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Abstract: We present a Riemannian geometry theory to examine the systematically warped geometry
of perceived visual space attributable to the size–distance relationship of retinal images associated
with the optics of the human eye. Starting with the notion of a vector field of retinal image features
over cortical hypercolumns endowed with a metric compatible with that size–distance relationship,
we use Riemannian geometry to construct a place-encoded theory of spatial representation within
the human visual system. The theory draws on the concepts of geodesic spray fields, covariant
derivatives, geodesics, Christoffel symbols, curvature tensors, vector bundles and fibre bundles to
produce a neurally-feasible geometric theory of visuospatial memory. The characteristics of perceived
3D visual space are examined by means of a series of simulations around the egocentre. Perceptions
of size and shape are elucidated by the geometry as are the removal of occlusions and the generation
of 3D images of objects. Predictions of the theory are compared with experimental observations
in the literature. We hold that the variety of reported geometries is accounted for by cognitive
perturbations of the invariant physically-determined geometry derived here. When combined with
previous description of the Riemannian geometry of human movement this work promises to account
for the non-linear dynamical invertible visual-proprioceptive maps and selection of task-compatible
movement synergies required for the planning and execution of visuomotor tasks.

Keywords: visual space; Riemannian geometry; binocular vision; stereopsis; size perception; shape
perception; place encoding; occlusions; computational model

1. Introduction

From the time of Euclid (300 BC) onwards builders and surveyors and the like have found the
three-dimensional (3D) world in which they function to be adequately described by the theorems of
Euclidean geometry. The shortest path between two points is a straight line, parallel lines never meet,
the square on the hypotenuse equals the sum of squares on the other two sides, and so forth. When we
look at the world about us we see a 3D world populated with 3D objects of various shapes and sizes.
However, it is easy to show that what we see is a distorted or warped version of the Euclidean world
that is actually out there. Hold the left and right index fingers close together about 10 cm in front of
the eyes. They appear to be the same size. Fix the gaze on the right finger and move it out to arm’s
length. The right finger now looks smaller than the left while, with the gaze fixed on the right finger,
the left finger looks blurred and double. If the left finger is moved from side to side, neither of the
double images occludes the smaller right finger; both images of the left finger appear transparent.
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The same phenomenon occurs regardless of which direction along the line of gaze the right finger is
moved. Clearly, our binocular perception of 3D visual space is a distorted or warped version of the 3D
Euclidean space actually out there.

Van Lier [1], in his thesis on visual perception in golf putting, reviewed many studies indicating
that the perceived visual space is a warped version of the actual world. He likened this to the distorted
image of the world reflected in a sphere as depicted in M C Escher’s 1935 lithograph “hand with
reflecting sphere”. In Escher’s warped reflection straight lines have become curved, parallel lines are no
longer parallel, and lengths and directions are altered. The exact nature of this warping can be defined
by Riemannian geometry where the constant curvature of the sphere can be computed from the known
Riemannian metric on a sphere. We mention Escher’s reflecting sphere simply to illustrate how the
image of the 3D Euclidean world can be warped by the curvature of visual space. We are not claiming
that the warped image of the Euclidean environment seen by humans is the same as a reflection in
a sphere; indeed it is unlikely to be so. Nevertheless it provides a fitting analogy to introduce the
Riemannian concept.

Luneburg [2] appears to have been first to argue that the geometry of the perceived visual space
is best described as Riemannian with constant negative curvature. He showed that the geometry
of any manifold can be derived from its metric which suggested that the problem is “to establish a
metric for the manifold of visual sensation”. This is the approach we adopt here. We contend that the
appropriate metric is that defined by the size–distance relationship introduced by the geometrical optics
of the eye, as will be detailed later in this section. It is due to this relationship that objects are perceived
to change in size without changing their infinitesimal shape as they recede along the line of gaze.
A small ball, for example, appears to shrink in size as it recedes but it still looks like a ball. It does
not appear to distort into an ellipsoid or a cube or any other shape. This gives an important clue to
the geometry of 3D perceived visual space. For objects to appear to shrink in size without changing
their infinitesimal shape as they recede along the line of gaze, the 3D perceived visual space has to
shrink equally in all three dimensions as a function of Euclidean distance along the line of gaze. If it
did not behave in this way objects would appear to shrink in size unequally in their perceived width,
height and depth dimensions and, consequently, not only their size but also their infinitesimal shape
would appear to change. (We use the term “infinitesimal shape” because, as explained in Section 4.1,
differential shrinking in all three dimensions as a function of Euclidean distance causes a contraction in
the perceived depth direction and so distorts the perceived shape of macroscopic objects in the depth
direction as described by Gilinsky [3].)

The perceived change in size of objects causes profound distortion. Perceived depths, lengths,
areas, volumes, angles, velocities and accelerations all are transformed from their true values. It is
those transformations that are encapsulated in the metric from which we can define the warping of
perceived visual space. The terms “perceived visual space” and “perceived visual manifold” occur
throughout this paper and, since in Riemannian geometry a manifold is simply a special type of
topological space, we apply these terms synonymously. Moreover, the use of “perceived” should be
interpreted philosophically from the point of view of indirect realism as opposed to direct realism,
something we touch on in Section 8. In other words, in our conceptualization, perceived visual space
and the perceived visual manifold are expressions of the neural processing and mapping that form the
physical representation of visual perception in the brain.

Since at least the eighteenth century, philosophers, artists and scientists have theorized on the
nature of perceived visual space and various geometries have been proposed [4,5]. Beyond the simple
demonstration above there has long been a wealth of formal experimental evidence to demonstrate that
what we perceive is a warped transformation of physical space [2,3,6–14]. In some cases a Riemannian
model has seemed appropriate but, as we shall see from recent considerations, the mathematics of
the distorted transformation is currently thought to depend on the experiment. Prominent in the field
has been the work of Koenderink and colleagues, who were first to make direct measurements of
the curvature of the horizontal plane in perceived visual space using the novel method of exocentric
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pointing [15–17]. Results showed large errors in the direction of pointing that varied systematically
from veridical, depending on the exocentric locations of the pointer and the target. The curvature
of the horizontal plane derived from these data revealed that the horizontal plane in perceived
visual space is positively curved in the near zone and negatively curved in the far zone. Using
alternative tasks requiring judgements of parallelity [18] and collinearity [19] this same group further
measured the warping of the horizontal plane in perceived visual space. Results from the collinearity
experiment were similar to those from the previous exocentric pointing experiment but, compared
with the parallelity results, the deviations from veridical had a different pattern of variation and were
much smaller.

Using the parallelity data, Cuijpers et al. [20] derived the Riemannian metric and the Christoffel
symbols for the perceived horizontal plane. They found that the Riemannian metric for the horizontal
plane was conformal, that is, the angles between vectors defined by the metric are equal to the angles
defined by a Euclidean metric. They computed the components Ri

jkl of the curvature tensor and
found them to be zero (i.e., flat) for every point in the horizontal plane. This was not consistent with
their finding of both positive and negative curvature in the earlier pointing experiment. Meanwhile,
despite the similarity of the experimental setups, these authors had concluded that their collinearity
results could not be described by the same Riemannian geometry that applied to their parallelity
results [19]. The implication was that the geometry of the perceived visual space is task-dependent.
From the continued work of this group [21–31] along with that of other researchers, it is now apparent
that experimental measures of the geometry of perceived visual space are not just task-dependent.
They vary according to the many contextual factors that affect the spatial judgements that provide
those measures [4,5,32]. Along with the nature of the task these can include what is contained in
the visual stimuli, the availability of external reference frames, the setting (indoors vs. outdoors),
cue conditions, judgement methods, instructions, observer variables such as age, and the presence
of illusions.

The inconsistency of results in the many attempts to measure perceptual visual space has led
some to question or even abandon the concept of such a space [19,33]. This is unnecessary. Wagner and
Gambino [4] draw attention to researchers who argue that there really is only one visual space in our
perceptual experience but that it has a cognitive overlay in which observers supplement perception
with their knowledge of how distance affects size [11,34–39]. We agree. However, Wagner [32] argues
that separation into sensory and cognitive components is meaningless unless the sensory component is
reportable under some experimental condition. While there is, unfortunately, no unambiguous way to
determine such a condition, mathematical models and simulations of sensory processes may provide
a possible way around the dilemma. Rather than rejecting the existence of a geometrically invariant
perceived visual space we suggest that the various measured geometries are accounted for by top-down
cognitive mechanisms perturbing the underlying invariant geometry derivable mathematically from
the size–distance relationship between the size of the image on the retina and the Euclidean distance
between the nodal point of the eye and the object in the environment. This relationship is attributable
to the anatomy of the human eye functioning as an optical system. For simplicity in what follows
we will refer to this size–distance relationship as being attributable to the geometric optics of the eye.
We now consider what determines that geometry.

The human visual system has evolved to take advantage of a frontal-looking, high-acuity central
(foveal), low-acuity peripheral, binocular anatomy but at the same time it has had to cope with the
inevitable size–distance relationship of retinal images that the geometric optics of such eyes impose.
To allow survival in a changing and uncertain 3D Euclidean environment it would seem important for
the visual system to have evolved so that the perceived 3D visual space matches as closely as possible
the Euclidean structure of the actual 3D world. We contend that in order to achieve this, the visual
system has to model the ever-present warping introduced by the geometrical optics of the eye and that
this warping can be described by an invariant Riemannian geometry. Accordingly, this paper focuses
on that geometry and on the way it can be incorporated into a realistic neural substrate.
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A simple pinhole camera model of the human eye [40,41] shows that the size of the image on the
retina of an object in the environment changes in inverse proportion to the Euclidean distance between
the pinhole and the object in the environment. Modern schematic models of the eye are far more
complex, with multiple refracting surfaces needed to emulate a full range of optical characteristics.
However, as set out by Katz and Kruger [42], object–image relationships can be determined by simple
calculations using the optics of the reduced human eye due to Listing. They state:

[Listing] reduced the eye model to a single refracting surface, the vertex of which corresponds
to the principal plane and the nodal point of which lies at the centre of curvature.
The justification for this model is that the two principal points that lie midway in the
anterior chamber are separated only by a fraction of a millimetre and hardly shift during
accommodation. Similarly, the two nodal points lie equally close together and remain fixed
near the posterior surface of the lens. In the reduced model the two principal points and
the two nodal points are combined into a single principal point and a single nodal point.
Retinal image sizes may be determined very easily because the nodal point is at the centre of
curvature of this single refractory surface. A ray from the tip of an object directed toward
the nodal point will go straight to the retina without bending, therefore object and image
subtend the same angle. The retinal image size is found by multiplying the distance from the
nodal point to the retina (17.2 mm) by the angle in radians subtended by the object [42] (see
Figure 18).

Thus the geometry of the eye determines that the size of the retinal image varies in proportion to
the angle subtended by the object at the nodal point of the eye. Or stated equivalently, the geometry of
the eye determines that the size of the image changes in inverse proportion to the Euclidean distance
between the object and the nodal point of the eye. For the perceived sizes of objects in the perceived
3D visual space to change in inverse proportion to Euclidean distance along the line of gaze in the
outside world without changing their perceived infinitesimal shape, the perceived 3D visual space has
to shrink by equal amounts in all three dimensions in inverse proportion to the Euclidean distance.
From this assertion, the Riemannian metric for the 3D perceived visual space can be deduced, and from
the metric the geometry of the 3D perceived visual space can be computed and compared with the
geometry measured experimentally.

Our principal aim is to present a mathematical theory of the information processing required
within the human brain to account for the ability to form 3D images of the outside world as we move
about within that world. As such, the theory developed is about the computational processes and
not about the neural circuits that implement those computations. Nevertheless, the theory builds on
established knowledge of the visual cortex (Section 2) as well as on the existence of place maps that have
been shown to exist in hippocampal and parahippocampal regions of the brain [43–50]. Throughout
this paper we take it as given that the place and orientation of the head, measured with respect to
an external Cartesian reference frame (X,Y,Z), are encoded by neural activity in hippocampal and
parahippocampal regions of the brain and that this region acts as a portal into visuospatial memory.
We focus on the computational processes required within the brain to form a cognitive model of
the 3D visual world experienced when moving about within that world. In that sense, the resulting
Riemannian theory can be seen as an extension of the view-based theory of spatial representation in
human vision proposed by Glennerster and colleagues [51].

The theory is presented in a series of steps starting in the periphery and moving centrally as
described in Section 2 through Section 7. To provide a road map and to illustrate how the various
sections relate to each other, we provide here a brief overview.

Section 2: It is well known that images on the retinas are encoded into neural activity by
photoreceptors and transmitted via retinal ganglion cells and cells in the lateral geniculate nuclei
to cortical columns (hypercolumns) in the primary visual cortex. We define left and right retinal
hyperfields and hypercolumns and describe the retinotopic connections between them. We treat
hyperfields and hypercolumns as basic modules of image processing. We describe extraction of
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orthogonal features of images on corresponding left and right retinal hyperfields during each interval
of fixed gaze by minicolumns within each hypercolumn. We further describe how the coordinates of
image points in the 3D environment projecting on to left and right retinal hyperfields can be computed
stereoscopically and encoded within each hypercolumn.

Section 3: Here we describe a means of accumulating an overall image of the environment
seen from a fixed place. This depends on visual scanning of the environment via a sequence
of fixed gaze points. We argue that at the end of each interval of fixed gaze, before the gaze is
shifted and the information within the hypercolumns lost, the vectors of corresponding left and right
retinal hyperfield image features encoded within each hypercolumn are pasted into a visuospatial
gaze-based association memory network (G-memory) in association with their cyclopean coordinates.
The resulting gaze-based G-memory forms an internal representation of the perceived 3D outside
world with each ‘memory site’ accessed by the cyclopean coordinates of the corresponding image
point in the 3D outside world. The 3D G-space with image-point vectors stored in vector-spaces at
each image point in the G-space has the structure of a vector bundle in Riemannian (or affine) geometry.
We also contend in Section 3 that the nervous system can adaptively model the size–distance relationship
between the size of the 2D retinal image on the fovea and the Euclidean distance in the outside world
between the eye and the object. From this relationship the Riemannian metric g(r, θ, ϕ) describing
the perceived size of an object at each image point (r, θ, ϕ) in the environment can be deduced and
stored at the corresponding image point (r, θ, ϕ) in G-memory. The G-memory is then represented
geometrically as a 3D Riemannian manifold (G,g) with metric tensor field g. The geometry of the 3D
perceived visual manifold can be computed from the way the metric g(r, θ, ϕ) varies from image
point to image point in the manifold.

Section 4: Applying the metric deduced in Section 3, we use Riemannian geometry to quantify
the warped geometry of the 3D perceived visual space.

Section 5: By simulating families of geodesic trajectories we illustrate the warping of the perceived
visual space relative to the Euclidean world.

Section 6: Here we describe the computations involved in perceiving the size and shape of objects
in the environment. When viewing from a fixed place, occlusions restrict us to seeing only curved 2D
patches on the surfaces of 3D objects in the environment. The perceived 2D surfaces can be regarded
as 2D submanifolds with boundary embedded in the ambient 3D perceived visual manifold (G,g).
We show how the size and shape of the submanifolds can be computed using Riemannian geometry.
In particular, we compute the way the warped geometry of the 3D ambient perceived visual manifold
(G,g) causes the perceived size and shape of embedded surfaces to change as a function of position
and orientation of the object in the environment relative to the observer.

Section 7: This introduces the notion of place-encoded visual images represented geometrically
by a structure in Riemannian geometry known as a fibre bundle. We propose that the place of the head
in the environment, encoded by neural activity in the hippocampus, is represented geometrically
as a point p in a 3D base manifold P called the place map. Each point p in the base manifold P acts
as an accession code for a partition of visuospatial memory (i.e., a vector bundle)

(
Gp, g

)
. As the

person moves about in the local environment, the vectors of visual features acquired through visual
scanning at each place p are stored into the vector bundle

(
Gp, g

)
accessed by the point (place) p in

the base manifold P. Thus place-encoded images of the surfaces of objects as seen from different
places in the environment are accumulated over time in different vector bundle partitions

(
Gp, g

)
of

visuospatial memory. We show that adaptively tuned maps between each and every partition (vector
bundle)

(
Gp, g

)
of visuospatial memory, known in Riemannian geometry as vector-bundle morphisms,

can remove occlusions and generate a 3D cognitive model of the local environment as seen in the
correct perspective from any place in the environment.

Section 8: In this discussion section, material in the previous sections is pulled together and
compared with experimental findings and with other theories of visuospatial representation.

Section 9: This section points to areas for future research development.
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Riemannian geometry is concerned with curved spaces and the calculus of processes taking
place within those curved spaces. This, we claim, is the best computational approach for analysis of
visual processes within the curved geometry of 3D perceived visual space. A Riemannian geometry
approach will reveal novel aspects of visual processing and allow the theory of 3D visual perception
to be expressed in the language of modern mathematical physics. Our intention is to develop the
groundwork for a theory of visual information processing able to account for the non-linearities
and dynamics involved. The resulting theory will be integrated with our previous theory on the
Riemannian geometry of human movement [52] but in this paper we focus entirely on vision. We do not
attempt to justify in a rigorous fashion the theorems and propositions that we draw from Riemannian
geometry. For that we rely on several excellent texts on the subject and we direct readers to these
at the appropriate places. However, for those unfamiliar with the mathematics involved, we have
sought to provide intuitive descriptions of the geometrical concepts. We trust that these, together with
similar descriptions in our previous paper [52], can assist in making the power and the elegance of this
remarkable geometry accessible to an interdisciplinary readership.

2. Preliminaries

Constructing a Riemannian geometry theory of visuospatial representation requires us to build
bridges between well-established elements in the known science of the visual system and abstract
objects in the Riemannian geometry of curved spaces. These bridges can be taken as definitions that
link the real-world structure of the visual system with the abstract but deductively logical structure of
Riemannian geometry. Thus, the descriptions in this section are crafted in a form that facilitates the
application of Riemannian geometry to visual processing. While these bridges are clearly important,
we see them as preliminary and not the main focus of the geometrical theory developed in subsequent
sections. Thus we give only abbreviated description of these preliminaries, and rely on the reader to
refer as needed to texts such as Seeing. The Computational Approach to Biological Vision [40], Perceiving in
Depth [53–55], Sensation and Perception [56] and papers referenced therein.

Sections 2.1–2.7 outline proposals concerning binocular vision and the encoding of retinal
hyperfield images by the hypercolumns of V1. We define corresponding left and right retinal
hyperfields and the cortical hypercolumn to which they connect as the basic computational module
for extracting visual image features during an interval of fixed gaze. We propose that the parallel
processing of many such modules provides the structure of vector fields over a Riemannian manifold.
Then, in Sections 2.8–2.10, we address mechanisms of depth perception and the computation of
cyclopean coordinates that provide the Riemannian manifold upon which the vector fields of image
features sit.

2.1. Retinal Coordinates

The straight-line ray passing through the nodal point of the eye and impinging on the centre of
the fovea is called the visual axis of the eye. The horizontal angle θ̂ and the vertical angle ϕ̂ measured
relative to the visual axis of all other straight-line rays passing through the nodal point of the eye and
impinging on the retina define a set of coordinates (θ̂,ϕ̂) on the retina. The angles (θ̂,ϕ̂) can be related
to the homogeneous coordinates of the real projective plane RP2 defined in Riemannian geometry [57]
but we do not explore this further here. For simplicity, we refer to the open subset of the projective
plane corresponding to all the straight-line rays passing through the nodal point and impinging on the
retina as the retinal plane and we use the angles (θ̂,ϕ̂) as a coordinate system for points on this retinal
plane. We use the ‘hat’ notation to distinguish the retinal coordinates (θ̂,ϕ̂) from the coordinates (θ, ϕ)

used later to represent direction of gaze. We define corresponding points in the left and right retinas
to be points having the same retinal coordinates (θ̂, ϕ̂). Retinal coordinates are important because,
via projective geometry, they provide the only link between events in the Euclidean outside world
with neural encoding of those visual events within the nervous system.
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An advantage of using angles (θ̂, ϕ̂) as coordinates for each retina is that, as mentioned in
Section 1, the size of the image on the retina of an object in the environment is proportional to the angle
subtended by the object at the nodal point of the eye. We claim that the perceived size of an object in the
3D environment is also proportional to the angle subtended by the object at the nodal point of the eye.
Later we will show that this is a property of the Riemannian geometry of the perceived visual space.

2.2. Hyperfields

A hyperfield is a collection of overlapping ganglion cell receptive fields in the retina. We assume
that the number of ganglion cells making up a hyperfield varies from small (≈25) in the fovea to large
(300–500) in the periphery. For descriptive simplicity we assume that a hyperfield typically involves
about 100–200 overlapping ganglion cell receptive fields. The instantaneous frequency of ganglion-cell
action potentials is modulated by the Laplacian ∆Φ, sometimes called edge detection, of the intensity
Φ(θ̂, ϕ̂) of light across the ganglion cell receptive field [58]. The response of a hyperfield to the spatial
pattern of light Φ(θ̂,ϕ̂) falling on the hyperfield is encoded by the temporospatial pattern of action
potentials of the collection of ganglion cells whose overlapping ganglion cell receptive fields make up
the hyperfield.

2.3. Retinotopic Connections between Hyperfields and Hypercolumns

Ganglion cells from corresponding hyperfields in the left and right retinas (i.e., hyperfields centred
on the same retinal coordinates (θ̂, ϕ̂) in the left and right retinas) project in a retinotopic fashion via
the lateral geniculate nucleus (LGN) to local clusters of cortical columns in V1. These local clusters of
about 100–200 minicolumns can be defined as hypercolumns [40]. Each pair of nearby hyperfields in
each retina is mapped to nearby hypercolumns in V1. Importantly, corresponding hyperfields in the
left and right retinas map to the same hypercolumn in V1. Stimulation of a left-eye retinal hyperfield
activates a subset of minicolumns within a hypercolumn while stimulation of the corresponding
right-eye hyperfield activates another overlapping subset of minicolumns in the same hypercolumn.
Thus we can define left ocular dominance minicolumns, right ocular dominance minicolumns, and binocular
minicolumns within a hypercolumn.

