in 
2006.19 This compound was included in our test panel as SARS-CoV-1 
3CLpro shares 96% amino acid sequence identity to SARS-CoV-2 
3CLpro using a BLAST search32 (procedure described in the supple-
mentary file), suggesting SARS-CoV-1 3CLpro inhibitors will also inhibit 
SARS-CoV-2 3CLpro. TG-0205221 was claimed to possess ‘favourable 
pharmacokinetic profile in rodents’ although details were not 
revealed.19 To our best knowledge, TG-0205221 has never entered any 
clinical trials. We believe that the aldehyde moiety may have created 
issues during preclinical development as they are known to be highly 
reactive towards endogenous biological nucleophiles, making them 
cytotoxic and are also metabolically unstable due to their susceptibility 
to oxidation and reduction by liver enzymes.33,34 

The next two most potent inhibitors are peptide aldehydes 11a and 
11b, exhibiting IC50s of 14 and 23 nM respectively (Table 1). Like PF- 
0835231, both contain a 2-carboxyindole moiety whose NH and CO 
were shown to be H-bonded to 3CLpro’s Glu166 backbone CO and NH 
using X-ray crystallography (PDB codes 6LZE and 6M0K).20 However, 
like TG-0205221, we believe the aldehyde moieties will pose pharma-
cological liabilities stated vide supra. One possible solution is to substi-
tute the aldehyde with a hydroxymethylketone warhead seen in PF- 
0835231 before they can be reconsidered for drug development. 

The fifth and sixth most potent compounds, GC-376 and GC-373, are 
peptides with a hydroxymethyl sulfonic acid and aldehyde warhead 
respectively (IC50s 34 and 42 nM respectively; Table 1). GC-376′s 
hydroxymethyl sulfonic acid is a prodrug moiety that transforms into an 
aldehyde warhead in physiological conditions to react and form a co-
valent bond with 3CLpro’s active site Cys145.21 However, we believe 
this will still result in metabolic liabilities for GC-376 once the reactive 
aldehyde is formed in the bloodstream as discussed vide supra. Similarly, 
we predict the aldehyde warhead of GC-373 will pose metabolic prob-
lems as stated earlier. 

GSK’s peptide ketoamide 17 is the seventh most potent inhibitor in 

Table 1 
SARS-CoV-2 3CLpro inhibitory activities (μM) of various reported inhibitors. 
Numbers in parentheses represent relative potencies based on in-house IC50 
values, e.g. (1) = most potent.  

Compound In-house 
IC50 (μM) 

Literature IC50 

or Ki (μM) 
CoV-1 or CoV- 
2 3CLpro1 

Literature 
reference 

2i (8) 0.094 
± 0.006 

1.7 (IC50) CoV-1 26 

3 (9) 0.286 
± 0.014 

0.66 (Ki) CoV-1 19 

11a (3) 0.014 
± 0.001 

0.053 ± 0.005 
(IC50) 

CoV-2 20   

0.031 ± 0.003 
(IC50) 

CoV-2 23 

11b (4) 0.023 
± 0.003 

0.040 ± 0.002 
(IC50) 

CoV-2 20 

17 (7) 0.065 
± 0.007 

0.007 (IC50) CoV-1 24 

25c >10 21.0 (IC50) CoV-1 27 
Boceprevir >10 4.13 ± 0.61 

(IC50) 
CoV-2 16   

5.40 ± 1.53 
(IC50) 

CoV-2 29 

Calpeptin >10 10.69 ± 0.28 
(IC50) 

CoV-2 16   

4.81 ± 0.18 
(IC50) 

CoV-2 31 

GC-373 (6) 0.042 
± 0.001 

0.40 ± 0.05 
(IC50) 

CoV-2 21 

GC-376 (5) 0.034 
± 0.001 

0.030 ± 0.008 
(IC50) 

CoV-2 16   

0.031 ± 0.004 
(IC50) 

CoV-2 23 

MG-115 >10 3.14 ± 0.97 
(IC50) 

CoV-2 16 

MG-132 >10 3.90 ± 1.01 
(IC50) 

CoV-2 16 

PF- 
0835231 

(1) 0.008 
± 0.001 

0.004 ± 0.0003 
(IC50) 

CoV-1 22 

Telaprevir >10 11.47 (IC50) CoV-2 25 
TG- 

0205221 
(2) 0.009 
± 0.001 

0.053 (Ki) CoV-1 19 

1Type of protease used in the assay as reported in the literature. 