2.4. Hypercolumns

We regard each hypercolumn in V1 together with the corresponding left and right retinal
hyperfields connecting to it as a functional visual processing module. The response of any single
cortical cell is too ambiguous for it to serve as a reliable feature detector on its own [40]. Instead,
we see minicolumns within a hypercolumn as the feature detectors for the different spatial patterns of
light I(θ̂, ϕ̂) falling during a fixed-gaze interval on corresponding left and right retinal hyperfields that
project retinotopically to the hypercolumn. This is consistent with long-established work concerning
(i) the functional organization of the neocortex into a columnar arrangement [59–62]; (ii) the reciprocal
columnar organization between the thalamus and the cerebral cortex [63]; (iii) the existence of
networks of interconnected columns within widely separated regions of the cortex [64]; and (iv)
the computational modelling of cortical columns [65–67]. Microelectrode recordings as well as other
methods for visualizing the activity of cortical columns in V1 show that cells within a cortical column
respond to the same feature of the light pattern on the retina. This has led to terms such as orientation
columns, ocular dominance columns, binocular columns and color blobs.

2.5. Visual Features Extracted by Cortical Columns

The synaptic connections to cortical columns in V1 are well known to be plastic. They tune
slowly over several weeks [68–70]. The features extracted by minicolumns in V1 are, therefore,
stochastic features averaged over the tens of thousands of different patterns of light falling on the
retinal hyperfields over the several weeks needed to tune the synaptic weights.
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The stochastic properties of natural scenes averaged over long time windows possess statistical
regularities at multiple scales [71,72]. Amplitude spectra averaged over tens of thousands of natural
images are maximal at low spatial frequencies and decrease linearly with increasing frequency.
This reveals the presence of correlations between neighbouring points in the images that persist
in the averaged image [71]. Recent studies have revealed that micro movements of the head and eyes
during each interval of fixed gaze modify the averaged spectra. The resulting averaged amplitude
spectra are flat up to a spatial frequency of about 10 cycles per degree, after which they decrease
rapidly with increasing spatial frequency [72–74].

While this information is valuable, it depends on linear analysis where amplitude spectra are
derived from second-order statistics without taking higher-order moments into account. Yet the
probability distribution of natural scenes is known to be non-Gaussian, with the stochastic structure
revealing the existence of persistent higher-order moments [75,76]. The visual system, therefore, has to
deal with these non-linearities. It is established [71,75,77,78] that the behaviour of simple cells in V1 can
be described by Gabor functions [79] whose responses extend in both spatial and temporal frequency.
Indeed, Olshausen and Field [77] have shown that maximizing the non-Gaussianity (sparseness) of
image components is enough to explain the emergence of Gabor-like filters resembling the receptive
fields of simple cells in V1. Likewise, Hyvärinen and Hoyer [80,81] have shown that the technique of
independent components analysis can explain the emergence of invariant features characteristic of both
simple and complex cells in V1. In reviewing the statistics of natural images and the processes by which
they might efficiently be neurally encoded, Simoncelli and Olshausen [76] discussed independent
components analysis as equivalent to a two-stage process involving first a linear principal components
decomposition followed by a second rotation to take non-Gaussianity (non-linearity) into account.
Our description of non-linear singular value decomposition as a two-stage process for visual feature
extraction (Section 2.7, Appendix A) parallels the two-stage process described by Simoncelli and
Olshausen [76].

2.6. Gaze and Focus Control

High acuity vision derives from the foveal region of the retina where the density of photoreceptors
is greatest (≈160,000 cones per sq mm). The central region of the foveal pit is only about 100 microns
across and subtends an angle of only about 0.3 degrees [40] while the rod-free fovea covers only
1.7 degrees of the visual field leaving 99.9% in the periphery [82]. Consequently, with the gaze fixed,
it is only possible to obtain a high resolution image for a relatively small patch centred about the
gaze point on the surface of an object in the environment. To build a high resolution image of the
environment as seen from a fixed place the gaze has to be shifted from point to point via a sequence of
head rotations and/or saccades with fixations of the eyes allowing the left and right retinal images for
each gaze point to be accumulated in visuospatial memory. The interval of fixed gaze can vary from as
short as 100 ms up to many thousands of milliseconds.

To perform such visual scanning, the nervous system requires a precision movement control
system able to control the place and orientation of the head in the environment as well as the rotation
of the eyes in the head and the thicknesses of the lenses in the eyes. Given a required gaze point in
the environment, the gaze control system has to plan and execute coordinated movements of the head
and eyes. Once the gaze point has been acquired the control system has to hold the images of the gaze
point fixed on the foveas. Simultaneously the focus control system has to adjust the thicknesses of the
lenses to maximize the sharpness of the images on the foveas.

Eye-movement control has wired-in synergies for conjugate, vergence, vertical and roll movements
of the two eyes in the head and has a vestibulo-ocular reflex (feedforward) system able to generate
movements of the eyes to compensate for perturbations of the place and orientation of the head.
However, on their own, these wired-in synergies are insufficient to account for the coordinations
required for accurate gaze and focus control. The required coupling of conjugate, vergence, vertical
and roll movements of the eyes with each other, and with focus control and with movements of
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the head differs from one shift of gaze to another depending on the initial and final gaze points.
The wired-in synergies themselves have to be coordinated by a more comprehensive, overriding,
non-linear, multivariable, adaptive, optimal, predictive, feedforward/feedback movement control
system. Much of our previous work has been concerned with developing a systems theory description
of how such a movement control can be achieved [83].

2.7. Singular Value Decomposition as a Model for Visual Feature Extraction

We have long emphasized the importance of orthogonalization (and deorthogonalization) in
the central processing of sensory and motor signals [52,83–85]. Indeed, we have argued that
orthogonalization is ubiquitous at all levels throughout all sensory and motor systems of the brain.
Not only does it ensure that sensory information is encoded centrally in the most efficient way by
removing redundancy, as argued by Barlow [86], but it is necessary for the nervous system to be
able to form forward and inverse adaptive models of the non-linear dynamical relationships within
and between sensory and motor signals. Previously we have described a network of neural adaptive
filters able to extract independently-varying (orthogonal) feature signals using a non-linear, dynamical,
Gramm–Schmidt orthogonalization algorithm [83]. The same process can be described mathematically
by non-linear, dynamical, Q–R factorization or by non-linear singular value decomposition (SVD).

In Appendix A we give a theoretical description of a two-stage extraction within a hypercolumn
of linear and non-linear stochastic orthogonal visual-image feature signals from corresponding left
and right retinal hyperfields during an interval of fixed gaze using non-linear SVD. We propose that
non-linear SVD provides a useful computational model for the extraction of image-point vectors by
the slowly tuning synaptic connectivity of minicolumns within the hypercolumns of V1. As described
in Appendix A, the resulting 30 (ball-park figure) orthogonal non-linear stochastic feature signals
ΣL = (ΣL1, · · · , ΣL30) extracted from the image IL(θ̂, ϕ̂) on a left retinal hyperfield during an interval
of a fixed gaze are represented by the temporospatial patterns of activity induced in 30 left ocular
dominance minicolumns in a hypercolumn. Similarly, the 30 orthogonal non-linear stochastic feature
signals ΣR = (ΣR1, · · · , ΣR30) extracted from the image IR(θ̂, ϕ̂) on the corresponding right retinal
hyperfield during the same interval of fixed gaze are encoded by the temporospatial patterns of neural
activity induced in 30 right ocular dominance minicolumns in the same hypercolumn.

The orthogonal feature signals are extracted from images on corresponding hyperfields across
the left and right retinas and so, together, the hypercolumns provide an encoding of both central
and peripheral visual fields. As stated by Rosenholtz [82], peripheral vision most likely supports
a variety of visual tasks including peripheral recognition, visual search, and getting the “gist” of a
scene. Incorporating the work of others [87–89], she models the encoding of peripheral vision with
parameters that include luminance autocorrelations, correlations of magnitudes of oriented V1-like
wavelets (Gabor filters) across different orientations, neighbouring positions and scales, and phase
correlation across scale. She states that, when pooled over sparse local image regions that grow
linearly with eccentricity, these provide a rich, high-dimensional, efficient, compressed encoding of
retinal images. Given the change in size of hyperfields and in the density of rods and cones therein
as a function of eccentricity, this description of the encoding of retinal images is consistent with the
extraction by non-linear SVD of vectors of orthogonal image features ΣL and ΣR from hyperfields
across the left and right retinas during each interval of fixed gaze.

For subsequent simplicity we refer to ΣL and ΣR as image-point vectors. As described in
Appendix A, during an interval of fixed gaze they encode the 30-dimensional vectors of orthogonal
non-linear stochastic features extracted from the images that project respectively on to left and right
retinal hyperfields from small neighbourhoods of points on the surfaces of objects in the environment.
The image-point vectors ΣL across all the left hyperfields form a 30-dimensional vector field VL over
all the left ocular dominance minicolumns in the hypercolumns of V1. Similarly, the image-point
vectors ΣR from all the corresponding right hyperfields form a 30-dimensional vector field VR over all
the right ocular dominance minicolumns in the hypercolumns of V1. Due to the retinotopic projections
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between retinal hyperfields and cortical hypercolumns, the vector fields VL and VR can also be thought
of as vector fields over the left and right retinal hyperfields, respectively.

Representing the extracted orthogonal visual feature vector fields VL and VR over hypercolumns
and over retinal hyperfields in this way facilitates a mathematical framework appropriate for
development of a Riemannian geometry theory of binocular vision. But this requires a mechanism for
quantifying the depth of objects perceived. These depth measures then provide a coordinate system
for the Riemannian manifold on which the above vector fields are defined.

2.8. Depth Perception

As can be quickly verified by closing one eye or by seeing depth in a flat two-dimensional (2D)
picture, stereopsis is not the only mechanism in the brain for perception of depth. Indeed, a variety of
mechanisms have evolved for depth perception. We refer to these as top-down cognitive mechanisms
and they work in parallel to estimate the depth of points in the visual world [40,41,56,90]. Top-down
cognitive processes employ information derived from occlusions, relative size, texture gradients,
shading, height in the visual field, aerial perspective and perspective to estimate depth [91] and they
depend on memorized experience [92]. Whenever an estimate of depth is altered by one or other
top-down mechanism (e.g., as in the Ames room or the virtual expanding room described below)
the geometry of the perceived visual space will change giving rise to an inhomogeneous geometry.
This applies particularly to monocular and pictorial visual space but is not to deny that there exists
an underlying visual space with a stable Riemannian geometry attributable to the size–distance
relationship introduced by the eye.

Usually the depths estimated by the various depth-estimation modules are in agreement,
but circumstances can arise where they disagree. Sometimes the contradictions are reconciled into a
single coherent perception such as when seeing depth in a picture while at the same time seeing the flat
plane of the picture. In other circumstances, one or more of the depth estimates is overruled leading
to illusions and the analysis of illusions is important in perceptual science. Artists and magicians
often take advantage of this phenomenon to trick the visual systems of their observers. When looking
through the peep hole of a trapezoidal-shaped Ames room, for example, a normal room with parallel
walls, horizontal floor and rectangular windows is seen rather than the actual distorted trapezoidal
shape because experience tells us that rooms are normally shaped this way [93–96]. The Ames room
illusion is compelling even to the extent of seeing people change size as they walk about in the room.
Similarly, in the expanding virtual room experiment of Glennerster et al. [97], estimates of depth
derived from convergence of the eyes, retinal disparity and optical flow as a person moves about in
the virtual room are overruled in favour of a cognitive estimate based on the experience that rooms do
not expand as we walk about within them.

Clearly there are many cues that can influence the perception of depth and, as argued by
Gilinsky [3], changes in perceived depth can influence the perceived size of an object independently
of the angle subtended by the object at the eye. Foley et al. [10] argued that while the retinal image
decreases in size in proportion to object distance, the perceived size changes much less. The principal
assumption in their model is that, in the computation of perceived extent, the visual angle undergoes a
magnifying transformation. Given the variety of cues and cognitive mechanisms that can contribute
to the perception of depth, it should not be surprising that experimental conditions have a strong
influence on experimental results, particularly on the experimentally measured geometry of 3D
perceived visual space.

While not underestimating the importance of top-down cognitive mechanisms, we focus in this
paper on binocular depth perception as the only means of obtaining an absolute measure of Euclidean
depth. For the vector fields of left and right retinal images encoded during an interval of fixed gaze
to have meaning in terms of events in the outside world, the vectors of corresponding left and right
hyperfield image features encoded within each hypercolumn during an interval of fixed gaze have
to be associated with coordinates of the points aLi and aRi in the outside world projecting on to
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corresponding left and right hyperfields respectively. In Sections 2.9 and 2.10 we outline processes
able to compute those coordinates.

2.9. Cyclopean Gaze Coordinates

The nervous system has only one bottom-up mechanism for obtaining an absolute measure of the
Euclidean distance to gaze points in the environment [91,98]. This module uses afferent information
encoding the place and orientation of the head in the environment as well as proprioceptive and
vestibular information encoding the angles of the eyes within the head [98]. By minimizing disparity
between images on the left and right foveas, the gaze control system adjusts the orientation of the
head in the environment as well as the angles of the eyes in the head so that the visual axes of the eyes
intersect accurately at the gaze point. The geometry is shown in Figure 1, and is based on the reduced
model of the human eye [42] which takes into account the fact that the visual axis does not pass through
the centre of rotation of the eye.
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Figure 1. A schematic 2D diagram based on the reduced model of the human eye [42]. CL and CR

are the centres of rotation of the left and right eye, respectively, and NL and NR are the nodal points.
The optic axis for each eye connects the centre of rotation to the nodal point. The visual axis for each
eye connects the fovea to the nodal point. The distance between CL and CR is known as d. Its midpoint
O is known as the egocentre and marks the position of a hypothetical cyclopean eye. The distances
CLNL and CRNR are the same for each eye and are known as rE. The angle α between the optic axis
and the visual axis is also the same for each eye and is typically about 5 degrees in adults. θH gives
the angle of the head relative to a translated external reference frame (X′, Y′ ) and θL and θR give the
angles of the left and right eyes relative to the head when gaze is fixed on a surface point Q in the
environment. The diagram shows the cyclopean gaze vector OQ in relation to the above geometry.

The position of the egocentre O measured with respect to the external reference frame (X,Y,Z)
provides a measure of the egocentric place of the head in the environment. Since O is the point
where a cyclopean eye would be located (if we had one) we define the line OQ connecting the O
to the point of fixed gaze Q to be the cyclopean gaze vector. The distances d and rE and the angle α

are anatomical parameters that change with growth of the head and eye. Since these parameters
influence the geometrical optics of images projected on to the retinas it does not seem unreasonable to
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suggest that the nervous system is able to model them adaptively through experience, for example,
by modelling the relationship between the depth of an object and the size of its image on the retina,
and by sensing the change in place of the head required to match the image on one retina with the
memorized image on the other. The place and orientation of the head in the environment are encoded
by neural activity in the hippocampus and parahippocampus so, referring to Figure 1, the angle θH
of the head relative to the translated external coordinates (X′,Y′) is known, and the angles of rotation
θL and θR of the left and right eye within the head are sensed proprioceptively. Using the geometry
of Figure 1, it can be shown that these known variables θH , θL, θR, d, rE and α completely determine
the Euclidean distance and angle from each eye to the gaze point as well as the length and direction
(r, θ) of the cyclopean gaze vector OQ. This can be demonstrated by basic trigonometry (sine rule
and cosine rule) of the three triangles NLLCL, NRLCR, and LQR. Importantly, this is not to say that
the nervous system ‘does’ trigonometry in the same way we do. It is simply to establish that the
information available to it is sufficient to determine uniquely the length and direction of the cyclopean
gaze vector.

Thus we propose that during each interval of fixed gaze the nervous system is able to compute the
cyclopean gaze coordinates (r, θ, ϕ) of the fixed gaze point Q and hold them in working memory within
the hypercolumn(s) receiving retinotopic input from the left and right foveal hyperfields. The length r
of the cyclopean gaze vector OQ provides an egocentric measure of the Euclidean distance (depth) of
the gaze point Q while the angles (θ, ϕ) provide a measure of the cyclopean direction of gaze relative
to the external reference frame (X,Y,Z). A third angle ψ equal to a rotation about the cyclopean gaze
vector OQ is needed to completely specify the cyclopean gaze coordinates. Rolling of the head in the
environment as well as internal and external rotation of the eyes in the head introduce a roll angle ψ

about the cyclopean gaze vector (r, θ, ϕ). However, while this roll angle ψ is important in that it leads
to rotation of the perceived visual image (e.g., when lying down or standing on one’s head), we will
ignore it temporarily. We show in Section 5.2 that a roll ψ about the gaze vector (r, θ, ϕ) transforms the
positions of all retinal image points in the 3D perceived visual space in an isometric fashion without
changing the size or shape of the local image.

2.10. Cyclopean Coordinates of Peripheral Image Points

When gaze is fixed, points q other than the fixed gaze point Q on the surface of an object project
with different angles into the two eyes and impinge on different retinal coordinates in the left and
right eyes. This creates disparity between the left and right peripheral retinal images. Put alternatively,
with the gaze point Q = (r, θ, ϕ) fixed, corresponding hyperfields on the left and right retinas receive
projections from different points aLi and aRi (i = 1, 2, . . . ) on the surface of an object in the environment.
This is illustrated in Figure 2.

We now propose that the difference ΣL − ΣR between image-point vectors within each
hypercolumn are computed and held on-line in binocular minicolumns within the same hypercolumns.
In other words, we suggest that the high-dimensional statistics extracted in the form of image-point
vectors from hyperfields across the retinas provide a rich encoding of disparity between images on the
left and right retinas. Since certain ganglion cells respond to motion in retinal images, this can include
disparity of velocity fields as proposed by Cormack et al. [99]. These difference vectors encode the
disparity between the images from the points aLi and aRi (i = 1, 2, . . . ) on corresponding left and right
hyperfields. The image-disparity vectors ΣL − ΣR form a disparity vector field over the hypercolumns.
It has been established [100,101] that the geometry of visual disparity fields can be expressed in terms
of four differential components; viz., expansion or dilation, curl or rotation, and two components
of deformation or shear. An algebraic combination of these operators allows one eye image to be
mapped on to the other. Likewise, in the Riemannian geometry theory presented here, we see the
gradients, translations, rotations, dilations, and shear of the components of the image-disparity vector
field ΣL − ΣR over the hypercolumns as providing detailed measures of the local disparity between
images on corresponding left and right retinal hyperfields.
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The image-point vectors ΣL and ΣR provide sufficient information to accurately reconstruct the
left and right hyperfield images. Hence the vectors ΣL − ΣR between corresponding and neighbouring
hyperfields in left and right eyes provide sufficient information to accurately reconstruct the difference
between the images giving a measure of the shifts aRi− aLi, aR(i+1)− aLi, aR(i+1)− aRi and aL(i+1)− aLi
(i = 1, 2, . . . ) between them. With ‘knowledge’ of these shifts, the grid of overlapping triangles formed
by the straight lines emanating from corresponding left and right retinal hyperfields via the nodal
point of each eye (Figure 2) allows the cyclopean coordinates (raLi , θaLi , ϕaLi ) and (raRi , θaRi , ϕaRi ) for a
line drawn from the egocentre O to each of the points aLi and aRi (i = 1, 2, . . . ) to be computed relative
to the cyclopean gaze coordinates (r, θ, ϕ) of the fixed gaze point Q.
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Figure 2. A schematic 2D diagram illustrating the angle of the head relative to a translated external
reference frame (X′, Y′ ) and the angles of the left and right eyes relative to the head when gaze is
fixed on a surface point Q in the environment. The left and right eye visual axes are straight lines
connecting the fovea through the nodal point of the eye to the gaze point Q. The fan-shaped grids
of straight lines passing through the nodal point of each eye connect corresponding left and right
retinal hyperfields to points aLi and aRi, respectively, on the surface. The image point aLi projecting to
a left retinal hyperfield is translated by a small amount relative to the image point aRi projecting to
the corresponding right retinal hyperfield. Thus the points aLi and aRi induce a disparity between the
images projected to the corresponding left and right retinal hyperfields. The diagram also includes
the hypothetical surface known as an horopter. This contains the points which induce no disparity
between the images projected to corresponding left and right hyperfields.

We propose that, along with the image-point vectors of all the points aLi and aRi, the cyclopean
coordinates (raLi , θaLi , ϕaLi ) and (raRi , θaRi , ϕaRi ) (i = 1, 2, . . . ) are also held on line in working memory
by minicolumns within the hypercolumns receiving retinotopic projections from the corresponding
left and right retinal hyperfields. In other words, during each interval of fixed gaze each hypercolumn
encodes the two 30-dimensional vectors ΣL and ΣR of orthogonal image features extracted from
the images on corresponding left and right retinal hyperfields and the cyclopean coordinates
(raLi , θaLi , ϕaLi ) and (raRi , θaRi , ϕaRi ) of the points aLi and aRi (i = 1, 2, . . . ) projecting the images
on to those corresponding left and right hyperfields. To emphasize the fact that the coordinates
(raLi , θaLi , ϕaLi ) and (raRi , θaRi , ϕaRi ) (i = 1, 2, . . . ) are different even though they are encoded within
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the same hypercolumn, we use the term cyclopean gaze coordinates for the fixed gaze point Q and the
term cyclopean coordinates for all other points aLi and aRi in the peripheral visual field.

Figure 2 also shows the horopter, defined in the Oxford Dictionary to be “a line or surface containing
all those points in space of which images fall on corresponding points of the retinae; the aggregate of
points of which are seen single in any given position of the eyes” [102]. As can be seen in the figure,
this hypothetical curved line/surface contains the gaze point Q, and is constructed by plotting the
intersections of all the straight lines that come from corresponding left and right hyperfields and pass
through the nodal point of each eye. Because every point on the horopter projects to corresponding
left and right retinal hyperfields, an actual surface that mimics it would generate a zero disparity
image. From Figure 2 it can be seen that the shape of the horopter depends on the cyclopean gaze
coordinates Q = (r, θ, ϕ) that in turn depend on the angles of the eyes in the head and the angle
of the head relative to an external reference frame. It becomes less curved as the Euclidean distance
r to the fixed gaze point increases. With the gaze point Q and the orientation of the head fixed,
the disparity between points on any actual surface in the environment projecting on to left and right
retinal hyperfields increases in a non-linear way as the distance between the actual surface and the
horopter increases. Because of this, the disparity between points on any actual surface varies in a
non-linear fashion across the retinas depending on how its distance and shape varies from that of
the horopter.

Despite this complicated variation of the image-disparity field across the retinas, its non-linear
dependence on the location of the gaze point Q, the orientation of the head in the environment,
and on the location of actual surfaces in the outside world relative to the horopter, it is well known
from random-dot stereogram experiments [90,103,104] that the visual system can extract depth and
direction of points on the surfaces of objects in the peripheral visual fields. Random-dot stereograms
provide compelling evidence that disparity between left and right retinal images plays an important
role in peripheral depth perception. Marr [90] defined disparity to mean the angular discrepancy in
the positions of the images of an object in the environment in the two eyes. Marr and Poggio [105]
developed a computer algorithm to detect disparities in computer-generated random-dot stereograms.
Our method for measuring disparity based on differences between image-point vectors extracted from
corresponding retinal hyperfields is slightly different and less demanding on neural resources in that
it obviates the need for the stereo correspondence neural network proposed by Marr and Poggio or for
local pattern matching (local correlation) mechanisms. Differencing 30 or so left and right hyperfield
image features encoded in ocular dominance columns within a hypercolumn pools activity from an
extended region of V1 and involves multiple image features. This is not inconsistent with the detailed
picture of neural architectures for stereo vision in V1 described by Parker et al. [106].

3. The Three-Dimensional Perceived Visual Space

The size–distance relationship introduced into retinal images by the optics of the eye is
independent of the scene being viewed and of the position of the head in the environment. While
the retinal image itself changes from one viewpoint to another, the geometry of the 3D perceived
visual space derived from stereoscopic vision with estimates of Euclidean depth based on triangulation
remains the same regardless of the scene and of the place of the head in the environment. In this section
we present theory that describes a means for the visual system to form an internal representation of
the 3D perceived visual space and of the visual images in that space viewed from a fixed place.

3.1. Gaze-Based Visuospatial Memory

When the head is in a fixed place and gaze is shifted from one gaze point to another the
vector fields VL and VR of image-point vectors ΣL(raLi , θaLi , ϕaLi ) and ΣR(raRi , θaRi , ϕaRi ) over the
hypercolumns described in Section 2.10 are replaced by new image-point vectors and by new vector
fields associated with the next gaze point in the scanning sequence. To build a visuospatial memory
of an environment through scanning we argue that the information encoded by the vector fields
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VL and VR during a current interval of fixed gaze must be stored before the gaze is shifted and the
information lost. Such memory is accumulated over time and scanning of an environment from a fixed
place does not have to occur in one continuous sequence. Images associated with different gaze points
from a fixed place can be acquired (and if necessary overwritten) in a piecemeal fashion every time the
person passes through that given place.

We propose that, at the end of each interval of fixed gaze, the 30-dimensional image-point
vectors ΣLi encoding left-hyperfield images within each hypercolumn are stored into a gaze-based
association memory or G-memory in association with their cyclopean coordinates (raLi , θaLi , ϕaLi ).
Similarly, the 30-dimensional image-point vectors ΣRi encoding right-hyperfield images within each
hypercolumn are stored in the same G-memory in association with their cyclopean coordinates
(raRi , θaRi , ϕaRi ). In other words, the cyclopean coordinates (ra, θa, ϕa) for each point ‘a’ in the 3D
Euclidean outside space provides an accession code for the G-memory. This concept of an accession
code for memory stems from an earlier proposal of ours (see [83] Section 8.3) and is analogous to the
way the accession code in a library catalogue points to a book in the library. A particular cyclopean
coordinate (ra, θa, ϕa) gives the ‘site’ in the G-memory where two 30-dimensional image-point vectors
ΣL(ra, θa, ϕa) and ΣR(ra, θa, ϕa) are stored. Actually, such a ‘site’ in an association memory network
is distributed across the synapses of a large number of neurons in the network and the information
is retrieved by activating the network with an associated pattern of neural activity encoding the
cyclopean coordinate (ra, θa, ϕa), as in a Kohonen association neural network (see [83] for further
description).

The ‘library accession code’ analogy provides a simplified metaphor for the storage and retrieval
of information in an association memory network and is used throughout the rest of the paper.
Each site in the G-memory corresponds to a cyclopean image point (ra, θa, ϕa) in the Euclidean
environment. As shown in Appendix A the left and right hyperfield image-point vectors ΣL(ra, θa, ϕa)

and ΣR(ra, θa, ϕa) extrapolated from the same image point (ra, θa, ϕa) in the outside space require
30 components (features) to adequately encode the non-linear stochastic characteristics of images
on the hyperfields during each interval of fixed gaze. Thus each memory site can be thought of
geometrically as a 30-dimensional vector space able to store two 30-dimensional image-point vectors.
Because of disparity between left and right retinal images, the two 30-dimensional image-point
vectors ΣL(ra, θa, ϕa) and ΣR(ra, θa, ϕa) stored at the image-point site (ra, θa, ϕa) in the G-memory
derive from different locations on the left and right retinas and are encoded within different
hypercolumns. Thus, the storage of individual left and right image-point vectors ΣL(raLi , θaLi , ϕaLi )

and ΣR(raRi , θaRi , ϕaRi ) into the G-memory in association with their respective cyclopean coordinates
(raLi , θaLi , ϕaLi ) and (raRi , θaRi , ϕaRi ) performs the task of linking disparate sites on left and right
retinas receiving an image from the same image point in the environment.

For a fixed gaze point Q = (r, θ, ϕ), the left and right image-point vectors associated with
foveal hyperfields are fused by the gaze control system into a single hyperfield image-point vector.
However, as the point q = (ra, θa, ϕa) in the environment moves away from the fixed gaze point
Q = (r, θ, ϕ), the difference between the left and right image-point vectors ΣL(ra, θa, ϕa) and
ΣR(ra, θa, ϕa) increases because the size of retinal hyperfields and the densities of rods and cones
change with retinal eccentricity. The superimposed left and right hyperfield images stored at the same
site (ra, θa, ϕa) in the G-memory become less well fused and, consequently, appear more fuzzy.

We define the functional region of central vision to be an area containing all those points (ra, θa, ϕa)

in the Euclidean environment where the fuzziness and imprecision of location of the superimposed left
and right hyperfield images ΣL(ra, θa, ϕa) and ΣR(ra, θa, ϕa) stored at the same site q = (ra, θa, ϕa)

in G-memory is acceptable for the visual task at hand. The size of this region varies with the visual
resolution required for the particular task and with the Euclidean depth of gaze r. It varies with the
extent of cluttering in the peripheral visual field [82]. Points q = (ra, θa, ϕa) in peripheral visual fields
where the image-point vectors ΣL(ra, θa, ϕa) and ΣR(ra, θa, ϕa) stored at the same site (ra, θa, ϕa)
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in G-memory are so different they cannot be fused into a single vector, give rise to the perception of
double images, one from the left eye and one from the right eye, that may appear fuzzy.

As gaze is shifted from one point in the environment to another, large regions of the peripheral
visual fields for the various gaze points overlap. Consequently, the sites q = (ra, θa, ϕa) in G-memory
where the peripheral image-point vectors associated with a current point of fixed gaze are to be stored
may overlap with sites where image-point vectors associated with previous gaze points are already
stored. We propose the following rule for determining whether or not image-point vectors already
stored in G-memory are overwritten by the image-point vectors associated with the current gaze
point: Image-point vectors at sites in the peripheral visual field are only overwritten if the absolute difference
|ΣL(ra, θa, ϕa)− ΣR(ra, θa, ϕa)| between the left and right image-point vectors already stored at the site
(ra, θa, ϕa) is larger than the absolute difference between the two image-point vectors for the same site
(ra, θa, ϕa) associated with the current gaze point. Using this rule, the images accumulated in G-memory
from any given scanning pattern will consist of those image points that are closest to their regions
of functional vision. As the number of gaze points in the scanning pattern increases, the above rule
causes the acuity of the accumulated peripheral image to improve. In the extreme case, with an infinite
number of gaze points in the scanning pattern, gaze is shifted to every point in the environment and
only fused foveal images are stored at every site in an infinite G-memory.

This is consistent with the evidence reviewed by Hulleman and Olivers [107] showing that it is the
fixation of gaze that is the fundamental unit underlying the way the cognitive system scans the visual
environment for relevant information. The finer the detail required in the search task, the smaller the
functional region of central vision and the greater the number of fixations required. The notion of a
variable functional region of central vision provides a link between visual attention and peripheral
vision and attributes a more important role to peripheral vision as argued by Rosenholtz [82].

3.2. A Riemannian Metric for the G-Memory

As indicated in Section 1, the size of the 2D image on the retina varies in inverse proportion
to the Euclidean distance between the nodal point of the eye and the object. A key proposal of the
present theory is that the nervous system can model adaptively the relationship between the Euclidean
distance to an object in the outside world (sensed by triangulation) and the size of its image on the
retina. The notion that this modelling is adaptive is consistent with the observation that the visual
system can adapt to growth of the eye and to wearing multifocal glasses. We hypothesize that the
modelled size–distance relationship can be applied to three dimensions and encoded in the form
of a Riemannian metric g(r, θ, ϕ) stored at every site q = (r, θ, ϕ) in the 3D cyclopean G-memory
(for simplicity here and in what follows we have dropped the subscript a for peripheral points).
In other words, we hypothesize that the perceived size of a 3D object in the outside world varies in inverse
proportion to the cyclopean Euclidean distance r between the egocentre and the object, this being simply a
reflection of the 2D size–distance relationship introduced by the optics of the eye.

When the G-memory is endowed with the metric g(r, θ, ϕ) it can be represented geometrically as
a Riemannian manifold (G,g). At each point q in the (G,g) manifold there exists a 3D tangent space TqG
spanned by coordinate basis vectors ∂r =

∂
∂r , ∂θ = ∂

∂θ , ∂ϕ = ∂
∂ϕ . Any tangential velocity vector v in the

tangent space TqG can be expressed as a linear combination of the coordinate basis vectors
(
∂r, ∂θ , ∂ϕ

)
spanning that space. The metric inner product of any two vectors v and w in the tangent vector space
TqG at the point q is denoted by 〈v, w〉g and the angle σ between the two vectors is computed using

cos σ =
〈v,w〉g(
‖v‖g ·‖w‖g

) . When the angle σ between the two vectors is π
2 rad the two vectors are said to be

g-orthogonal. We use this terminology throughout the paper.
The metric distance between any two points qi and qj in the (G,g) manifold is obtained by

integrating the metric speed (i.e., metric norm or g-norm ‖v‖g = 〈v, v〉
1
2
g ) of the tangential velocity

vector v along the geodesic path connecting the two points. This provides the visual system with
a type of measure that can be used to compute distances, lengths and sizes in the perceived visual
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manifold (G,g). Since the metric g changes from point to point in the manifold, and the metric speed
‖v‖g depends on the metric, it follows that the metric distance between any two points qi and qj
depends on where those points are located in the (G,g) manifold. In other words, the metric g stretches
or compresses (warps) the perceived visual manifold relative to the 3D Euclidean outside space.

In discussing the perception of objects, Frisby and Stone [40] suggest that it would be helpful to
dispense with the confusing term size constancy and instead concentrate on the issue of the nature and
function of the size representations that are built by our visual system. In keeping with this, we propose
that, consistent with the size–distance relationship introduced by the optics of the eye, the Riemannian
metric g(r, θ, ϕ) on the perceived visual manifold varies inversely with the square r2 of the cyclopean Euclidean
distance r and is independent of the cyclopean direction (θ, ϕ). This causes metric distances between
neighbouring points in the perceived visual manifold (G,g) to vary in all three dimensions in inverse
proportion to cyclopean Euclidean distance r in the outside world. As a result, the perceived size of
3D objects in the outside world varies in inverse proportion to the cyclopean Euclidean distance r
without changing their perceived infinitesimal shape. We use the term “infinitesimal shape” because,
in attempting to define and establish a measure of subjective distance, Gilinsky states that “the depth
dimension becomes perceptively compressed at greater distances” [3] (p. 463). Consequently, as a
macroscopic object recedes its shape appears to change because its contraction is greater in the depth
extent than in height or width.

The proposal that the Riemannian metric g(r) varies only as a function of cyclopean Euclidean
distance r and is independent of cyclopean direction (θ, ϕ) implies that the metric is constant on
concentric spheres in the outside world centred on the egocentre. These concentric spheres play an
important role in describing the geometry of the perceived visual manifold (G, g) and from now on
we refer to them simply as the visual spheres.

For the size of an object to be perceived as changing in all three dimensions in inverse proportion
to the cyclopean Euclidean distance r without changing its infinitesimal shape, the Riemannian metric
g(r) must be such that the g-norm ‖v‖g of the tangential velocity vector at each point in the perceived
visual manifold (G, g) is equal to the norm ‖v‖g of the velocity vector in Euclidean space (where
g is the metric of the 3D Euclidean space) divided by the cyclopean Euclidean distance r, that is,
‖v‖g = (1/r)‖v‖g at each point.

If egocentric Cartesian coordinates (x, y, z) are employed, the Euclidean metric for the outside
world is:

g(x, y, z) =

 1 0 0
0 1 0
0 0 1

, (1)

and the required Riemannian metric g(x, y, z) for the perceived visual manifold (G,g) is:

‖v‖g = 〈gv, v〉1/2 =

(
1
r

)
‖v‖g = 〈(1/r2)gv, v〉

1
2 . (2)

That is,

g
((

x2 + y2 + z2
)1/2
)
=

1
x2 + y2 + z2 g =


1

x2+y2+z2 0 0

0 1
x2+y2+z2 0

0 0 1
x2+y2+z2

. (3)

However, the depth and direction of gaze is best described using spherical coordinates (r, θ, ϕ).
Thus we require the Riemannian metric of the perceived visual manifold to be expressed in terms
of (r, θ, ϕ). The transformation between spherical coordinates (r, θ, ϕ) and Cartesian coordinates
(x, y, z) in Euclidean space is given by:
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x = r cos ϕ cos θ,
y = r cos ϕ sin θ,
z = r sin ϕ.

(4)

When the Euclidean metric in Equation (1) is pulled back to spherical coordinates using Equation (4)
we get:

g(r, θ, ϕ) =

 1 0 0
0 r2 cos2 ϕ 0
0 0 r2

. (5)

Consequently, the Riemannian metric g(r, θ, ϕ) for the perceived visual manifold is:

‖v‖g = 〈gv, v〉1/2 = 〈
(

1
r2

)
gv, v〉

1/2

. (6)

That is,

g(r, θ, ϕ) = 1/r2g(r, θ, ϕ) =

 1/r2 0 0
0 cos2 ϕ 0
0 0 1

, (7)

where:

v =


.
r
.
θ
.
ϕ

. (8)

In Euclidean space, using spherical coordinates, tangential velocities are related to angular velocities by: vr

vθ

vϕ

 =


.
r

r(cos ϕ)
.
θ

r
.
ϕ

. (9)

If the inverses of the relationships in Equation (9) are used to express the angular velocities (
.
r,

.
θ,

.
ϕ) in

terms of the tangential velocities (vr, vθ , vϕ), then the terms r2cos2 ϕ and r2 in Equation (5) cancel and
we obtain:

〈

 1 0 0
0 r2 cos2 ϕ 0
0 0 r2


 vr

vθ

r cos ϕ
vϕ

r

,

 vr

vθ

r cos ϕ
vϕ

r

〉
1/2

= 〈

 1 0 0
0 1 0
0 0 1


 vr

vθ

vϕ

,

 vr

vθ

vϕ

〉
1/2

. (10)

In other words, to compute the norm of the Euclidean tangential velocity vector
[

vr vθ vϕ
]T

in
Euclidean spherical coordinates we require the Euclidean metric:

g =

 1 0 0
0 1 0
0 0 1

. (11)

Thus the Riemannian metric matrix required to compute the g-norm vg of the tangential velocity vector[
vr vθ vϕ

]T
at any point (r, θ, ϕ) in the perceived visual manifold (G, g) is:

g(r) =
(

1
r2

)
g =


1
r2 0 0
0 1

r2 0
0 0 1

r2

. (12)
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4. Quantifying the Geometry of the Perceived Visual Manifold

Given the metric g in Equation (7) and/or Equation (12) depending on the coordinates employed,
the theorems of Riemannian geometry can be applied to compute measures of the warping of
the perceived visual manifold (G, g). In this section we use the geometry to quantify: (i) the
relation between perceived depth and Euclidean distance in the outside world; (ii) the illusory
accelerations associated with an object moving at constant speed in a straight line in the outside
world; (iii) the perceived curvatures and accelerations of lines in the outside world; (iv) the curved
accelerating trajectories (geodesic trajectories) in the outside world perceived as constant speed
straight lines; (v) the Christoffel symbols describing the change of coordinate basis vectors from
point to point in the perceived visual manifold; and (vi) the curvature at every point in the perceived
visual manifold. Together, these Riemannian measures provide a detailed quantitative description
of the warped geometry of the perceived visual manifold that can be compared with measures
obtained experimentally.

4.1. The Relationship Between Perceived Depth and Euclidean Distance

As described by Lee [57] (Chapter 3), two metrics g1 and g2 on a Riemannian manifold are said to
be conformal if there is a positive, real-valued, smooth function f on the manifold such that g2 = f g1.
Two Riemannian manifolds (M1, g1) and (M2, g2) are said to be conformally equivalent if there is a
diffeomorphism (i.e., one-to-one, onto, smooth, invertible map) Φ : M2 → M1 between them such
that the pull back Φ∗g1 is conformal to g2. Conformally equivalent manifolds have the same angles
between tangent vectors at each point but the g-norms of the vectors are different and the lengths
of curves and distances between points are different. Conformal mappings between conformally
equivalent manifolds preserve both the angles and the infinitesimal shape of objects but not their size
or curvature. For example, a conformal transformation of a Euclidean plane with Cartesian rectangular
coordinates intersecting at right angles produces a compact plane with curvilinear coordinates that
nevertheless still intersect at right angles [108].

Let us now consider two spaces, one being
(
G, g

)
corresponding to the Euclidean outside

world with Euclidean metric g (Equation (5)) and Euclidean distance r and the other being (G, g)
corresponding to the perceived visual manifold with metric g (Equations (7) or (12)) and metric
distance r. The Riemannian manifold (G, g) is, by definition, locally Euclidean and can be mapped
diffeomorphically to the Euclidean space

(
G, g

)
. The symbol r can be used, therefore, to represent

both the distances from the origin in
(
G, g

)
and from the egocentre in (G, g). We use this convention

throughout the paper, however in this section (and only this section) we separate r and r because
we are interested in the relationship between them. Comparing Equation (5) and Equation (7), it can
be deduced that g =

(
1
r2

)
g. This shows that the 3D Euclidean outside world

(
G, g

)
and the 3D

perceived visual manifold (G, g) are conformally equivalent with conformal metrics g and g and with
1/r2 equalling the positive, smooth, real-valued function f mentioned above.

Thus, from the theory of conformal geometry the following properties of the perceived visual
manifold follow: (a) Objects appear to change in size in inverse proportion to the Euclidean distance r
in the Euclidean outside world without changing their apparent infinitesimal shape. (b) The perceived
visual manifold (G, g) is isotropic at the egocentre; i.e., the apparent change in size with Euclidean
distance r is the same in all directions radiating out from the egocentric origin. (c) There exists a
diffeomorphic map between the two manifolds but it does not preserve the metric; i.e., the map is
not an isometry. While there is a one-to-one mapping between points in the outside space and points
in the perceived visual manifold, the two spaces are not isometric so distances between points are
not preserved. (d) Angles between vectors in corresponding tangent spaces T(r,θ,ϕ)G and T(r,θ,ϕ)G are

preserved. (e) As the Euclidean distance r increases towards infinity in
(
G, g

)
the perceived distance r in

(G, g) converges uniformly to a limit point. Stars in the night sky, for example, appear as dots of light in
the dome of the sky. (f) If r is the Euclidean distance from O to a point in

(
G, g

)
, the perceived distance
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r from O to the corresponding point in (G, g) can be computed using Equation (2) by integrating the
metric norm of the unit radial velocity vector ∂r along the radial path to obtain:

r =
∫ r

1
〈(1/r2)∂r, ∂r〉

1/2
g dr =

∫ r

1

1
r

dr. (13)

The lower limit has been fixed to unity to remove ambiguity about the arbitrary constant of
integration and, consequently, the integral is given by the following function of its upper limit:

r = loge r = ln r, (14)

as illustrated graphically in Figure 3. The perceived distance r is foreshortened in all radial directions
in the perceived visual manifold relative to the corresponding distance r in the Euclidean outside
space. The amount of foreshortening increases with increasing r.Vision 2018, 2, x FOR PEER REVIEW  20 of 66 
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It is interesting to notice in Figure 3 that according to the logarithmic relationship the perceived
distance r is negative for values of r less than one. This does not immediately make intuitive sense
because perceived distance should always be a positive number. In fact it implies an anomaly,
the existence of a hole about the egocentric origin in

(
G, g

)
that cannot be perceived. This does make

intuitive sense because we cannot see our own head let alone our own ego. The existence of a hole at
the origin has consequences for the perception of areas and volumes containing the origin, but we will
not explore that further here.

4.2. The Geodesic Spray Field

As defined in Riemannian geometry [109] (Chapter IV), the geodesic spray field,

F
(
q,

.
q
)
=
(

f1
(
q,

.
q
)
, f2
(
q,

.
q
))

(15)

is a second-order vector field in the double-tangent bundle TTG over the tangent bundle TG at each
point q = (r, θ, ϕ) in the perceived visual manifold (G, g) and at each velocity

.
q =

( .
r,

.
θ,

.
ϕ
)

in
the tangent vector space TqG at q ∈ (G, g). The geodesic spray field is well known in Riemannian
geometry and we have previously given a detailed description of it [52]. At each point q = (r, θ, ϕ) in
the manifold (G, g), there exists a tangent space containing the velocity vector (or the direction vector)
.
q =

( .
r,

.
θ,

.
ϕ
)

, and at each point
.
q =

( .
r,

.
θ,

.
ϕ
)

in the tangent space, there exists a tangent space on the
tangent space; that is, a double tangent space. The double tangent space contains the geodesic spray
field. It is not a tensor field so it depends on the chosen coordinates and since it can be precomputed
as described below it can be regarded as an inherent part of the perceived visual manifold (G, g).
It has two parts, f1

(
q,

.
q
)

and f2
(
q,

.
q
)
, known as the horizontal part and vertical part, respectively.
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The horizontal part f1
(
q,

.
q
)

equals the tangential velocity
.
q ∈ TqG in the 3D tangent vector space TqG

at each q ∈ (G, g). The vertical part f2
(
q,

.
q
)

provides a measure of the negative of the illusory acceleration
perceived by a person looking at an object that is actually moving relatively in the outside world at
constant speed (the negative sign is explained in the next section).