Fig. 2. Two-dimensional depiction of PF-07304814 (blue) covalently bound to 
Cys145 (red) in the SARS-CoV-2 3CLpro active site based on co-crystal structure 
6XHM.pdb. The covalent bond formed between Cys145 and PF-07304814 is 
depicted as a bold red line. Hash lines represent hydrogen bonds. 
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our test panel with an IC50 of 65 nM (Table 1). Designed with a ketoa-
mide warhead, we believe it possesses a high potential for further drug 
development as ketoamides have been shown to be effective warheads in 
the approved oral HCV NS3 protease inhibitors Boceprevir and Telap-
revir.28 Based on this, we believe 17 can potentially be developed into an 
oral anti-CoV-2 drug. Oral drugs are favoured over intravenously- 
administered ones as they do not cause pain during administration, do 
not require trained personnel to administer and thus allowing admin-
istration in home settings. These factors serve to significantly improve 
patient dosing compliance and we recommend it for further develop-
ment to treat COVID-19. 

Compound 2i with a ketobenzothiazole warhead is the eighth most 
potent inhibitor with an IC50 of 94 nM (Table 1), suggesting that it has 
the potential for further drug development. Peptide ketobenzothiazoles 
were first reported as Rhinovirus 3C protease inhibitors by Agouron 
Pharmaceuticals in 2000.35 To our best knowledge, no peptide keto-
benzothiazole inhibitors have entered the clinic so far. A report that the 
benzothiazole N and S are both prone to metabolic oxidation36 suggests 
that it may become a metabolic liability although there are at least ten 
non-peptidic drugs containing the benzothiazole moiety available in the 
market.37 Hence, we believe compound 2i deserves further investigation 
with careful scrutiny on its pharmacokinetic and pharmacodynamic 
profile. 

Compound 3 (Fig. 1) is the ninth most potent inhibitor and is the sole 
compound with an ethyl propenoate warhead in our test panel. Peptides 
with this particular warhead were used as Rhinovirus 3C protease in-
hibitors by Agouron Pharmaceuticals in 1998.38 Their most advanced 
compound, Rupintrivir, reached phase 2 clinical trials in 1999.39 

Although Rupintrivir was reported to be inactive against SARS-CoV-1 
and SARS-CoV-2 3CLpro,16,19 its analogue compound 3 was reported 
to bind SARS-CoV-1 3CLpro with a Ki of 660 nM although its IC50 was 
not reported.19 In our SARS-CoV-2 3CLpro inhibition assay, compound 3 
exhibited an IC50 of 286 nM (Table 1). In our view, it would be pre-
mature to consider it for drug development due to its moderate inhibi-
tory potency. More structure–activity relationship studies would have to 
be conducted to enhance its potency before reconsideration. 

The remaining compounds: Boceprevir, Calpeptin, MG-115, MG-132 
and Telaprevir were found to be weak inhibitors with IC50s above 10 μM 
(Table 1), making them unsuitable for further development. It is note-
worthy that they lack the P1 cyclic glutamine analogue found in most of 
our test compounds, suggesting that this is a critical moiety for SARS- 
CoV-2 3CLpro recognition. Indeed, X-ray co-crystal structures of PF- 
07304814, 11a and 11b bound to SARS-CoV-2 3CLpro (PDB codes 
6XHM, 6LZE, 6M0K)20,22 revealed that the P1 lactam’s NH and CO are 
involved in H-bonding to the 3CLpro’s Phe140 backbone CO and His163 
side-chain imidazole respectively (Fig. 2). This suggests that when 
designing new peptidomimetic 3CLpro inhibitors, an amide moiety must 
be present in the P1 residue. 

In conclusion, a head-to-head IC50 comparison of fifteen published 
coronavirus 3CLpro peptidomimetic inhibitors was conducted using a 
standard SARS-CoV-2 3CLpro inhibition assay. The most potent com-
pound was identified to be PF-07304814 (IC50 8 nM), with a hydrox-
ymethylketone warhead and recently entered COVID-19 clinical trials as 
a phosphate prodrug. Peptide aldehydes, well-known for being highly 
potent protease inhibitors, populated the second to sixth spots in term of 
potencies (IC50s 9–42 nM). However, as aldehyde warheads can poten-
tially pose toxicity and metabolic issues, we suggest that they should 
first be converted to hydroxymethylketone or ketoamide warheads 
before being re-evaluated. GSK’s peptide ketoamide 17 was the seventh 
most potent inhibitor (IC50 65 nM) and we believe it has the potential to 
be further developed as an oral antiviral drug based on the successes of 
Boceprevir and Telaprevir. Peptides with ketobenzothiazole and ethyl 
propenoate warheads (compounds 2i and 3) were relatively less potent 
(IC50s 94 and 286 nM respectively) and we opine they should not be 
used in their current forms. Lastly, we note that test compounds without 
a P1 amide moiety exhibited IC50s of >10 μM, making them unsuitable 

for further drug development. This strongly suggests that a P1 amide 
moiety is critical to the design of future SARS-CoV-2 3CLpro peptido-
mimetic inhibitors. 
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