To illustrate, telegraph poles observed from a car moving at constant speed along a straight
road appear not only to loom in size but also to accelerate as they approach. This common example
shows that our perceptions of the position, velocity and acceleration of moving objects are distorted in
ways consistent with the proposed warped geometry of the visual system. The illusory acceleration
− f2

(
q,

.
q
)

can be attributed to the metric g in Equations (7) and (12) causing the apparent distance
between neighbouring points in (G, g) to appear to increase as the distance r in the Euclidean outside
world decreases. Consequently, an object appears to travel through greater distances per unit time as it
gets closer to the observer and, therefore, appears to accelerate as it approaches.

The velocity
.

q ∈ TqG at each q ∈ (G, g) is measured relative to the cyclopean coordinate basis
vectors

(
∂r, ∂θ , ∂ϕ

)
spanning the 3D tangent vector space TqG. However, warping of the perceived

visual manifold (G, g) causes these basis vectors
(
∂r, ∂θ , ∂ϕ

)
to change relative to each other from point

to point in the manifold. As a result, since the velocity
.

q at each point is measured with respect to these
basis vectors, their changes from point to point give rise to apparent changes in the velocity vector

.
q ,

thereby inducing illusory accelerations. These illusory accelerations do not happen in flat Euclidean
space. The negative of the geodesic spray vector f2

(
q,

.
q
)

provides a measure of this illusory acceleration
at each position and velocity

(
q,

.
q
)

in the tangent bundle TG (i.e., union of all the tangent spaces TqG
over (G, g)). The geodesic spray field (

.
q , f2

(
q,

.
q
)
) on the tangent bundle TG can be precomputed and

can, therefore, be regarded as an inherent part of the perceived visual manifold (G, g).
As shown by Lang [109] and by Marsden and Ratiu [110], the acceleration part f2

(
q,

.
q
)

of the
geodesic spray field is given by the equation:

〈g f2, w〉 = 1
2
〈g′w .

q,
.
q〉 − 〈g′ .q .

q, w〉, (16)

where 〈·, ·〉 represents the metric inner product, g′ is the Jacobian matrix of the metric g in Equation (7),

w is a fixed arbitrary vector, and q =

 r
θ

ϕ

;
.
q =


.
r
.
θ
.
ϕ

; g =

 1/r2 0 0
0 cos2 ϕ 0
0 0 1

.

Solving Equation (16) for f2
(
q,

.
q
)

as a function of position and velocity on the perceived visual
manifold (G, g) we obtain:

f2
(
q,

.
q
)
=

 fr

fθ

fϕ

 =


(

.
r)

2

r
2 sin ϕ

cos ϕ

.
θ

.
ϕ

−(cos ϕ)(sin ϕ)
.
θ

2

, (17)

where ( fr, fθ , fϕ) are the components of f2
(
q,

.
q
)

in cyclopean spherical coordinates at each position q
and velocity

.
q in the tangent bundle TG.

Since, as mentioned above, the geodesic spray field is non-tensorial it follows that it depends on
the chosen coordinate basis vectors. When the components ( fr, fθ , fϕ) of the acceleration geodesic
spray field f2

(
q,

.
q
)

in Equation (17) are recomputed in terms of the tangential velocities vr, vθ , and vϕ

in Equation (9) and the metric g(r) in Equation (12), we obtain a different expression:

f2
(
q,

.
q
)
=

 fr

fθ

fϕ

 =


(vr)2

r −
(vθ)

2

r − (vϕ)2

r
2 vrvθ

r
2 vrvϕ

r

. (18)
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The illusory accelerations introduced by the warped geometry of the perceived visual space are
easier to understand intuitively when presented in terms of the tangential velocities vr, vθ , and vϕ in
Equation (18). For example, if vr = −1, vθ = 0, and vϕ = 0, corresponding to an object approaching
the observer at constant unit speed along a radial line (like looking out the front window of a train
travelling at constant speed along a straight line), the spray acceleration f2

(
q,

.
q
)

equals a radial

acceleration (vr)2

r directed outward along the radial line. The negative of this is consistent with the
object appearing to accelerate as it approaches. If vr = 0, vθ = 1, and vϕ = 0, corresponding to an
object moving normal to the line of sight (like looking out a side window of the same train), the radial

acceleration f2
(
q,

.
q
)
= − (vθ)

2

r given by Equation (18) equals the centripetal acceleration required for
the object to follow a circular motion with constant tangential velocity centred about the egocentre
(consistent with the perceived acceleration of an object seen from a side window of the train at a
distance r normal to the train). If vr = 1, vθ = 1, and vϕ = 0, corresponding to an object having both
radial and tangential components of velocity (like looking ahead but off to one side from the front
window of the train), the spray acceleration f2

(
q,

.
q
)

given by Equation (18) has a radial component
(vr)2

r − (vθ)
2

r and a tangential component 2 vrvθ

r . The latter equals a coriolis acceleration causing a
change in the rate of rotation of the coordinates or direction of gaze. These intuitive descriptions are
verified in Section 5 below.

4.3. Covariant Derivatives

Covariant derivatives defined in Riemannian geometry have an important role to play in visual
perception. They provide a quantitative measure of the perceived directional accelerations of objects
moving in the outside world taking both actual accelerations and illusory accelerations into account.
They also quantify the perceived curvature at each point along the edges of objects and thereby
provide the perceived shape of objects as judged from their outlines (see Section 6). Importantly,
the perceived rate of change in the nominated direction at the specified point is measured relative to
the curvature of the ambient perceived visual manifold at that point. Given a curve α(t) in the manifold
(G, g) parameterized by time t, the covariant derivative ∇ .

α

.
α(ti) of the velocity vector

.
α(ti) tangent

to the curve in the direction
.
α(ti) at the point α(ti) is obtained by subtracting the spray acceleration

f2
(
α(ti),

.
α(ti)

)
from the acceleration

..
α(ti) at the point α(ti):

∇ .
α

.
α(ti) =

..
α(ti)− f2

(
α(ti),

.
α(ti)

)
. (19)

The acceleration
..
α(ti) is an ordinary Euclidean acceleration. It does not take into account rotation

of the coordinate basis vectors
(
∂r, ∂θ , ∂ϕ

)
from point to point in the manifold, so does not include

illusory accelerations. It can be interpreted as a measure of the actual Euclidean acceleration at the
corresponding point and direction in the Euclidean outside world.

If the Euclidean acceleration
..
α(ti) is everywhere zero (i.e., the object is moving at constant speed

along a straight line in the environment) then we obtain:

∇ .
α

.
α(ti) = − f2

(
α(ti),

.
α(ti)

)
(20)

at every point α(ti) along the curve. In this case the covariant derivative ∇ .
α

.
α(ti) is the perceived

illusory acceleration equal to the negative of the geodesic spray vector f2
(
α(ti),

.
α(ti)

)
at each point ti

along the curve; i.e., the object appears to accelerate towards the observer as it approaches or decelerate
as it recedes. If the Euclidean acceleration

..
α(t) is not zero and the object is actually accelerating in

the Euclidean outside world (most likely following a curved path) then the covariant derivative in
Equation (19) gives the perceived metric directional acceleration in the direction

.
α(ti) at each point

along the path, taking both the actual Euclidean acceleration and the illusory acceleration into account.
It is important to notice that the covariant derivative can be used to measure the perceived accelerations
across the perceived visual manifold. We will use this fact in subsequent sections.
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We can now ask the converse question. How does an object have to move in the Euclidean outside
world for it to be perceived as moving at constant speed in a straight line? By setting the perceived
acceleration ∇ .

α

.
α(t) equal to zero in Equation (19) we obtain:

..
α(ti) = f2

(
α(ti),

.
α(ti)

)
. (21)

Thus, to be perceived as moving in a straight line at constant metric speed, an object in the Euclidean
outside world has actually to be accelerating with a Euclidean acceleration

..
α(ti) which, at every

point along its path in Euclidean space, equals the acceleration spray vector f2
(
α(ti),

.
α(ti)

)
at the

corresponding point and velocity in the perceived visual manifold (G, g). In other words, to be
perceived as moving in a straight line at constant speed the object must follow a (usually curved)
path in the outside world with a Euclidean acceleration

..
α(ti) equal but opposite in sign to the illusory

acceleration − f2
(
α(ti),

.
α(ti)

)
introduced by the visual system. This is exactly how the geodesics of the

perceived visual manifold (G, g) are defined. The geodesics are accelerating curves in the Euclidean
outside world that appear as straight lines with constant metric speed (i.e., their metric acceleration
∇ .

α

.
α(t) equals zero) in the perceived visual manifold (G, g).

The covariant derivative ∇XY where X and Y are arbitrary vector fields on (G, g) provides a
measure at each point q ∈ (G, g) of the rate of change of the vector Y for movement in the X-direction.
In other words, it measures the directional derivative of the vector Y in the X-direction taking into
account the warping of the manifold (G, g) and hence the illusory acceleration. We now use this
definition of the covariant derivative to obtain a measure relating to the concept of parallelity. At each
point along a geodesic α(t) there exists a vector

.
α(t) tangent to the curve. The family of vectors

.
α(t) forms a vector field along the geodesic α(t). Being a geodesic, α(t) has zero metric acceleration
(∇ .

α

.
α(t) = 0), hence α(t) is perceived as being a constant speed straight line while tangent vectors

.
α(t)

along it are perceived as being collinear and are said to be parallel translated along α(t).
This notion of parallel translation can be generalized to any family of vectors γ(t) along α(t) not

necessarily tangent to the geodesic α(t). As presented by Lang [109], the change in the vector γ(t) for
movement in the direction

.
α(t) along α(t) is given by the covariant derivative

∇ .
αγ(ti) = γ′

.
α(ti)− B

(
α(ti);

.
α(ti), γ(ti)

)
, (22)

where γ′ is the Jacobian matrix of the vector γ at each point α(ti) along the curve and
B
(
α(ti);

.
α(ti), γ(ti)

)
is a symmetrical bilinear map at α(ti) that transforms the two vectors

.
α(ti) and

γ(ti) in the 3D tangent vector space Tα(ti)
G at the point α(ti) along the curve into an acceleration vector

in Tα(ti)
G. The bilinear map B is algebraically related to the geodesic spray field f2 and, as shown in

Equations (23) and (24), given one the other can be computed [109]:

B
(
α(ti);

.
α(ti), γ(ti)

)
=

1
2
[

f2
(
α(ti),

.
α(ti) + γ(ti)

)
− f2

(
α(ti),

.
α(ti)

)
− f2(α(ti), γ(ti))

]
, (23)

f2
(
α(ti),

.
α(ti)

)
= B

(
α(ti);

.
α(ti),

.
α(ti)

)
. (24)

When the covariant derivative ∇ .
αγ(t) in Equation (22) is zero everywhere along the curve α(t) the

vector γ(t) is said to be parallel translated along α(t) and all the vectors γ(t) along the curve are
parallel to each other. Parallel translation of the vector γ(t0) at α(t0) to the vector γ(ti) at α(ti) along
α(t) is path dependent and is described by Pti

t0
γ(t0) = γ(ti) where Pti

t0
is a linear invertible isometric

transformation between the vector spaces Tα(t0)
G and Tα(ti)

G along the curve.
Defined in this way, parallel transformation has a useful role to play in understanding visual

perception. This is because vectors γ(t) that are parallel translated along a geodesic in the visual
manifold will be perceived as being parallel to each other, whereas they are not parallel in the Euclidean
outside world. The generalized covariant derivative ∇ .

αγ(t) of vector field γ(t) along α(t) and the
associated parallel translation of γ(t) along α(t) when ∇ .

αγ(t) = 0 can be used to quantify the
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difference between lines in the outside world that are truly parallel and lines that are perceived as
being parallel. This underlies the experimental work of Cuijpers and colleagues [17–20] introduced in
Section 1 and discussed in Section 8.5.

4.4. Christoffel Symbols

To simplify notation in this section and the next we implement a number-indexing system that
equates r with 1, θ with 2, and ϕ with 3. Thus, for example, the cyclopean coordinate basis vectors
∂r, ∂θ , and ∂ϕ spanning a tangent vector space will be written in the alternative form ∂k with k = 1, 2, 3
and we introduce the Christoffel symbols notated as Γi

jk with i, j, k = 1, 2, 3. The Christoffel symbols Γi
jk

are important in vision because they allow us to quantify the relative directional rates of change of the
coordinate basis vectors ∂k that occur with infinitesimal movements in the warped visual manifold
(G, g). They are related to the covariant derivatives ∇∂k

∂j with j, k = 1, 2, 3 measuring the rate
of change of each coordinate basis vector ∂j associated with movement in the direction of another
coordinate basis vector ∂k at each point q in the manifold (G, g). As indicated in Section 4.2, it is this
change in the coordinate basis vectors with movement across the manifold that gives rise to illusory
accelerations of objects moving in the outside world. It should not be a surprise, therefore, that the
Christoffel symbols provide an alternative way of quantifying the components

(
f2
(
q,

.
q
))i

= − .
qk .

qjΓi
jk

of the acceleration spray vector f2
(
q,

.
q
)

at each position and velocity
(
q,

.
q
)
. The repetition of the

indices j and k first as superscripts and then as subscripts in this equation implies summation over
j, k = 1, 2, 3. Known as Einstein’s summation convention, it is used from here forward in this paper,
particularly in Section 4.5. There we introduce tensors which operate on dual spaces of vectors and
covectors (analogously to matrices operating on dual spaces of column and row vectors). To facilitate
use of the summation convention, index positions are always chosen so that vectors have lower indices
and covectors have upper indices while the components of vectors have upper indices and those of
covectors have lower indices. This ensures that the Einstein summation convention can always be
applied. This simplifies notation by removing the need for summation signs. We require the Christoffel
symbols in order to compute the Riemann curvature at each point in the manifold in Section 4.5.

At each q ∈ (G, g), the Christoffel symbols Γi
jk correspond to the components of the covariant

derivative vector ∇∂k
∂j in the tangent space projected on to the basis vectors spanning the tangent

space at that point; that is:

∇∂k
∂j = ∑ 3

i=1Γi
jk∂i = Γ1

jk∂1 + Γ2
jk∂2 + Γ3

jk∂3 = Γi
jk∂i. (25)

Notice the use of the Einstein summation convention in the last term in Equation (25). Working in this
way generates a large number of components Γi

jk, i.e., 27 Christoffel symbols are required at each point
q = (r, θ, ϕ) in the 3D perceived visual manifold (G, g). Nevertheless, these have the advantage that
they can be computed at each point from the known metric g(r) and its differentials. By definition,
in any Riemannian manifold the Christoffel symbols are compatible with the Riemannian metric,
that is ∇g = 0, and are symmetrical, that is Γi

jk = Γi
kj. From these properties the following equation

expressing the Christoffel symbols at each point in terms of the metric g(r) and its differentials is
derived [111]:

Γi
jk =

1
2

gim
(

∂gmj

∂xk +
∂gmk

∂xj −
∂gjk

∂xm

)
, (26)

where gmj are the components of g at each q ∈ (G, g) and gim are the components of the inverse metric
g−1 at each q ∈ (G, g).

Using Equation (26) and the Riemannian metric in Equation (12), we computed all 27 Christoffel
symbols for the perceived visual manifold (G, g) as a function of their position q = (r, θ, ϕ) in (G, g).
We found all to be zero except for the following seven:

Γ1
11 = −1

r
, Γ1

22 =
1
r

, Γ1
33 =

1
r

, Γ2
12 = −1

r
, Γ2

21 = −1
r

, Γ3
13 = −1

r
, Γ3

31 = −1
r

. (27)
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Returning to (r, θ, ϕ) notation, the subparts of Equation (27) show respectively:
(i) ∇∂r ∂r = (−1/r)∂r + 0∂θ + 0∂ϕ so only the component of ∇∂r ∂r in the ∂r direction is non-zero,
(ii) ∇∂θ

∂θ = (1/r)∂r + 0∂θ + 0∂ϕ so only the component of ∇∂θ
∂θ in the ∂r direction is non-zero,

(iii) ∇∂ϕ
∂ϕ = (1/r)∂r + 0∂θ + 0∂ϕ so only the component of ∇∂ϕ

∂ϕ in the ∂r direction is non-zero,
(iv and v) ∇∂r ∂θ = ∇∂θ

∂r = 0∂r − (1/r)∂θ + 0∂ϕ so only the components of ∇∂r ∂θ and ∇∂θ
∂r in the ∂θ

direction are non-zero, and (vi and vii) ∇∂r ∂ϕ = ∇∂ϕ
∂r = 0∂r + 0∂θ − (1/r)∂ϕ so only the components

of ∇∂r ∂ϕ and ∇∂ϕ
∂r in the ∂ϕ direction are non-zero. We now use this information to compute the

curvature of the perceived visual manifold (G, g).

4.5. The Riemann Curvature Tensor

Warping of the perceived visual manifold (G, g) is quantified by the Riemann curvature tensor at
each point q = (r, θ, ϕ) in the manifold. However, while the curvature of a 2D surface is an easily
understood concept, the idea of the curvature of a 3D manifold is more difficult to grasp. Hence we
provide the following intuitive description. A key property of the 3D Euclidean outside world is that
it is “flat” with zero curvature everywhere. Consequently, an arbitrary tangent vector can be parallel
translated along any pathway between any two points and remain parallel everywhere. In other
words, in the Euclidean world parallel translation is path independent and the flat space is said to be
totally parallel. Given arbitrary vector fields X and Y on the flat Euclidean space, parallel translation
of a vector Z for an infinitesimal time along the integral flow of Y followed by parallel translation
for an infinitesimal time along the integral flow of X does not in general equal parallel translation
of the vector Z for an infinitesimal time along the integral flow of X followed by parallel translation
for an infinitesimal time along the integral flow of Y. Equivalently, in terms of covariant derivatives,
∇X∇YZ−∇Y∇XZ 6= 0, and we can say that in general the products of covariant derivatives do not
commute, even on flat Euclidean spaces. However, by definition, (∇X∇Y −∇Y∇X)Z equals ∇[X,Y]Z,
where [X, Y] = (XY−YX) is a vector known as the Lie bracket. Thus, for arbitrary vector fields X and Y
and an arbitrary vector Z on a flat Euclidean space, we can write that∇X∇YZ−∇Y∇XZ−∇[X,Y]Z =

0. This provides a criterion for flatness. Any other space for which∇X∇YZ−∇Y∇XZ−∇[X,Y]Z does
not equal zero is not flat. Indeed we can define a curvature operator R(X, Y) = ∇X∇Y −∇Y∇X −
∇[X,Y] that operates on a vector Z to give a vector R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z at every
point across a manifold. If R(X, Y)Z is not zero at a point then the manifold is not flat at that point
and the magnitude of the vector R(X, Y)Z provides a measure of how far the curvature deviates
from flatness.

Similar to the curvature operator R(X, Y) operating on a vector Z across a manifold, we now
define a curvature tensor that quantifies curvature as a real number independently of the coordinates
in which a manifold is expressed. Using the tensor characterization lemma [57] (Chapter 2) and by
introducing a covector ω (i.e., a dual vector similar to a row vector in linear matrix theory) at each
point in the manifold, we can define a type (1,3) curvature tensor that operates on three vectors X, Y, Z
and a covector ω and transforms them into a real number:

R(X, Y, Z, ω) = 〈R(X, Y)Z, ω〉 = a real number. (28)

The vectors X, Y, Z can be written as linear combinations X = Xi∂i, Y = Y j∂j, Z = Zk∂k of
the cyclopean coordinate basis vectors ∂r, ∂θ , and ∂ϕ spanning the tangent space TqG at the point
q ∈ (G, g) and the covector ω can be written as a linear combination ω = ωl dxl of the dual basis
vectors

(
dx1 = dr, dx2 = dθ, dx3 = dϕ

)
spanning the covector space T∗q G at q ∈ (G, g). Notice the

use of upper and lower indices consistent with the Einstein summation convention (Section 4.4).
The tensor R(X, Y, Z, ω) can be represented as a tensor in an 81-dimensional tensor space spanned by
basis tensors

(
dxi ⊗ dxj ⊗ dxk ⊗ ∂l

)
(⊗ signifies tensor product) with components Rijk

l quantifying
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the projection onto each basis tensor. The tensor R(X, Y, Z, ω) can then be expressed in terms of its
3× 3× 3× 3 = 81 components,

Rijk
l = R

(
∂i, ∂j, ∂k, dxl

)
, i, j, k, l = 1, 2, 3 (29)

at each q ∈ (G, g). The components Rijk
l can be computed [111] from the previously obtained

Christoffel symbols in Equation (27) using the equation:

Rijk
l =

∂Γl
jk

∂xi −
∂Γl

ki
∂xj + Γm

jkΓl
mi − Γm

kiΓ
l
mj. (30)

Applying Equation (30), we computed all 81 components Rijk
l (i, j, k, l = 1, 2, 3) of the curvature

tensor R(X, Y, Z, ω) as a function of position q = (r, θ, ϕ) in (G, g). We then implemented a
useful conversion that entails expressing the tensor R(X, Y, Z, ω) in the form Rm(X, Y, Z, W) where
W is the vector in TqG dual to the covector ω in T∗q G. The type (0,4) Riemann curvature tensor
Rm(X, Y, Z, W) can be represented as a tensor in an 81-dimensional tensor space spanned by basis
tensors

(
dxi ⊗ dxj ⊗ dxk ⊗ dxl

)
with components Rijkl (i, j, k, l = 1, 2, 3) quantifying the projection

onto each basis tensor. The Riemann curvature tensor Rm(X, Y, Z, W) can then be expressed in terms
of its 3× 3× 3× 3 = 81 components,

Rijkl = R
(
∂i, ∂j, ∂k, ∂l

)
, i, j, k, l = 1, 2, 3 (31)

at each q ∈ (G, g) by the operation known as lowering the index. This is achieved using the important
property of Riemannian metrics g that allows us to convert tangent vectors to cotangent vectors
and vice versa; viz., gW = ω and ω = g−1W [57] (Chapter 2). In terms of coordinate basis vectors
∂r, ∂θ , ∂ϕ spanning the tangent space TqG at the point q ∈ (G, g) and coordinate basis covectors
dx1 = dr, dx2 = dθ, dx3 = dϕ spanning the dual cotangent space T∗q G at the same point q ∈ (G, g)

this conversion can be written as gll

(
W l∂l

)
= ωldxl . In other words, the components convert

according to gllW l = ωl . This is called lowering the index on the components. Applying this between
components Rijk

l and Rijkl of the curvature tensors gives:

gll Rijk
l = Rijkl (i, j, k, l = 1, 2, 3) (32)

where gll =
1
r2 from Equation (12). The advantage of lowering the index on the curvature components

Rijk
l in this way to obtain components Rijkl is that curvature components Rijkl are known to possess

symmetries Rijkl = −Rjikl , Rijkl = −Rijlk, Rijkl + Rjkil + Rkijl = 0, and Rijkl = Rklij. These symmetries
allow the number of components to be greatly reduced. Indeed, for the 81 components Rijk

l computed
using Equation (30) we find that all components Rijkl , i, j, k, l = 1, 2, 3 of the Riemann curvature tensor
Rm(X, Y, Z, W) at each point q ∈ (G, g) are zero with the exception of the following three:

R1221 = Rrθθr = −
1
r4 ; R1331 = Rrϕϕr = −

1
r4 ; R2332 = Rθϕϕθ = − 1

r4 ; (33)

where r is the Euclidean cyclopean distance from the egocentre. As described in the next section, these
three nonzero components of the Riemann curvature tensor are known as sectional curvatures of (G, g).
In Section 5 we examine these sectional curvatures by means of geodesic simulations.
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5. Geodesics of the Perceived Visual Manifold

5.1. Simulations

Geodesics plotted in the outside world are accelerating pathways (most often curved) that are
perceived as constant speed straight lines. Thus, the Euclidean accelerations

..
α(ti) = f2

(
α(ti),

.
α(ti)

)
of

geodesic trajectories in the outside world quantify the compressions and stretchings of the perceived
visual space introduced by the visual system. Plotting families of geodesic trajectories in the outside
world provides a method for visualizing and quantifying the warped geometry of the perceived visual
manifold. For example, roughly speaking, neighbouring geodesics that diverge in the outside world
indicate a negative curvature (bowl shape) of the manifold (G, g) while neighbouring geodesics that
converge in the outside world indicate a positive curvature of (G, g).

Geodesic trajectories are plentiful. Like straight lines in Euclidean space they pass through every
point in every direction. Given an initial position α(0) = (r(0), θ(0), ϕ(0)) and an initial velocity
.
α(0) = (

.
r(0),

.
θ(0),

.
ϕ(0)) at t = 0 the geodesic trajectory α(t) in the outside world parameterized

by time t can be computed by solving the non-linear differential equations Equations (17) and (21).
To solve these non-linear equations we constructed the Matlab/Simulink simulator shown in Figure 4.
We call the simulator a geodesic trajectory generator (GTG). By appropriately setting initial conditions
α(0) = (r(0), θ(0), ϕ(0)) and

.
α(0) = (

.
r(0),

.
θ(0),

.
ϕ(0)) in the GTG, it can generate geodesic trajectories

emanating from any initial point with any initial velocity in any initial direction in the 3D Euclidean
outside world.Vision 2018, 2, x FOR PEER REVIEW  27 of 66 

 

 
Figure 4. A block diagram for the Matlab/Simulink simulator used to generate geodesic trajectories 
in the 3D Euclidean outside world given initial conditions 𝛼(0) = (𝑟(0), 𝜃(0), 𝜑(0)) and 𝛼ሶ (0) =(𝑟ሶ(0), 𝜃ሶ(0), 𝜑ሶ (0)) set equal to (r(0),theta(0),phi(0)) and (dr(0),dtheta(0),dphi(0)) in the diagram. 
The MATLAB Function block was programmed to evaluate the expression for 𝑓ଶ൫𝛼(𝑡௜), 𝛼ሶ (𝑡௜)൯ in 
Equation (17). For each run the geodesic trajectory alpha = (r,theta,phi) was stored in the workspace, 
converted to Cartesian coordinates and plotted as shown in Figures 5, 6 and 7 below. 

A useful way to examine the warped geometry of the perceived visual manifold is to plot 
families of geodesics in the 3D outside world emanating from different initial points 𝑞 = 𝛼(0) with 
a family of initial velocities 𝑣௜ = 𝛼ሶ (0) confined to a chosen 2D plane at each initial point in the 
outside world. The nature of the warping of the manifold will determine the pattern of geodesics 
that result for each initial point and each initial plane containing the initial velocities. Such families 
of geodesics can be constructed using the following procedure: Choose an initial point 𝑞 = 𝛼(0) =(𝑟(0), 𝜃(0), 𝜑(0)) in the outside world. At this initial point 𝑞, specify two orthonormal vectors 𝑒ଵ 
and 𝑒ଶ that span a chosen 2D plane in the 3D tangent space at the initial point. This is denoted as 
plane II. Construct a family of equally spaced unit-length initial velocity vectors say 𝑣௜, 𝑖 = 0,1, ⋯ ,35 
from 0 deg to 350 deg in the plane II with angular spacing of 10 deg. Use 𝑞 and each initial velocity 𝑣௜, 𝑖 = 0,1, ⋯ ,35 as initial conditions ൫𝛼(0), 𝛼ሶ (0)൯ in the GTG simulator to generate a family of 
geodesic trajectories 𝛼(𝑡) in the 3D outside world emanating from the initial point 𝑞 = 𝛼(0) in 
every direction determined by the initial velocity vectors 𝛼ሶ (0) = 𝑣௜, 𝑖 = 0,1, ⋯ ,35  in the initial 
velocity plane II at the initial point. 

The resulting family of geodesics 𝛼(𝑡) emanating from the initial point 𝑞 = 𝛼(0) sweep out a 
2D surface in the 3D Euclidean outside world denoted by 𝑆ூூ called the plane section determined by the 
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Figure 4. A block diagram for the Matlab/Simulink simulator used to generate geodesic trajectories
in the 3D Euclidean outside world given initial conditions α(0) = (r(0), θ(0), ϕ(0)) and

.
α(0) =

(
.
r(0),

.
θ(0),

.
ϕ(0)) set equal to (r(0),theta(0),phi(0) ) and (dr(0),dtheta(0),dphi(0) ) in the diagram.

The MATLAB Function block was programmed to evaluate the expression for f2
(
α(ti),

.
α(ti)

)
in

Equation (17). For each run the geodesic trajectory alpha = (r,theta,phi) was stored in the workspace,
converted to Cartesian coordinates and plotted as shown in Figures 5–7 below.

A useful way to examine the warped geometry of the perceived visual manifold is to plot families
of geodesics in the 3D outside world emanating from different initial points q = α(0) with a family
of initial velocities vi =

.
α(0) confined to a chosen 2D plane at each initial point in the outside world.

The nature of the warping of the manifold will determine the pattern of geodesics that result for each
initial point and each initial plane containing the initial velocities. Such families of geodesics can be
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constructed using the following procedure: Choose an initial point q = α(0) = (r(0), θ(0), ϕ(0)) in the
outside world. At this initial point q, specify two orthonormal vectors e1 and e2 that span a chosen
2D plane in the 3D tangent space at the initial point. This is denoted as plane II. Construct a family of
equally spaced unit-length initial velocity vectors say vi, i = 0, 1, · · · , 35 from 0 deg to 350 deg in the
plane II with angular spacing of 10 deg. Use q and each initial velocity vi, i = 0, 1, · · · , 35 as initial
conditions

(
α(0),

.
α(0)

)
in the GTG simulator to generate a family of geodesic trajectories α(t) in the 3D

outside world emanating from the initial point q = α(0) in every direction determined by the initial
velocity vectors

.
α(0) = vi, i = 0, 1, · · · , 35 in the initial velocity plane II at the initial point.

The resulting family of geodesics α(t) emanating from the initial point q = α(0) sweep out a 2D
surface in the 3D Euclidean outside world denoted by SI I called the plane section determined by the
plane II. As derived in Appendix B, due to this method for constructing SI I , every geodesic in the
ambient manifold (G, g) emanating from the point q = α(0) with initial velocity tangent to the plane
II is also a geodesic emanating from the point q = α(0) in the 2D submanifold SI I . Consequently
the component Re1e2e2e1 of the Riemann curvature tensor at the initial point q = α(0) is both the
sectional curvature K(e1, e2) = Rm(e1, e2, e2, e1) of the perceived visual manifold (G, g) at q = α(0) and
the Gaussian curvature K̃(e1, e2) = R̃m(e1, e2, e2, e1) of the 2D plane section SI I at q = α(0). Thus the
non-zero curvature components Rrθθr, Rrϕϕr and Rθϕϕθ computed in Section 4.5 measure both the
sectional curvatures of the manifold (G, g) and the Gaussian curvatures of the plane sections SI I
determined by the planes II spanned respectively by the pairs of coordinate basis vectors ∂r∂θ , ∂r∂ϕ,
and ∂θ∂ϕ at q = α(0).

Using the GTG simulator we generated families of geodesics with different initial points and initial
velocity planes in the 3D outside Euclidean world. The GTG shown in Figure 4 uses the geodesic spray
field given in Equation (17). (In theory we might expect a GTG using the geodesic spray field given
in Equation (18) to work equally well. However, in practice such a simulator proved unsatisfactory
because some of the geodesics it produced were distorted by a singularity at θ = π

2 rad, ϕ = π
2 rad.)

We found that the resulting plane sections SI I corresponding to the families of generated
geodesics can be characterized by three categories related to the three nonzero sectional curvatures
in Equation (35). Together these three categories of plane sections SI I provide a complete
picture of the warped geometry of the perceived visual manifold and of its sectional curvatures
Rrθθr, Rrϕϕr and Rθϕϕθ . The geodesics sweeping out each of the three types of SI I are presented in the
figures below where, for convenience of plotting, the trajectories α(t) = (r(t), θ(t), ϕ(t)) are converted
to Cartesian coordinates α(t) = (x(t), y(t), z(t)). As a consequence, in Figure 5 the ∂r∂θ-plane is
depicted as the xy-plane and the ∂r∂ϕ-plane is depicted as the yz-plane. Likewise, in Figure 6 the
∂θ∂ϕ-plane through the initial point is depicted as a plane in (x, y, z)-space tangent to the sphere
passing through initial point α(0) = (x(0), y(0), z(0)).

5.2. Initial Planes II Passing through the Egocentre

The simulations show that the family of geodesics SI I emanating from any initial point q in the
outside world at Euclidean distance r from the egocentre with initial velocities vi, i = 0, 1, · · · , 35 set
within any plane II passing through the egocentre remain confined to that plane for all time. In other
words, each plane passing through the egocentre is totally geodesic so that any point in the plane can be
connected to any other point in the plane by a geodesic confined to the plane. Such planes include
the ∂r∂θ-plane, the ∂r∂ϕ-plane, or any rotation of these planes through any rotation angle ψ about the
∂r-axis, the ∂θ-axis or the ∂ϕ-axis passing through the origin.

Figure 5 (plotted in equivalent Cartesian coordinates) illustrates the above result. It shows
two families of geodesics, one emanating from initial point q = (r(0) = 1 m, θ(0) = π

2 rad,
ϕ(0) = 0 rad) (i.e., x = 0 m, y = 1 m, z = 0 m) and the other from initial point
q =

(
r(0) = 5 m, θ(0) = π

2 rad, ϕ(0) = 0 rad
)

(i.e., x = 0 m, y = 5 m, z = 0 m) in the outside
world. In each case unit-length initial velocities vi, i = 0, 1, · · · ,35 are set in the ∂r∂θ-plane (i.e., the
horizontal xy-plane passing through the egocentre) at the initial point. All the geodesics in 5a and
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5b (magnified in 5c and 5d) are contained for all time within the ∂r∂θ-plane passing through the
egocentre in the Euclidean outside world where they appear as accelerating or decelerating trajectories.
When the initial unit tangential velocity v at the initial point q is aligned with the ∂r-axis (i.e., the y-axis),
the geodesic follows a straight-line pathway along the axis, either accelerating outwards away from
the egocentre or decelerating inwards towards it. When the initial tangential velocity v at the initial
point q is aligned with the ∂θ-axis, the geodesic follows a constant tangential speed circular pathway
(circular geodesic) in the outside world centred on the egocentre. When the initial tangential velocity
v at the initial point q is at any other angle in the ∂r∂θ-plane, the geodesic follows a spiral pathway
in the outside world. When the initial velocity v has an outward pointing component, the geodesic
follows an accelerating outward spiral while when it has an inward pointing component, the geodesic
follows a decelerating inward spiral. In contrast, if plotted in the perceived visual manifold (G, g)
all these geodesics would appear as constant speed straight lines confined to the ∂r∂θ-plane through
the egocentre.Vision 2018, 2, x FOR PEER REVIEW  29 of 66 
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Figure 5. Cartesian plots in the Euclidean outside world of geodesics emanating from two different
initial points in the horizontal xy-plane passing through the egocentre at (0, 0, 0) with unit-length
initial velocities at the initial point set in the xy-plane. These geodesics all remain confined to the
xy-plane where they form radial, circular, or spiral lines from the initial point (see text for detail).
The radial and circular geodesics have been slightly thickened in all four diagrams. Dots along
geodesics mark 500 ms intervals of time. The same plots are obtained for any plane passing through the
egocentre. (a) A family of 36 geodesics emanating from initial point (x = 0 m, y = 1 m, z = 0 m)

generated from 36 unit-length initial velocity vectors set in the xy-plane and equally spaced in
all directions from the initial point. (b) A family of 36 geodesics emanating from initial point
(x = 0 m, y = 5 m, z = 0 m) generated from 36 unit-length initial velocity vectors as in (a). (c) A
magnified view of the initial point in (a) showing the family of 36 unit-length initial velocity vectors set
in the xy-plane at that point together with their corresponding geodesics. (d) A magnified view of the
initial point in (b) showing the family of 36 unit-length initial velocity vectors set in the xy-plane at that
point together with their corresponding geodesics.
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All the geodesics in Figure 5 diverge from each other indicating that the horizontal plane through
the egocentre in the perceived visual manifold (G, g) is negatively curved. Indeed, all the planes
passing through the egocentre are negatively curved. Comparing 5a with 5b shows that the deviation
between neighbouring geodesics decreases as the Euclidean distance r increases. This is consistent
with the negative sectional curvature Rrθθr = R1221 = − 1

r4 in Equation (33) computed in Section 4.5
decreasing with increasing Euclidean distance r. The 500 ms spacing between the dots in 5a compared
with 5b shows that the acceleration along outward spiralling geodesics is greater in the near visual
field (Figure 5a) than in the far visual field (Figure 5b). This is consistent with objects appearing to
accelerate as they approach. Also, comparing 5c and 5d, the deviation between the initial velocity
vectors and the corresponding geodesics is greater in the near field than in the far field. The same
pattern of geodesics is obtained for all planes passing through the egocentre. This includes the vertical
∂r∂ϕ-plane, consistent with the negative sectional curvature Rrϕϕr = R1331 = − 1

r4 in Equation (33)
computed in Section 4.5. The logarithmic spiral structure of the simulated geodesics in Figure 5 is the
same as the geodesic structure described by Koenderink and van Doorn [27] for frontally centred visual
fields with a well-defined “primary visual direction” and a specialized fovea.

5.3. Initial Planes II Normal to the Radial line from the Egocentre to the Initial Point

The simulations show that the family of geodesics SI I emanating from any initial point q in the
outside world at any Euclidean distance r from the egocentre with unit-length initial velocities vi,
i = 0, 1, · · · ,35 set in a plane II normal to a radial line from the egocentre (i.e., any ∂θ∂ϕ-plane normal to
a radial line) does NOT remain confined to that initial velocities plane. This plane is illustrated by the
two families of geodesics (plotted in equivalent Cartesian coordinates) in Figure 6. Figure 6a shows a
family of geodesics emanating from initial point q = (r(0) = 5 m, θ(0) = π/2 rad, ϕ(0) = 0 rad) (i.e.,
x = 0 m, y = 5 m, z = 0 m) in the outside world (same point as in Figure 5b) but with initial
velocities vi, i = 0, 1, · · · ,35 set in the ∂θ∂ϕ-plane at the initial point normal to the radial line (i.e., the
xz-plane passing through the initial point). All the geodesics in Figure 6a follow constant tangential
speed great circle pathways (like longitude lines emanating from the north pole) on the sphere centred
on the egocentre and passing through the initial point q in the outside world. A similar family of
great circle geodesics is shown in Figure 6b, this time for the initial point q = (r(0) = 5 m, θ(0) =
π/2 rad, ϕ(0) = π/4 rad) (i.e., x = 0 m, y = 3.54 m, z = 3.54 m) in the outside world. Again,
the initial velocities are set in the ∂θ∂ϕ-plane at the initial point normal to the radial line, now a plane
tilted by π/4 radians from the xy-plane. Again, these geodesics follow constant tangential speed great
circle pathways on the 5 m radius sphere centred on the egocentre and passing through the initial point
q in the outside world but now the axis of the sphere is tilted by π/4 radians towards the egocentre.
While the simulated geodesics extend all the way around the egocentre as shown in Figure 6, a human
observer has only a forward-looking visual field so can see only a portion of the sphere. However,
the direction of gaze can be varied in any direction and so the entire sphere can be experienced via
visual scanning and a series of fixations.



Vision 2018, 2, 43 31 of 67

Vision 2018, 2, x FOR PEER REVIEW  30 of 66 

 

[27] for frontally centred visual fields with a well-defined “primary visual direction” and a specialized 
fovea. 

5.3. Initial Planes II Normal to the Radial line from the Egocentre to the Initial Point 

The simulations show that the family of geodesics 𝑆ூூ emanating from any initial point 𝑞 in 
the outside world at any Euclidean distance 𝑟 from the egocentre with unit-length initial velocities 𝑣௜, 𝑖 = 0,1, ⋯,35 set in a plane II normal to a radial line from the egocentre (i.e., any 𝜕ఏ𝜕ఝ-plane 
normal to a radial line) does NOT remain confined to that initial velocities plane. This plane is 
illustrated by the two families of geodesics (plotted in equivalent Cartesian coordinates) in Figure 6. 
Figure 6a shows a family of geodesics emanating from initial point 𝑞 = (𝑟(0) = 5 m, 𝜃(0) =𝜋 2ൗ  rad, 𝜑(0) = 0 rad) (i.e., 𝑥 =  0 m, 𝑦 =  5 m, 𝑧 =  0 m) in the outside world (same point as in 
Figure 5b) but with initial velocities 𝑣௜, 𝑖 = 0,1, ⋯,35 set in the 𝜕ఏ𝜕ఝ-plane at the initial point normal 
to the radial line (i.e., the 𝑥𝑧-plane passing through the initial point). All the geodesics in Figure 6a 
follow constant tangential speed great circle pathways (like longitude lines emanating from the 
north pole) on the sphere centred on the egocentre and passing through the initial point 𝑞 in the 
outside world. A similar family of great circle geodesics is shown in Figure 6b, this time for the 
initial point 𝑞 = (𝑟(0) = 5 m, 𝜃(0) = 𝜋 2ൗ  rad, 𝜑(0) = 𝜋 4ൗ  rad) (i.e., 𝑥 =  0 m, 𝑦 =  3.54 m, 𝑧 = 3.54 m) in the outside world. Again, the initial velocities are set in the 𝜕ఏ𝜕ఝ-plane at the initial point 
normal to the radial line, now a plane tilted by 𝜋 4ൗ  radians from the 𝑥𝑦-plane. Again, these 
geodesics follow constant tangential speed great circle pathways on the 5 m radius sphere centred 
on the egocentre and passing through the initial point 𝑞 in the outside world but now the axis of the 
sphere is tilted by 𝜋 4ൗ  radians towards the egocentre. While the simulated geodesics extend all the 
way around the egocentre as shown in Figure 6, a human observer has only a forward-looking visual 
field so can see only a portion of the sphere. However, the direction of gaze can be varied in any 
direction and so the entire sphere can be experienced via visual scanning and a series of fixations. 

 
Figure 6. Cartesian plots in the Euclidean outside world of geodesics emanating from two different 
initial points with 36 unit-length initial velocity vectors set in a plane at the initial point normal to the 
radial line (indicated by the arrow) connecting it to the egocentre (0, 0, 0) (indicated by the dot). 
Small dots along the geodesics mark 500 ms intervals of time. (a) A family of 36 geodesics emanating 
from initial point (𝑥 =  0 m, 𝑦 =  5 m, 𝑧 =  0 m) (same as initial point in Figure 5b) generated from 
36 unit-length initial velocity vectors set in the 𝑥𝑧-plane passing through the initial point and equally 
spaced in all directions from that point in the plane. The resulting 36 geodesics do not remain in the 𝑥𝑧-plane but become constant tangential speed longitude lines emanating from the initial point to 
form a 5 m radius sphere centred on the egocentre. The circle geodesic in the 𝑥𝑦-plane in Figure 5b 
can be seen in Figure 6a and is slightly thickened. (b) A family of 36 geodesics emanating from initial 
point (𝑥 =  0 m, 𝑦 =  3.54 m, 𝑧 =  3.54 m). The 36 unit-length equally spaced initial velocity vectors 

Figure 6. Cartesian plots in the Euclidean outside world of geodesics emanating from two different
initial points with 36 unit-length initial velocity vectors set in a plane at the initial point normal to
the radial line (indicated by the arrow) connecting it to the egocentre (0, 0, 0) (indicated by the dot).
Small dots along the geodesics mark 500 ms intervals of time. (a) A family of 36 geodesics emanating
from initial point (x = 0 m, y = 5 m, z = 0 m) (same as initial point in Figure 5b) generated from
36 unit-length initial velocity vectors set in the xz-plane passing through the initial point and equally
spaced in all directions from that point in the plane. The resulting 36 geodesics do not remain in the
xz-plane but become constant tangential speed longitude lines emanating from the initial point to form
a 5 m radius sphere centred on the egocentre. The circle geodesic in the xy-plane in Figure 5b can be
seen in Figure 6a and is slightly thickened. (b) A family of 36 geodesics emanating from initial point
(x = 0 m, y = 3.54 m, z = 3.54 m). The 36 unit-length equally spaced initial velocity vectors are
set in the plane normal to the line connecting the egocentre and the initial point (a plane tilted by π/4

rad to the horizontal and tangent to the sphere at that initial point). The resulting 36 geodesics do not
remain in that plane but become constant tangential speed longitude lines emanating from the initial
point to form a 5 m radius sphere centred on the egocentre with its axis between the egocentre and the
initial point tilted by π/4 rad. The spheres generated in (a) and (b) correspond to visual spheres centred
on the egocentre.

5.4. Initial Planes II Not Normal to the Radial Line from the Egocentre to the Initial Point and Not Passing
Through the Egocentre

The simulations show that the family of geodesics SI I emanating from any initial point q in the
outside world at any Euclidean distance r from the egocentre with unit-length initial velocities vi,
i = 0, 1, · · · ,35 set in a plane II not normal to the radial line from the egocentre (and not passing through
the egocentre) does not remain confined to that initial velocities plane. In Figure 7a the initial point is
q = (r(0) = 5 m, θ(0) = π/2 rad, ϕ(0) = π/4 rad) (i.e., (x = 0, y = 3.54 m, z = 3.54 m), the same
as in Figure 6b) but the initial velocities plane II is no longer normal to the radial line. Here it is tilted
back π/4 radians from the normal plane (i.e., the initial velocities are in the xz-plane passing through
the initial point). For ease of comparison, Figure 7b reproduces the spherical geodesics of Figure 6b
but only half the sphere is plotted.

The geodesics of Figure 7a follow a weighted combination of both accelerating spiral pathways in
the ∂r∂θ-plane and of constant speed great circle pathways on the sphere passing through the initial
point associated with initial velocities in the ∂θ∂ϕ-plane normal to the radial line. Generalizing this to
any initial point and any initial velocity plane tilted at any angle so it is not normal to the radial line
from the egocentre and does not pass through the egocentre, the initial velocities can be projected into
the ∂r∂θ , ∂r∂ϕ and ∂θ∂ϕ orthogonal coordinate planes at the initial point. Each geodesic with an initial
velocity vector in the tilted initial velocities plane can be constructed as a weighted combination of the
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accelerating spiral and constant speed great circle pathways generated by the initial velocities projected
into the coordinate planes. In other words, the families of geodesics associated with initial velocity
vectors confined to coordinate planes as illustrated in Figures 5 and 6 are sufficient to characterize all
geodesics in (G, g) emanating from any initial point with any initial velocity.
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Figure 7. Cartesian plots in the Euclidean outside world comparing geodesics with unit-length initial
velocity vectors set in a plane at the initial point not normal to the radial line to the egocentre (0, 0, 0)
with those where the velocity plane is normal. The radial line is indicated by an arrow, the egocentre by
a dot and small dots along the geodesics mark 500 ms intervals of time. (a) Geodesics emanating from
the initial point (x = 0 m, y = 3.54 m, z = 3.54 m) with a family of 36 unit-length initial velocity
vectors set in the xz-plane passing through the initial point. This plane is tilted back by an angle of π/4

rad from the normal to the radial line. The resulting family of geodesics is comprised of a weighted
sum of two parts: (i) Spherical geodesics associated with initial velocity vectors projected into the plane
normal to the radial line as in Figure 6b. (ii) Spiral geodesics associated with initial velocity vectors
projected into the plane containing the radial line through the egocentre and orthogonal to the normal
plane. These geodesics resemble those in Figure 5b. (b) For ease of comparison with part (a) the family
of geodesics in Figure 6b is reproduced here but only half the sphere is plotted.

5.5. Interpreting Geodesic Simulations

The geodesic families plotted in the outside Euclidean world in Sections 5.2–5.4 provide a way for
us to analyze and understand the warped geometry of the perceived visual manifold attributable to
the size–distance relationship introduced by the optics of the eye. As the initial point (r, θ, ϕ) from
which a family of geodesics emanates is moved about in the outside world the spherical coordinate
basis vectors

(
∂r, ∂θ , ∂ϕ

)
at the initial point move and rotate with it. In consequence, all the geodesics

in Figures 5–7 simply rotate with rotation of the radial line between the egocentre and the initial point.
In other words, the pattern of geodesics and hence the warping of the perceived visual manifold is
isotropic at the egocentre; that is, the same in every direction from the egocentre.

The simulated geodesics illustrated in Figure 5 show that the perception of every plane in
the outside world passing through the egocentre is warped in the same way. All the geodesics
emanating from any point in such a plane with initial velocities in the plane remain within the plane.
The accelerating nature of the geodesics shows that Euclidean distances in the plane are perceived as
foreshortened (Figure 3) and the curved nature of the geodesics shows that the plane is perceived as
warped. A line connecting any two points in the plane perceived as being a straight line with zero
acceleration in the warped perceived visual manifold is actually curved towards the egocentre in the
outside world with the actual direction between the two points changing towards the egocentre as
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the distance between the two points increases. This underlies what is found in the pointing error
experiments discussed in Section 8.5.

The simulated geodesics with initial velocities confined to a plane normal to a radial line
connecting the egocentre to the initial point form longitude lines on a sphere centred at the egocentre as
shown in Figure 6. Such families of simulated geodesics sweep out visual spheres defined in Section 3.2
forming spherical surfaces on which the Riemannian metric g is constant. In Section 5.6 below we
will see that the visual spheres in the outside world are perceived as planes normal to the direction of
gaze in the warped visual manifold (G, g) on which the size of any object is perceived to be constant.
Transformation of the visual spheres in the outside world into planes in (G, g) emphasizes the extent
of the warping of the perceived visual world introduced by the visual system.

5.6. Euclidean Coordinates versus Perceptual Coordinates

As shown in Section 5.2, any plane in the outside world that passes through the egocentre is
totally geodesic (i.e., any two points in the plane can be joined by a geodesic confined to the plane).
We have shown previously [52] that such planes can be spanned by totally geodesic coordinate systems
with all of the coordinate grid lines being geodesics. Radial and circular geodesics like those slightly
thickened in Figure 5 can be used to build such a geodesic coordinate system. Construction of a totally
geodesic coordinate grid for the horizontal plane in the Euclidean outside world using radial and
circular geodesics is illustrated in Figure 8a and its conformal transformation into the perceived visual
manifold (G, g) is illustrated in Figure 8b.Vision 2018, 2, x FOR PEER REVIEW  33 of 66 
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Figure 8. (a) A grid of circular and radial geodesics in the outside world in any plane passing through
the egocentre represented by the dot • at the origin and (b) its image under a conformal map Φ
between the plane in the Euclidean outside world and the corresponding plane in the perceived visual
manifold with the egocentre again represented by •. The vectors ξ are Killing vectors whose integral
flows preserve the metric g. The vectors η =

.
α are velocity vectors tangent to the radial geodesics

α(r). The conformal map Φ maps circular geodesics s(θ) and radial geodesics α(r) intersecting at right
angles in the Euclidean outside world to equivalent horizontal straight lines s(θ) and vertical straight
lines α(r) intersecting at right angles in the perceived visual manifold. Notice that in (b) the intervals on
the horizontal straight lines are equal while the equivalent circular arc-lengths s = r∆θ in the outside
world increase linearly. Also, the intervals on the vertical lines in (b) decrease logarithmically while
the equivalent radial intervals in (a) are constant. The difference between the two coordinate systems
illustrates the profound warping introduced by the visual system.

If the plane in Figure 8a is rotated about any radial line, the circular geodesics sweep out the
family of egocentric visual spheres in the outside world seen in Figure 6. The visual spheres are closely
related to the Killing vectors of (G, g). Killing vector fields ξ (named after the German mathematician
Wilhelm Killing 1847–1923) are defined to be those vector fields ξ whose integral flows in the manifold
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preserve the metric g [109] (Chapter XIII). In the perceived visual manifold (G, g) the metric g(r) in
Equation (12) depends only on the Euclidean distance r and, therefore, is constant along points in
the manifold corresponding to points along the circular geodesics (on visual spheres) in the outside
world. Consequently, all vector fields ξ tangent to points in the manifold on visual spheres in the
outside world are g-Killing vector fields and their integral flows in the manifold are isometries; i.e.,
they preserve metric inner products and metric distances between local points. A Lie group of 2D
isometries (transformations) acting on the perceived visual manifold (G, g) will generate the set
of visual spheres in the outside world as its 2D orbits. Since the singularity at the egocentre has
been removed by the hole described in Section 4.1, the space of orbits (visual spheres) is itself a
manifold [110] (Chapter 9).

In Figure 8a the vector field ξ tangent to the circular geodesics is a g-Killing vector field whose
integral flow is confined to the circular geodesics and the vector field η normal to the circular geodesics
has an integral flow α(r) along the radial geodesics connecting one circular geodesic to the next. These
circular and radial geodesics form a totally geodesic coordinate system for the horizontal plane passing
through the egocentre in the outside world.

Equations (34) and (35) are derived from the theory of Killing vector fields [109] (Chapter XIII):

grad‖ξ‖2
g = −2∇ξξ = 0, (34)

∇η〈ξ, η〉g = 0. (35)

Equation (34) implies that for any point on any visual sphere the gradient of the metric norm ‖ξ‖2
g =

〈ξ, ξ〉1/2
g of the Killing vector ξ at the corresponding point in the manifold is zero. In other words,

the metric norm is unchanged by movement in any direction in the 3D (G, g) manifold. This might
seem counterintuitive but it has to be kept in mind that the metric g causes metric distances in (G, g) to
shrink in all three dimensions in inverse proportion to Euclidean distance r. Equation (35) implies that
the metric inner product 〈ξ, η〉g remains constant along points in the manifold corresponding to any
radial geodesic α(r) in the outside world. Consequently it can be deduced from Equations (34) and
(35) that both η and ξ and their metric inner products 〈η, η〉g, 〈ξ, ξ〉g, and 〈η, ξ〉g are parallel translated
and remain constant along pathways in the manifold corresponding to both radial geodesics and great
circle geodesics in the outside world. As seen in Figure 8a, the angle between the velocity vector η and
the g-Killing vector ξ in the outside world equals π

2 radians at every point in the plane. The equivalent
straight lines in Figure 8b also intersect at an angle of π

2 radians in the perceived visual manifold (G, g)
consistent with a conformal mapping between the outside world and (G, g).

Remember that geodesics are accelerating curves in the outside world that are perceived as
constant speed straight lines in the perceived visual manifold (G, g). Consequently, points in the
manifold corresponding to circular geodesics in Figure 8a are constant speed straight lines in Figure 8b.
From the properties of Killing vector fields described above, it follows that the metric speed ‖ξ‖g =

〈ξ, ξ〉1/2

g(r) along any straight line in Figure 8b corresponding to a circular geodesics in Figure 8a is
constant and independent of the distance r. Since the length along the straight-line pathway in
the manifold (Figure 8b) corresponding to the arc-length s = r∆θ in the outside world (Figure 8a)
is computed by integrating the metric speed ‖ξ‖g along the straight-line pathway, and since the
metric speed ‖ξ‖g in the manifold is constant and independent of the distance r, it follows that the
perceived interval along the straight-line pathway in the manifold is determined by the angle ∆θ

and is independent of the distance r. Thus, radial lines evenly spaced by angle ∆θ in the outside
world (Figure 8a) correspond to parallel vertical straight lines in the manifold (G, g) with a fixed
interval between them independent of the perceived distance r (Figure 8b). This is consistent with
the observation that human observers using monocular viewing treat diverging ‘visual rays’ as
experientially parallel [29]. Similarly, circular geodesics evenly spaced by distance ∆r in the outside
world correspond to horizontal straight lines spaced logarithmically in the perceived visual manifold
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(G, g) because of the logarithmic relationship between actual distance and perceived distance described
in Section 4.1. These vertical and horizontal straight lines in the manifold (G, g) form a geodesic
coordinate system spanning the horizontal plane passing through the egocentre in (G, g).

Figure 8 also illustrates three points made earlier. (i) While the angle between the vertical and
horizontal straight lines in (G, g) equals π

2 radians everywhere, as does the angle between the radial
and circular geodesics in the outside world, the lengths of intervals on those lines in (G, g) are stretched
or compressed relative to the corresponding interval lengths in the outside world. This is consistent
with conformal mapping between the Euclidean outside world and the perceived visual manifold (G, g)
(Section 4.1 and Figure 3). (ii) The horizontal straight line passing through the egocentre in Figure 8b
corresponds to a point at the egocentre in Figure 8a and, therefore, is infinitely stretched. But this
singularity is avoided by virtue of the hole in visual perception about the egocentre (Section 4.1). (iii)
Since the warping of (G, g) is the same for every plane passing through the egocentre, including the
vertical ∂r∂ϕ-plane, it follows that the perceived size of a 3D object in the environment is determined
by the solid angle it subtends at the egocentre or equivalently, the perceived size of an object varies in
inverse proportion to the Euclidean cyclopean distance r in the outside world (Section 1). Notice that
the perceived size of an oblique line decreases as the angle it subtends at the egocentre decreases and
eventually shrinks to a dot when it is aligned with the direction of cyclopean gaze. This is different
from the judged length of an oblique line that requires a computation described below in Section 6.1.

6. Binocular Perception of the Size and Shape of Objects

When seen from a fixed place, the perceived surfaces of objects in the environment are represented
geometrically by 2D curved surfaces with boundary (or surfaces with corners) isometrically embedded
in the perceived visual manifold (G, g). The space between objects in the environment is transparent
and so the perceived image-point vectors for points in the outside world between objects are zero
vectors. Similarly, points in the environment occluded from view by other objects also have zero
image-point vectors. Image points on embedded 2D surfaces are easily detected, therefore, because
they are the only image points with non-zero image-point vectors. Image points on the boundaries
(edges) of perceived 2D embedded surfaces are also easily detected because they correspond to points
in (G, g) where the image points and/or the image-point vectors change rapidly from a foreground
to a background surface. In the case of a semi-transparent object there are two images, one from
transmission through the object and the other a reflection from the semi-transparent object. Reflection
causes the orientation of the image to reverse and the vector bundle is said to be twisted. Although
reflections can be handled within Riemannian geometry we will not explore them further in this paper.
In aerial perspective the atmosphere causes images of objects to become hazy with increasing distance.
But still the image-point vectors of the hazy object do not become zero. Thus image-point vectors of
embedded surfaces, including reflecting surfaces, are easily detected because they are the only points
in (G, g) with non-zero image-point vectors.

We will use the notation
(

G̃, g̃
)

to represent a 2D submanifold (surface) embedded in the

3D ambient perceived visual manifold (G, g), and ∂G̃ to represent its boundary. As described in
Riemannian geometry [57] (Chapter 8), an isometric embedding of

(
G̃, g̃

)
into (G, g) is a smooth

map (isometric embedding) ι :
(

G̃, g̃
)
→ (G, g) with the unknown metric g̃ at each point on

(
G̃, g̃

)
induced by the pull back g̃ = ι∗g of the known metric g on the ambient manifold. The smooth map ι :(

G̃, g̃
)
→ (G, g) , and hence the metric g̃, depends on the shape of the object in the outside world and

this shape is unknown. It follows that the pulled-back metric g̃ = ι∗g and the shape of the embedded
surface

(
G̃, g̃

)
have to be computed from the image-point vectors in the G-memory of Section 3.

The unknown metric g̃ on a 2D embedded submanifold
(

G̃, g̃
)

is different from the known metric
g at the same point in the ambient manifold (G, g), and its rate of change across the surface of the
embedded submanifold is different from the rate of change of g along the same path in the ambient
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manifold (G, g). The 2D embedded submanifold is perceived, therefore, as a 2D surface
(

G̃, g̃
)

with

boundary ∂G̃ that is curved relative to the ambient 3D perceived visual manifold (G, g) in which it
is embedded. Computing the size and shape of embedded surfaces from image-point vectors stored
in G-memory is complicated by the fact that all perceived measures of the surface are made relative
to the ambient perceived visual manifold (G, g) and this ambient manifold is itself curved (warped)
relative to the Euclidean outside world.

6.1. Seeing the Size of an Object

Consider measuring the size of an object in the outside world with a tape measure. The perceived
size of both the object and the tape measure change with distance r in exactly the same way so the size
of the object according to the measure given by the tape remains the same regardless of the distance r.
Now consider the concept of a “perceptual tape measure”. By this we mean an internal reference
metric that changes its infinitesimal length ds as a function of r in exactly the same way as does the
perceived image of an actual tape measure. The use of such an internal reference allows the actual
size of an object to be determined regardless of its position in the scene. Since the metric g decreases
smoothly as the distance r from the egocentre increases, it follows that the infinitesimal length ds at a
point along a curve γ(s) in (G, g) changes as the point on the curve moves closer or further away from
the egocentre. Despite this differential expansion/contraction of the curve, a measure of its length L
between any two points γ(si) and γ

(
s f

)
along the curve is always obtainable by integrating its metric

speed ‖ .
γ‖g =

〈 .
γ,

.
γ
〉 1

2
g along the curve between the points:

L =
∫ s f

si

〈 .
γ,

.
γ
〉1/2

g ds. (36)

Given an internal reference metric that can be moved to any point in (G, g), Equation (36) provides an
implementation of a perceptual tape measure able to measure the actual size of perceived objects and
distances between points in the outside world taking the warped geometry of the perceived visual
space into account. In other words, Equation (36) allows the internal reference metric to change its
length as a function of distance r in (G, g) in exactly the same way the perception of an actual tape
measure changes its length as a function of distance r in the outside world. As put by Frisby and
Stone, “[the object] looks both smaller and of the correct size given its position in the scene” [40] (p. 41).
The precision of a measurement made using a perceptual tape measure will decrease as the object
being measured moves further away from the egocentre because of the reduced size of both the object
and the perceptual tape. Incorrect estimates of Euclidean distance r will alter the differential stretching
of the perceived curve and lead to misperceptions of both apparent and actual size as well as to other
illusions (Sections 2.8 and 8.4).

6.2. Seeing the Outline of an Object

The perceived shape of the boundary of a two-dimensional submanifold embedded in (G, g)
(or at least of those segments of the boundary that belong to the object and not to other occluding
objects) plays an important role in object recognition. Sketching the outline of a hand, for example,
provides sufficient information to recognize that the object is a hand. This is an interesting observation
because both the perceived boundary and the perceived shape of the boundary of an object vary
with the position and orientation of the object in the environment relative to the observer and are not
invariant properties of the object. Actually, a smooth 3D object in the outside world does not have an
edge and the perceived boundary corresponds to a curve γ(s) on the surface of the 3D object (and in
the ambient manifold) that varies depending on the position and orientation of the object relative to
the observer. Nevertheless, when observed from a fixed place, objects in the environment have clearly
perceivable boundaries or edges.
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Cutting and Massironi [112] and Cutting [98] pointed out that many cave paintings, as well
as cartoons, caricatures and doodles are made of lines and, as images, they depict objects well.
They proposed a taxonomy of lines [112], describing edge lines that separate a figure from the
background, object lines where the line stands for an entire object in front of the background, crack lines
that imply an interior space hidden from view, and texture lines that can represent small edges, small
objects, small cracks as well as changes in shading and colour. They also pointed out that by using just
a few well-crafted lines an artist can sketch the outline of partly occluded objects in such a way that
both the occluding and the occluded objects can be recognized.

Despite the variety of line types, when looking at three-dimensional objects in the environment
from a fixed place, lines are representations of the boundaries (or segments of boundaries) of perceived
two-dimensional submanifolds embedded in the perceived visual manifold (G, g). The perceived
edge of the object is a curve (or segment of a curve) γ(s) embedded in the perceived visual manifold
(G, g). The perceived shape of the outline of the object is quantified by the perceived curvature κ(s0) at
each point γ(s0) along the curve. As given by Lee [57] for curves in Riemannian manifolds in general,
the curvature κ(s0) of a unit metric speed curve γ(s) at each point γ(s0) along the curve is equal to
the metric acceleration of the unit metric speed curve at that point.

As shown in Section 4.3, the perceived acceleration of a point moving along a unit metric speed
curve γ(s) in the ambient perceived visual manifold (G, g) is given by the covariant derivative∇ .

γ

.
γ(s0)

at each point γ(s0) along the curve. Since the covariant derivative ∇ .
γ

.
γ is zero for a geodesic curve in

(G, g) (geodesic curves appear as constant metric speed straight lines), it follows that the perceived
curvature κ(s0) provides a quantitative measure of how far the unit metric-speed boundary curve γ(s)
deviates from a geodesic in the ambient manifold at each point along the curve. Thus, the perceived
shape of the outline of an object is encoded by the perceived covariant derivatives ∇ .

γ

.
γ(s0) in the

ambient manifold at each point γ(s0) along the curve. The apparent curvature is perceived, therefore,
relative to the inherent curvature of the ambient manifold at each point.

6.3. Seeing the Shape of an Object

As the gaze point Q = (r, θ, ϕ) is moved about on the surface of an object in the environment,
the perceived 2D surface

(
G̃, g̃

)
is described by a smooth function r = f (θ, ϕ) between the Euclidean

cyclopean distance r and the cyclopean direction (θ, ϕ). Indeed, providing the point q = (r, θ, ϕ) on
the surface

(
G̃, g̃

)
is within the functional region of central vision, the function r = f (θ, ϕ) can be

computed for the space about a single point of gaze. The partial derivatives ∂ f/∂θ and ∂ f/∂ϕ of this
function at each point q ∈

(
G̃, g̃

)
on the surface define two vectors in the 3D ambient tangent space

TqG at each point on the surface. The two vectors span a 2D subspace TqG̃ in TqG that is tangent to the

2D submanifold
(

G̃, g̃
)

at the point q ∈
(

G̃, g̃
)

. Note that each point q ∈
(

G̃, g̃
)

on the submanifold
is also a point q ∈ (G, g) in the ambient manifold. The cross product ∂ f/∂θ × ∂ f/∂ϕ = N of these
two vectors defines a vector N in TqG at each point q ∈ (G, g) that is normal to the 2D submanifold(

G̃, g̃
)

at each point q ∈
(

G̃, g̃
)

. The vector N at each point can be normalized to obtain a unit length

vector n = N
〈N,N〉1/2

g
that spans the one-dimensional subspace NqG̃ normal to the submanifold

(
G̃, g̃

)
at each point q ∈

(
G̃, g̃

)
. It follows from this that the second fundamental form I I(X, Y) (defined in

Appendix B) is a vector normal to the surface in the normal bundle NqG̃ at each point q ∈
(

G̃, g̃
)

that
can be written as:

I I(X, Y) = h(X, Y)n, (37)

where h(X, Y) is a real number (scalar) equal to the metric length ‖I I(X, Y)‖g of the vector I I(X, Y).
Thus (see Appendix B) we can replace the vector-valued second fundamental form I I with a

simpler scalar-valued form h known as the scalar second fundamental form. This acts on any two vectors
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X and Y in TqG̃ and transforms them into a real number h(X, Y) at every point q ∈
(

G̃, g̃
)

. Therefore,

it is a symmetrical 2-covariant tensor field over the submanifold
(

G̃, g̃
)

. Using the index raising lemma
and the tensor characterization lemma Lee [57] (Chapter 8) shows that h(X, Y) can be expressed in
the form:

h(X, Y) = 〈SX, Y〉g, (38)

where S is a linear, symmetrical, nonsingular, matrix operator, known as the shape operator. It is a linear
endomorphism that operates on any vector X in TqG̃ and transforms it into another vector SX in TqG̃.
Because the shape operator S is a symmetrical matrix it has two orthonormal eigenvectors E1 and E2

in the tangent space TqG̃ known as the principal directions and two corresponding eigenvalues κ1 and

κ2 known as the principal curvatures of the submanifold
(

G̃, g̃
)

at the point q ∈
(

G̃, g̃
)

. In other words:

SE1 = κ1E1 and SE2 = κ2E2 . (39)

The principal curvature κ1 equals the maximum curvature of the submanifold
(

G̃, g̃
)

at the point

q ∈
(

G̃, g̃
)

in the principal direction E1. The principal curvature κ2 equals the minimum curvature of

the submanifold
(

G̃, g̃
)

at the point q ∈
(

G̃, g̃
)

in the principal direction E2.
In Appendix B we show that the covariant derivative ∇E1 n provides measures of the perceived

principal curvature κ1 and the principal direction E1 of the submanifold at each point q ∈
(

G̃, g̃
)

.
Likewise the covariant derivative ∇E2 n provides measures of the perceived principal curvature κ2

and the principal direction E2 of the submanifold at each point q ∈
(

G̃, g̃
)

. Although the covariant
derivative ∇E1 n is computed in the ambient manifold (G, g), the vector ∇E1 n is contained in the 2D

vector space TqG̃ tangent to the submanifold at the point q ∈
(

G̃, g̃
)

. The principal direction vector E1

is easy to find, being the only vector in TqG̃ for which the two vectors∇E1 n and E1 in TqG̃ are collinear.
Because the shape operator S is a non-singular symmetrical matrix, eigenvector E2 is orthogonal to
E1 so it too is easy to find. The metric length ‖∇E1 n‖g of the covariant derivative vector ∇E1 n equals

the maximum principal curvature κ1 of the submanifold at the point q ∈
(

G̃, g̃
)

and the metric length
‖∇E2 n‖g of the covariant derivative vector ∇E2 n equals the minimum principal curvature κ2 of the
submanifold at the same point. It makes intuitive sense that the rate at which the normal vector n
rotates as the point q ∈

(
G̃, g̃

)
moves across the surface of the submanifold is related to the curvature

of the submanifold. The more curved the submanifold, the greater the rate of rotation of the normal
vector n.

Equation (A9) in Appendix B shows that the perceived curvature at each point q ∈
(

G̃, g̃
)

on a

submanifold
(

G̃, g̃
)

is equal to the product κ1κ2 of the principal curvatures at that point. However,
the product κ1κ2 is equal to:

κ1κ2 = R̃m(E1, E2, E2, E1)− Rm(E1, E2, E2, E1). (40)

That is, the perceived curvature κ1κ2 equals the difference between the Gaussian curvature K̃(E1, E2) =

R̃m(E1, E2, E2, E1) of the submanifold
(

G̃, g̃
)

at the point q ∈
(

G̃, g̃
)

and the sectional curvature
K(E1, E2) = Rm(E1, E2, E2, E1) of the ambient manifold (G, g) at the same point q ∈ (G, g).

The Gaussian curvature K̃(E1, E2) = R̃m(E1, E2, E2, E1) of the submanifold depends on the
unknown metric g̃ induced on the submanifold by the embedding ι :

(
G̃, g̃

)
→ (G, g) and

consequently, it is influenced by the actual shape of the object in the Euclidean outside world. However,
the Gaussian curvature of the submanifold is not an intrinsic property of the object but varies with
the position and orientation of the embedded submanifold

(
G̃, g̃

)
in the ambient perceived visual

manifold (G, g). This is contrary to Gauss’s famous theorema egregium that asserts that the Gaussian
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curvature is an intrinsic property of the object, but that theorem only holds for submanifolds embedded
in Euclidean spaces. Here we are considering a submanifold embedded in a curved ambient perceived
visual space (G, g). As shown in Appendix B, the sectional curvature K(E1, E2) = Rm(E1, E2, E2, E1) of
the ambient manifold (G, g) depends on the position q ∈ (G, g) in the ambient manifold and on the
orientation of the plane II in TqG spanned by the orthonormal eigenvectors E1 and E2 that are tangent

to the submanifold at the point q ∈
(

G̃, g̃
)

. From this we see that, while the perceived shape of the 2D
submanifold embedded in the perceived visual manifold (G, g) is influenced by the intrinsic shape
of the object in the environment, it does not equal the intrinsic shape but varies as a function of the
position and orientation of the object relative to the egocentre of the observer.

To show that the perceived curvature κ1κ2 at every point on the surface of an object seen from
a fixed place is not sufficient to determine uniquely the perceived shape of the surface, consider the
example of a cylinder embedded in Euclidean space. The maximum principal curvature κ1 is measured
in the direction E1 tangent to the circumference of the cylinder and the minimum principal curvature
κ2 is measured in the direction E2 tangent to the long axis of the cylinder. The minimum principal
curvature κ2 is zero everywhere along the long axis of the cylinder so the product κ1κ2 is zero at every
point on the cylinder. But the cylinder has a different shape from the Euclidean plane for which the
product κ1κ2 also equals zero. Thus, the product κ1κ2 is not sufficient to uniquely encode the local
shape of the submanifold. As described by Trucco and Verri [113] and illustrated in Figure 9, it requires
a combination of the mean H = (κ1+κ2)

2 and the product K = κ1κ2 of the principal curvatures to encode
the local shape uniquely.Vision 2018, 2, x FOR PEER REVIEW  39 of 66 
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of the principal curvatures κ1 and κ2 is sufficient to encode the local shape of the submanifold uniquely
at each point on the submanifold [113].

7. A Geometric Representation of Visuospatial Memory

Thus far, we have described G-memory as providing an internal representation of the egocentric
3D outside world viewed stereoscopically from a fixed place in that world. We have proposed that,
during each interval of fixed gaze, the encoded left and right image-point vectors associated with
each point in the environment are stored in G-memory in association with their cyclopean coordinates
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(r, θ, ϕ). Thus, over time, through visual scanning of the environment from the fixed place,
the G-memory accumulates an image of the entire 3D environment as seen from that place. The warped
geometry of the perceived visual space is encoded by the Riemannian metric g(r, θ, ϕ) stored at each
site (r, θ, ϕ) in the G-memory. Thus the G-memory encodes both the warped geometry of the
perceived environment and the image of the environment as seen from the fixed place.

We now extend the model of G-memory to include moving the head (egocentre) from place
to place in the environment. The size–distance relationship introduced by the optics of the eye is
unchanged by moving the head from place to place (and hence the metric g(r, θ, ϕ) is unchanged)
but the retinal image does change because of changes in perspective associated with the different
viewpoints. In this section, we first describe a geometric structure (known as a vector bundle) for
G-memory associated with a fixed place, and we then extend this to a geometric structure (known
as a fibre bundle) to account for variable place. The extended geometric structure incorporates a
partitioning of visuospatial memory into a family of sub-memories (or G-memories) accessed by the
hippocampal encoding of place. Thus the different sub-memories encode images of the environment
seen from different places (i.e., place-encoded images). Finally, we describe a geometric mapping
between sub-memories (known as a vector-bundle morphism) that can remove occlusions and turn
visuospatial memory into a 3D cognitive model of the visual environment as seen from different places
in that environment.

7.1. The Geometric Structure of G-Memory for a Fixed Place

As described in Section 3, each site q = (r, θ, ϕ) in G-memory corresponds to a point in the 3D
Euclidean outside world specified in cyclopean spherical coordinates relative to the egocentric place
of the head in the environment (i.e., the egocentre). The G-memory can, therefore, be taken to be
an internal representation of 3D egocentric perceived visual space. We now consider the geometric
structure of that space. When each point q = (r, θ, ϕ) in the perceived visual manifold (G, g) is
associated with image-point vectors ΣL(r, θ, ϕ) and ΣR(r, θ, ϕ) stored at that site, the structure takes
on a geometric form illustrated in Figure 10.

At each image point q = (r, θ, ϕ) in the manifold (G, g) there exists a fibre (i.e., a geometric fibre
not a nerve fibre) containing a 30-dimensional vector space E(r, θ, ϕ) in which two 30-dimensional
image-point vectors ΣL(r, θ, ϕ) and ΣR(r, θ, ϕ) are stored. The fibre includes both the image point
q = (r, θ, ϕ) and the vector space E(r, θ, ϕ) so the union of all the fibres over all points q = (r, θ, ϕ)

in (G, g) equals the total space E called a vector bundle π : E→ G .
A vector bundle is a well-known structure in Riemannian geometry. It consists of a pair of smooth

spaces, E (the total space) and G (the base space), with a smooth surjective (onto) map π : E→ G
(the projection) between them [57] (Chapter 2). The total space E is a smooth 33-dimensional manifold;
three dimensions are required to specify the position q = (r, θ, ϕ) in (G, g) and 30 dimensions are
required to specify each image-point vector ΣL(r, θ, ϕ) and ΣR(r, θ, ϕ) in the vector space E(r, θ, ϕ)

at q = (r, θ, ϕ) in (G, g). A section of E is a map V : E→ G such that each V(r, θ, ϕ) ∈ E(r, θ, ϕ) is
an image-point vector (ΣL(r, θ, ϕ) or ΣR(r, θ, ϕ)) over its image point q = (r, θ, ϕ). Each section
V : E→ G is thus a vector field made up of all the image-point vectors over all the points q = (r, θ, ϕ)

in (G, g) acquired through visual scanning with the head in a fixed place. The vector space of all
possible vector fields V over (G, g)) is depicted by the notation ΓE (Figure 10).

The vector fields VL and VR in ΓE (consisting of all the left and right image-point vectors
ΣL(r, θ, ϕ) and ΣR(r, θ, ϕ) over all the image-points q = (r, θ, ϕ) in (G, g) accumulated within
a single vector bundle π : E→ G through visual scanning) thus encode a visual image of the entire 3D
environment as seen from the given fixed place. However, while we describe vector fields VL and VR

as being defined over all image points q = (r, θ, ϕ) in (G, g), it must be kept in mind from Section 6
that the image-point vectors ΣL(r, θ, ϕ) and ΣR(r, θ, ϕ) are only non-zero at those points q that are
located on the surfaces of objects. We also note again here that if the visual environment includes
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reflections then the orientation of the reflected images is reversed and the vector bundle is said to be
twisted [114].
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Figure 10. A schematic diagram illustrating the geometric vector bundle structure of G-memory for
a fixed place. The cyclopean coordinates q = (r, θ, ϕ) of each image point in (G, g) act as a memory
accession code for the storage and retrieval of the image-point vectors ΣL(r, θ, ϕ) and ΣR(r, θ, ϕ).
The union of all the image-point vectors ΣL and ΣR forms two 30-dimensional vector fields VL and
VR in the space of vector fields ΓE over (G, g). U represents an open subset in (G, g) with VL(U) and
VR(U) the vector fields over the open subset U.

An important geometric idea illustrated in Figure 10 is the notion of open subsets U in (G, g).
An open subset U can be expanded or contracted to any size. It can even cover all of (G, g). Vector
fields VL(U) and VR(U) confined to open subsets U in (G, g) can be defined and all the fibres within
these can be parallel processed as a unit. Indeed, it is this point processing (i.e., within fibre) nature of
computations in Riemannian geometry that makes this geometry so well suited for describing parallel
processing in the nervous system.

If images from a sufficiently large number of gaze points with the head in a fixed place are
accumulated in the vector bundle π : E→ G then, because of the rule for overwriting image-point
vectors (Section 3.1), the two vector fields VL and VR in ΓE can be regarded as fused into a single
binocular vector field V over (G, g). For simplicity of description, in subsequent sections we assume
that a sufficient number of gaze points have been accumulated through visual scanning for the vector
fields VL and VR in ΓE to be fused into a single binocular vector field V over (G, g) in the vector
bundle π : E→ G .

7.2. The Geometric Structure of Visuospatial Memory with Place Encoding

As a person moves from place to place in a local Euclidean environment the images of objects
projected on to the retinas change according to changes in the perspective from which they are
viewed. We propose that visuospatial memory is partitioned into sub-memories, each represented
geometrically by a vector bundle πp : Ep →

(
Gp, g

)
with p being an accession code corresponding

to the place p ∈ P of the head (egocentre) in the 3D Euclidean outside world. As indicated in
Section 1, it is well established that a place map P is neurally encoded in the hippocampus [43–50]
and we see this as providing the place manifold P in what follows. Every time the person passes
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through a given place p ∈ P in the environment, the retinal images, acquired from a sequence of
fixed gaze points with the head in that place, are encoded and stored into the appropriate vector
bundle sub-memory πp : Ep →

(
Gp, g

)
associated with that place. The stored images are continuously

updated through experience. Over time, many images of the environment acquired by visual scanning
from different places in the environment are accumulated into the appropriate place-related vector
bundle sub-memories. Since each vector bundle πp : Ep →

(
Gp, g

)
is associated with a different place

p ∈ P, we refer to the images of the environment stored in different vector bundle sub-memories
as place-encoded visual images. The street-view feature of Google maps provides a useful analogy.
The street address on the Google map is analogous to the place p of the head in the environment, while
all the street-view images at that point on the Google map are analogous to all the images acquired
by visual scanning at place p in the environment and stored in the vector bundle πp : Ep →

(
Gp, g

)
associated with p ∈ P.

Each vector bundle πp : Ep →
(
Gp, g

)
corresponds to a G-memory representing the perceived

visual manifold
(
Gp, g

)
associated with the place p ∈ P. Figure 11 depicts this schematically for

two places pi and pj. In each vector bundle sub-memory πp : Ep →
(
Gp, g

)
the Riemannian metric

g(r, θ, ϕ) and the warped geometry of the perceived visual manifold
(
Gp, g

)
are identical. In other

words, image points q = (r, θ, ϕ) in any one sub-memory can be mapped to corresponding image
points q = (r, θ, ϕ) in all other sub-memories and, because the warped geometries of all the

(
Gp, g

)
manifolds are identical, the flow of image points associated with moving the head from place to place
(i.e., optical flow) can be represented by the flow of image points in a single equivalent (G, g) manifold.Vision 2018, 2, x FOR PEER REVIEW  42 of 66 

 

 
Figure 11. A schematic diagram illustrating the geometric structure of a fibre bundle. The base 
manifold P encodes the place of the head in the Euclidean world. At each place 𝑝௜  ∈  𝑃 there exists a 
fibre containing a vector bundle. The vector fields 𝑉௣೔  and 𝑉௣ೕ  over the perceived visual manifolds ൫𝐺௣೔, 𝑔൯ and ቀ𝐺௣ೕ, 𝑔ቁ represent the encoded images of the environment seen from places 𝑝௜ and 𝑝௝ 

respectively. The map 𝐻 = ሾ𝐻ଵ, 𝐻ଶሿ between the two vector bundles illustrates a vector-bundle 
morphism. 𝐻ଵ(𝑝௜, 𝑝௝) depends only on the places 𝑝௜ and 𝑝௝ in the place map 𝑃 while 𝐻ଶ(𝑞௣೔, 𝑞௣ೕ) 
depends only on the positions of the image points 𝑞௣೔  and 𝑞௣ೕ  in the manifolds ൫𝐺௣೔, 𝑔൯  and ቀ𝐺௣ೕ, 𝑔ቁ. 
As shown in Figure 11, the place map 𝑃 in the hippocampus is represented geometrically by a 

3D base Euclidean manifold with a Cartesian external reference frame (X, Y, Z). As the person moves 
about in the outside world, the movement is represented by a curve 𝑝(𝑡), parameterized by time 𝑡, 
in the place manifold 𝑃. Since it is not possible to walk through a brick wall or to float up into the 
air, for example, it is not possible for the point 𝑝 to move everywhere in the place manifold 𝑃. The 
existence of no-go places forms a boundary 𝜕𝑃 on the place manifold 𝑃. At each reachable point 𝑝 ∈ 𝑃 in the 3D place manifold 𝑃, there exists a fibre containing a vector bundle 𝜋௣: E௣ → ൫𝐺௣, 𝑔൯ (i.e., a 
partition of visuospatial memory). Thus, each place 𝑝 ∈  𝑃 acts as an accession code for a vector 
bundle sub-memory 𝜋௣: E௣ → ൫𝐺௣, 𝑔൯ and each vector bundle sub-memory contains a place-encoded 
visual image of the environment associated with that place. 

While the manifolds ൫𝐺௣, 𝑔൯ in the various vector bundles are geometrically equivalent with 
the same Riemannian metric field 𝑔 and hence the same warping, the image-point vectors and the 
vector fields 𝐕௣ stored in each 𝐺௣-memory are different because, although they are images of the 
same environment, they have each been viewed from a different place 𝑝 ∈  𝑃 in that environment. 
The changing perspective causes the embedded surfaces of objects in the environment to be stored at 
different sites in the various 𝐺௣-memories and the embedded surfaces have different sizes, angles, 
and orientations depending on the place from where they were viewed. Image points occluded from 
view in one vector bundle are not occluded in others and vice versa. As we will see, it is the 
difference in the vector fields 𝐕௣ stored in the various 𝐺௣-memories and the way they change from 
one vector bundle to the next that encodes information about the 3D structure of the outside world. 

Figure 11. A schematic diagram illustrating the geometric structure of a fibre bundle. The base
manifold P encodes the place of the head in the Euclidean world. At each place pi ∈ P there exists
a fibre containing a vector bundle. The vector fields Vpi and Vpj over the perceived visual manifolds(

Gpi , g
)

and
(

Gpj , g
)

represent the encoded images of the environment seen from places pi and pj

respectively. The map H = [H1, H2] between the two vector bundles illustrates a vector-bundle

morphism. H1

(
pi, pj

)
depends only on the places pi and pj in the place map P while H2

(
qpi , qpj

)
depends only on the positions of the image points qpi and qpj in the manifolds

(
Gpi , g

)
and

(
Gpj , g

)
.



Vision 2018, 2, 43 43 of 67

As shown in Figure 11, the place map P in the hippocampus is represented geometrically by
a 3D base Euclidean manifold with a Cartesian external reference frame (X, Y, Z). As the person
moves about in the outside world, the movement is represented by a curve p(t), parameterized by
time t, in the place manifold P. Since it is not possible to walk through a brick wall or to float up into
the air, for example, it is not possible for the point p to move everywhere in the place manifold P.
The existence of no-go places forms a boundary ∂P on the place manifold P. At each reachable point
p ∈ P in the 3D place manifold P, there exists a fibre containing a vector bundle πp : Ep →

(
Gp, g

)
(i.e., a partition of visuospatial memory). Thus, each place p ∈ P acts as an accession code for a vector
bundle sub-memory πp : Ep →

(
Gp, g

)
and each vector bundle sub-memory contains a place-encoded

visual image of the environment associated with that place.
While the manifolds

(
Gp, g

)
in the various vector bundles are geometrically equivalent with

the same Riemannian metric field g and hence the same warping, the image-point vectors and the
vector fields Vp stored in each Gp-memory are different because, although they are images of the
same environment, they have each been viewed from a different place p ∈ P in that environment.
The changing perspective causes the embedded surfaces of objects in the environment to be stored
at different sites in the various Gp-memories and the embedded surfaces have different sizes, angles,
and orientations depending on the place from where they were viewed. Image points occluded from
view in one vector bundle are not occluded in others and vice versa. As we will see, it is the difference
in the vector fields Vp stored in the various Gp-memories and the way they change from one vector
bundle to the next that encodes information about the 3D structure of the outside world.

7.3. Fibre Bundles and Vector-Bundle Morphisms

Partitioning of visuospatial memory into vector-bundle sub-memories containing place-encoded
visual images can be represented geometrically by a structure in Riemannian geometry known as a
fibre bundle, illustrated for two places pi and pj in the place manifold P in Figure 11. Every point p ∈ P
in the place manifold, together with its associated vector bundle πp : Ep →

(
Gp, g

)
, forms a fibre and

the union of these fibres forms a fibre bundle. Notice that the definition of a fibre used here is different
from that in Section 7.1. Whereas a fibre in Section 7.1 consisted of an image point q = (r, θ, ϕ) in
(G, g) and the associated vector space E(r, θ, ϕ) in the vector bundle π : E→ G , the fibre defined
here consists of a point p ∈ P in the place manifold P and an entire vector bundle πp : Ep →

(
Gp, g

)
,

not just a vector space. This difference in the definition of the fibre defines the difference between the
vector bundle and the fibre bundle.

The fibre bundle described does not provide a full 3D representation of the outside world.
The vector field Vp stored in each vector bundle πp : Ep →

(
Gp, g

)
encodes only the images of curved

2D embedded submanifolds (with boundaries) corresponding to visible patches on the surfaces of
objects that can be seen from the fixed place. Theory exists within Riemannian geometry, however,
describing maps between vector bundles known as vector-bundle morphisms [109,114]. Vector-bundle
morphisms allow the place-encoded images stored in the various vector bundles πp : Ep →

(
Gp, g

)
to be mapped reciprocally on to each other. Image points qpi and their associated image-point
vectors Σpi

(
qpi

)
in one vector bundle πpi : Epi →

(
Gpi , g

)
at one point pi in the base manifold P

can be transformed by a vector-bundle morphism into the corresponding image points qpj and their

associated image-point vectors Σpj

(
qpj

)
in another vector bundle πpj : Epj →

(
Gpj , g

)
located at

another point pj in the base manifold P. Remember, images stored in different vector bundles are
of the same environment but seen from different places in that environment and so are different
because of differences in perspective. Vector-bundle morphisms can transform the image from any
one vector bundle into every other vector bundle. In this way, vector-bundle morphisms can remove
occlusions and generate 3D place-encoded images of the 3D outside world with the correct perspective
for each place.
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7.4. Removing Occlusions

To give a simplified illustration of how vector-bundle morphisms can remove occlusions
(and generate 3D images), consider two photographs A and B of the same scene taken from different
places in the environment. While it is quickly recognized that the photographs are of the same scene,
closer scrutiny will reveal many differences between them. The same image points in the outside
world are located at different places in the two photographs. Objects in the photographs may differ
in size, the angles between them will be different and the outlines may vary in shape. While many
image points in the scene are represented in both photographs, there are also many image points that
can be seen in one photograph but are occluded from view in the other. There are also image points
occluded from view in both photographs.

Let us define image points that can be seen in both photographs as (++) image points; image
points that can be seen in photograph A but not in photograph B as (+−) image points; image
points that can be seen in photograph B but not in photograph A as (−+) image points; and image
points that cannot be seen in either photograph as (−−) image points. In this simplified illustration,
a vector-bundle morphism can be thought of as a map FAB able to transform image points (i.e., a small
matrix array of pixels depicting a small region of the scene, like the tip of a person’s nose) from
photograph A to photograph B, and an inverse map FBA able to transform image points in the reverse
direction from photograph B to photograph A.

The map FAB can be applied to (++) and (+−) image points in photograph A. It transforms
(++) image points into image points that can already be seen in photograph B. These image points
can be used to confirm the precision of the map FAB and errors can be used adaptively to tune the map.
The map FAB also transforms (+−) image points in photograph A into image points in photograph B
that are occluded from view in photograph B. In other words, the map FAB fills in certain image points
occluded from view in photograph B. Actually, this requires a third-dimension in photograph B but
we can ignore this in our simplified illustration because, unlike a photograph, the perceived visual
manifold

(
Gp, g

)
in each vector bundle is three-dimensional.

A similar argument applies to the map FBA able to transform (++) and (−+) image points in
photograph B into their corresponding image points in photograph A, thereby filling in occluded
image points in photograph A. Of course, the maps FAB and FBA can do nothing about removing
occlusions of (−−) image points. Nevertheless, if a sufficiently large number of photographs of the
same scene are taken from a sufficiently large number of different places, and maps F exist between
each and every one of these photographs, it is then possible to fill in all occlusions in all photographs.

7.5. A Geometric Description of Vector-Bundle Morphisms

The maps FAB and FBA in the above simplified illustration play the role of vector-bundle
morphisms in the fibre bundle. As illustrated in Figure 11, a vector-bundle morphism H = [H1, H2]

between two vector bundles πpi : Epi →
(
Gpi , g

)
and πpj : Epj →

(
Gpj , g

)
has two parts H1

(
pi, pj

)
and H2

(
qpi , qpj

)
. The first part H1

(
pi, pj

)
maps the position of each image point qpi in

(
Gpi , g

)
to its corresponding position qpj in

(
Gpj , g

)
. The second part H2

(
qpi , qpj

)
maps the image-point

vector Σpi

(
qpi

)
in the 30-dimensional vector space Eqpi

over qpi ∈
(
Gpi , g

)
in the vector bundle

πpi : Epi →
(
Gpi , g

)
to the corresponding image-point vector Σpj

(
qpj

)
in the 30-dimensional vector

space Eqpj
over qpj ∈

(
Gpj , g

)
in the vector bundle πpj : Epj →

(
Gpj , g

)
.

The first part H1
(

pi, pj
)

is easy to model because the change in position ∆q of each image point
in the equivalent perceived visual manifold (G, g) is simply equal to the negative of the change
∆p =

(
pj − pi

)
in the place of the head. Movement of the head in the environment causes all image

points q ∈ (G, g) in the equivalent perceived visual manifold (G, g) to be translated simply by an
equal but opposite amount to the change of place ∆p =

(
pj − pi

)
in the Euclidean place map P,
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keeping in mind that sites in each Gp-memory are associated with Euclidean cyclopean coordinates
q = (r, θ, ϕ). Thus:

qpj = H1
(

pi, pj
)
qpi = qpi −

(
pj − pi

)
, (41)

where the transformation H1
(

pi, pj
)

depends only on the initial and final places pi and pj of the head in
the environment. Euclidean coordinates q = (r, θ, ϕ) can be mapped into (G, g) using the one-to-one,
onto, invertible, conformal map described in Section 4.1 and illustrated in Figure 8.

The second part H2

(
qpi , qpj

)
of the vector-bundle morphism describes the transformation of

the image-point vector Σpi

(
qpi

)
stored at site qpi ∈

(
Gpi , g

)
in the vector bundle πpi : Epi →

(
Gpi , g

)
to the corresponding image-point vector Σpj

(
qpj

)
stored at site qpj ∈

(
Gpj , g

)
in the vector bundle

πpj : Epj →
(

Gpj , g
)

. This transformation depends only on the geometry of the perceived visual

space (G, g) and, therefore, on the positions of the image points qpi ∈
(
Gpi , g

)
and qpj ∈

(
Gpj , g

)
in

the equivalent perceived visual manifold (G, g). It is independent of the place p ∈ P and of the
image-point vector Σpi

(
qpi

)
being transformed.

The way image-point vectors are transformed as the head changes place in the environment
is independent of the particular visual environment. The laws of optical flow depend only on the
changing position of the image point q ∈ (G, g) in the equivalent perceived visual manifold (G, g).
The linear transformation between two 30-dimensional vector spaces containing the image-point
vectors Σpi

(
qpi

)
and Σpj

(
qpj

)
associated with a change in the position of the head in the environment

depends only on the positions qpi ∈
(
Gpi , g

)
and qpj ∈

(
Gpj , g

)
and is independent of the

image-point vectors themselves. The transformation of the image-point vector is described, therefore,
by the equation:

Σpj

(
qpj

)
= H2

(
qpi , qpj

)
Σpi

(
qpi

)
, (42)

where the linear transformation H2

(
qpi , qpj

)
depends only on the sites (positions or accession codes)

qpi and qpj of the image points in the Gp-memories.
Since the metric g is the same for all Gp-memories and is constant on each visual sphere in

each perceived visual manifold
(
Gp, g

)
, it follows that image-point vectors Σpi

(
qpi

)
and Σpj

(
qpj

)
are

invariant under transformations between image point positions qpi ∈
(
Gpi , g

)
and qpj ∈

(
Gpj , g

)
confined to the same visual sphere, that is, along the integral flow s(θ) of any g-Killing vector field ξ

(Section 5.5). Only a change ri to rj from one visual sphere to another will cause image-point vectors to
change. Thus, by adaptively modelling the way foveal image-point vectors change as an object in the
environment approaches or recedes along any geodesic integral flow α(r) of a radial vector field

.
α,

the map H2
(
ri, rj

)
can be modelled and wired-in to the visual system. Because of the isotropic nature

of the geometry of
(
Gp, g

)
about the egocentre, the particular radial geodesic α(r) is not important.

Notice that this is a generalization of the adaptive modelling proposed in Section 3.2 for modelling the
relationship between Euclidean distance r of an object and the size of its image on the fovea. In other
words, we propose that the nervous system models not only the change in size of the image on the
fovea of an object in the environment associated with a change in its Euclidean distance from ri to
rj but also models the associated changes in the foveal-hyperfield image features (i.e., image-point
vectors) extracted by hypercolumns in V1. This is consistent with binocular gaze trajectories being
partitioned into isovergence arcs and isoversion lines as described by Handzel and Flash [115] in their
analysis of the geometry of eye rotations. Isovergence arcs correspond to shifts in gaze confined to
visual spheres (i.e., changes in the direction of gaze (θ, ϕ)) while isoversion lines correspond to shifts
in gaze along radial geodesics (i.e., changes in the depth of gaze r). Only changes in foveal images
associated with isoversions need be modelled.
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8. Discussion

The Riemannian geometry of visual space derived and simulated in this paper is essentially the
invariant physically-determined geometry attributable to the size–distance relationship introduced by
the optics of the human eye. To cope with this imposed warping we contend that the visual system
has evolved such that the size–distance relationship given by the 2D images projected on to the foveas
is neurally modelled to produce a 3D perceived visual space that matches as closely as possible the
Euclidean structure of the 3D world that is actually out there. We also contend that the resulting
perceived visual space has an invariant 3D warped geometry that necessarily underlies all other
accounts of visual space.

Achieving a 3D correspondence between the perceived and outside worlds requires a means of
establishing both the sizes of objects that occur in the retinal images as well as the distances of those
objects from the eyes and the egocentre. With both these measures available (Section 2), we argue
that the nervous system models adaptively the relationship between them just as it models adaptively
sensory–sensory relationships in general, as well as motor–motor, and sensory–motor relationships
using non-linear neural adaptive filters [83]. By extending the modelled size–distance relationship
for 2D images on the fovea to three dimensions, the perceived 3D size–distance relationship can
be determined for each point q = (r, θ, ϕ) in the environment in the form of a Riemannian metric
g(r, θ, ϕ) at each site q = (r, θ, ϕ) in G-memory (Section 3). This provides the Riemannian 3D visual
manifold (G, g). The warped geometry of this manifold has been quantified (Section 4) and simulated
(Section 5). In Section 6, the geometry has been applied to perceptions of shape and size while in
Section 7 the principles have been extended to give a neurally-feasible account of visuospatial memory
and its role in 3D perception.

We now call on the theorems and propositions of Riemannian geometry to discuss how the
warping of (G, g) successfully predicts a variety of visual perception phenomena. We also address the
relationship of this fundamental invariant geometry to a range of geometries set out by others as well
as touching on philosophical issues concerning perception and neural representation in general.

8.1. Size Perception

The set of constant tangential speed concentric-circle geodesics in any plane passing through
the egocentre in the outside world (Figure 8) corresponds to a cross-section of the visual spheres.
If the plane is rotated about a radial line, the concentric circles sweep out concentric visual spheres.
The metric g(r) is constant on each visual sphere. The metric g(r) decreases with increasing r by just the
right amount for the perceived arc-length along any circular geodesic between any two radial lines to
remain constant regardless of the radius r of the circular geodesic. In other words, the warped geometry
of (G, g) causes the perceived arc-length to be determined by the angle ∆θ between the two radial
lines independently of the distance r and, consequently, the theory predicts that the perceived size of
objects in the outside world is determined by the angle they subtend at the egocentre independent of
Euclidean distance.

The metric given in Equations (7) and (12) is consistent with the perceived size of a 3D object in
the Euclidean outside world varying in all three dimensions in inverse proportion to the Euclidean
distance between the egocentre and the object. The perceived size has to vary with Euclidean distance
r equally in all three dimensions if objects are to appear to shrink in size as they recede without
changing their infinitesimal shape. This is consistent with Hatfield [11] (p. 355), who argued “(1) that
visual space exhibits contraction in all three dimensions with increasing distance from the observer,
(2) that experienced features of this contraction are [ . . . ] not the same as would be the experience of
a perspective projection onto a frontoparallel plane, and (3) that such contraction is consistent with
size constancy”.

A classic example of size diminishing with distance is given by the convergence of railway tracks.
Hatfield [39] describes a structure of visual space that is compressed in a Euclidean 3D to 3D projection
that allows for railway tracks to converge as they recede in depth while still appearing straight. While
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Hatfield’s model is not the same as a perspective projection on to a frontoparallel plane, Erkelens [116]
shows that such a 3D Euclidean to 2D perspective projection also preserves straight lines. Thus,
railway tracks appear to converge but still appear straight in both the Hatfield theory and the Erkelens
theory. The perception of straight lines in Euclidean space as straight lines is not inconsistent with the
curved visual manifold (G, g) proposed in the Riemannian geometry theory. Geodesics in Figures 5–7
are curved pathways in Euclidean space that are perceived as constant speed straight lines in (G, g).
But the straight lines in both the Hatfield and Erkelens theories are perceived to be accelerating straight
lines, not constant speed straight lines. In other words, a straight line in Euclidean space with intervals
of constant length along the line is perceived to be a straight line but with the constant-length intervals
perceived as increasing or decreasing smoothly along the line. A point moving at constant speed
along the straight line in Euclidean space would be perceived as accelerating or decelerating along
a straight line in visual space. Such an accelerating straight line can exist in the curved visual space
(G, g) as illustrated in Section 4.2 by the apparent movement of an object off to one side seen from
the front window of a train moving along a straight line at constant speed. The object appears to
accelerate as it approaches the viewer along a straight line. Such an accelerating straight-line pathway
is not a geodesic. A similar phenomenon occurs in the work of those concerned with the perception of
slanting planar surfaces; for example, Erkelens [117]. The planar surfaces are perceived as accelerating
planar surfaces. A planar surface in Euclidean space, such as a brick wall for example, is perceived
as a slanting planar surface, but the apparent size of the bricks changes smoothly with perceived
distance along the wall. Again, this is not inconsistent with the curved visual space (G, g) proposed in
this paper.

8.2. Shape Perception

In Section 6 we showed that warping of the perceived visual manifold affects the perceived shape
of objects in the environment. For example, when looking at a point on the surface of an object in the
outside world normal to the line of gaze, geodesics originating in that plane do not remain within
the plane but form constant tangential speed great circles on a visual sphere, as shown in Figure 6.
The surface is perceived as being locally negatively curved, consistent with looking at the inside of
a visual sphere (Section 4). When looking at a point on a convex surface (e.g., a positively curved
surface in the environment such as the trunk of a tree), it appears slightly flattened because of the
negative curvature of the perceived visual manifold. This is consistent with perceived distances being
foreshortened relative to their Euclidean distances (Figure 3). This flattening effect decreases rapidly as
the convex object moves further away. This is consistent with the observation by Gilinsky [3] (p. 462)
that the perceived distance d increases with the true distance D but at a reduced and diminishing rate.

The boundary of an embedded surface
(

G̃, g̃
)

is perceived as a curve γ(s) parameterized by

arc-length s in the ambient manifold (G, g). The covariant derivative∇ .
γ

.
γ(s0) in the ambient manifold

at each point γ(s0) along the curve provides a measure of the perceived curvature of the boundary.
But the perceived curvature ∇ .

γ

.
γ is measured relative to the zero perceived curvature of a geodesic in

the ambient manifold passing through the same point. As shown in Section 5, geodesics of the ambient
manifold are curved relative to the flat Euclidean outside world and, consequently, the perceived
shape of the boundary of an object varies with position and orientation of the object in the outside
world relative to the observer.

Similarly, the second fundamental form I I(v, v), where v is a unit vector tangent to an embedded
surface, provides a perceivable measure of the curvature of the embedded surface in the direction v.
However this perceived curvature is measured relative to the zero perceived curvature of a geodesic in
the ambient manifold (G, g) passing through the same point in the direction v, so again the perceived
shape of the surface varies with the position and orientation of the object in the outside world relative
to the observer. The product K = κ1κ2 and the mean H = (κ1+κ2)

2 of the principal curvatures provide
a measure of the shape of the surface at each point but, as shown in Section 6, the perceived shape
κ1κ2 of the embedded surface equals the difference between the Gaussian curvature of the submanifold
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and the sectional curvature of the ambient manifold at each point and, consequently, depends on the
position and orientation of the surface in the environment relative to the observer.

8.3. Warped Geometry

Every plane passing through the egocentre (i.e., any plane rotated about any radial gaze vector
(r, θ, ϕ)) is perceived to be negatively curved but the negative Riemann curvature − 1

r4 (Section 4.5)
decreases rapidly with increasing distance r along the radial line. Geodesics other than the radial and
circular geodesics in Figure 8 form either outward accelerating or inward decelerating logarithmic
spirals (Figure 5). The fact that local spiral geodesics emanating from any point in any plane through
the egocentre diverge from each other is consistent with the computation in Section 4.5 showing that
sectional curvature is negative everywhere in each plane. This is consistent with Luneburg’s original
claim that the perceived visual space is a negatively curved Riemannian space [2]. However, Luneburg
argued that it has constant negative curvature, whereas we find the negative curvature decreases
rapidly with increasing Euclidean distance r.

While the geometry of the perceived visual manifold is profoundly warped relative to the
Euclidean geometry of the outside world, especially at distances close to the egocentre where infinite
stretching occurs (Figure 8), the fact that (G, g) is everywhere negatively curved implies that it behaves
geometrically in a manner compatible with the behaviour of ordinary Euclidean space [109]. That is,
the predicted warping does not induce perceptions of impossible structures inconsistent with the
Euclidean geometry of the outside world. For example, the predicted warped geometry is the same in
all radial directions from the egocentre just as in Euclidean geometry although the perceived distance
is logarithmically foreshortened equally in every direction. Any two points in a negatively-curved
space can be connected by a unique geodesic perceived as a constant-speed straight line and the
perceived length of the geodesic equals the minimum distance between the two points just as for
straight lines in Euclidean space. Two distinct geodesics in (G, g) intersect at only one point and a
geodesic defining the shortest distance between a point q and any arbitrary curve in (G, g) always
intersects the curve at right angles, just as do straight lines and curves in Euclidean space. Triangles in
the outside world are perceived as triangles and relationships between the perceived lengths of the
sides and the angles between them are consistent with the behaviour of triangles in Euclidean space.
If we have a geodesic triangle, with angles A, B, C and geodesic sides of length a, b, c, the sum of the
angles A + B + C is always less than 180 degrees and c2 > a2 + b2 − 2ab cos C, analogous to the cosine
rule c2 = a2 + b2 − 2ab cos C of Euclidean space [109]. The prediction that all planes passing through
the egocentre are totally geodesic, have the same negatively curved geometry and can be mapped in a
one-to-one, onto, isometric fashion on to each other, is compatible with the structure of Euclidean space.
Every plane passing through the origin in Euclidean space has the same geometry and every point in
every plane can be transformed isometrically into every other plane passing through the origin. Thus,
while the size–distance relationship introduced by the optics of the eye causes profound warping of
the 3D perceived visual manifold (G, g), the warping does not disrupt a smooth, one-to-one, onto,
invertible mapping between the perceived visual world and the actual world. While errors in depth
perception can lead to illusions of various kinds, the warping itself does not induce paradoxes and
ambiguities into the perception of 3D Euclidean space.

8.4. IIlusions

The Riemannian metric g(r, θ, ϕ) stored at every cyclopean coordinate in G-memory effectively
anticipates the perceived size of an object as a function of its Euclidean distance r in the outside world.
An error in estimated distance r, such as can be produced by top-down cognitive mechanisms, results
in the encoded image-point vector(s) being stored at the wrong site(s) in G-memory. This leads to errors
not only in the perceived depths of objects but also in their perceived sizes. Such errors can introduce
perceptual illusions. For example, when a concave face mask is seen as convex because of a learned
cognitive expectation that faces are convex in shape, the result is the well-known compelling illusion
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that the perceived convex face appears to oscillate back and forth when the concave mask is actually
rotated at constant speed in one direction. In most cases, cognitive expectations are consistent with
the outside world and provide a mechanism able to short-cut bottom-up visual processing. However,
when they overrule estimates of depth derived from stereoscopic processing they can mislead the
viewer into seeing illusory movements and shapes that are not actually there.

Also well-known are illusions of size associated with after images [93–96,118,119]. Emmert’s law
stated in 1891 that after-images are seen to double in size with each doubling of seen distance [95]. If a person
fixates a bright object for a long enough interval of time for the image to become ‘burnt’ on to the
retina, it induces an after-image that can persist for many seconds even after the gaze is shifted to
another point in the environment. Unlike an actual object in the environment whose perceived size
decreases with increasing distance, the size of the after-image increases with increasing distance [118].
The after image of a bright disc projected on to a white wall further away than the bright disc appears
as a dark disc increased in size. If the after-image is projected on to a sloping wall it is perceived as
having an oval shape consistent with the varying distances to the after-image on the sloping wall [93].

According to our proposal, stereoscopic vision provides an estimate of the cyclopean coordinates
(r, θ, ϕ) of the gaze point on the wall. The encoded retinal images of the wall (including the
superimposed retinal after-image of the disc) are stored into G-memory at sites specified by the
estimated cyclopean coordinates (r, θ, ϕ). The metric g(r, θ, ϕ) at those memory sites correctly
anticipates the size of the retinal image of the wall but incorrectly anticipates the size of the retinal
after-image. The after-image appears larger because it has been stored in a wrong G-memory site at
a larger distance r relative to the true distance to the bright disc. The size of the after-image on the
retina is appropriate for the actual distance to the bright disc but, because it is ‘burnt’ on to the retina,
it does not change size when the depth of gaze is altered. The 1

r anticipated change of size of the retinal
image with increasing depth of gaze r does not occur and consequently, the after-image is perceived to
increase in size in proportion to r, (i.e., the inverse of the 1

r anticipated reduction in size) as described
by Emmert’s law.

An incorrect estimate of the depth of gaze can disrupt Emmert’s law. Broerse et al. [93] found that
when after-images are projected on to the slanting wall of an Ames room, instead of appearing oval,
the after-images appear circular as if projected on to the illusory non-slanting wall of the perceived
Ames room. Using functional magnetic resonance imaging (fMRI), Sperandio et al. [119] showed that
activity in V1 associated with viewing an after-image is modulated by the incorrectly perceived size of
the after-image even when the size of the retinal image remains constant. This is consistent with the
above account based on the Riemannian geometry theory and with the proposal that the same brain
areas are involved in both visual imagery and visual perception [120].

In monocular and pictorial imagery, depth is more or less a free parameter influenced by many
factors depending on both the scene and the observer. Where a variation in estimated depth occurs
attributable to top-down cognitive mechanisms, this will give rise to variations in the geometry of
visual space as measured in different experiments, those involving illusions included. Nevertheless,
the size–distance relationship of retinal images introduced by the optics of the eye is always present,
giving rise to a fundamental invariant warping of the 3D perceived visual space that underlies all
other measured perturbations of the geometry.

8.5. Measuring the Geometry of Perceived Visual Space

We indicated above our contention that it is the influence of top-down cognitive mechanisms that
is in general responsible for the inconsistencies in experimental attempts to measure the geometry
of perceived visual space. As addressed in Section 1, the findings of task and other dependencies
led some researchers to call for reconsideration of the concept of visual space [19] or indeed its very
existence [33]. Significant in this was the disparity found by Koenderink’s group between results of
exocentric pointing and collinearity experiments on the one hand, and parallelity measures on the
other. The three types of experiment were similar in that each involved two objects located in the
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horizontal plane of the observer’s eyes and placed in varying positions in relation to the observer and
to each other. The exocentric pointing experiments [15,17] involved a target and a remotely-controlled
pointer. The parallelity and collinearity experiments [18,19] involved two rods, one a reference rod and
the other a remotely-controlled test rod to be aligned so as to appear parallel to or collinear with the
reference. Subjects observed the objects in a series of differing object placements and, according to what
they perceived, chose angular settings of pointer or test rod to fulfil the required task. These settings
were measured and expressed as a deviation from the veridical (Euclidean) relationship between
the objects.

All three experiments yielded deviations that varied systematically with the separation angle of
the objects with respect to the observer and with their relative distances from the observer. While the
pattern of variations was similar in the exocentric-pointing and collinearity experiments, the pattern
of deviations in the parallelity experiment was different and the deviations were considerably larger
than in the exocentric pointing and collinearity tests. The findings were later confirmed in a composite
experiment by Doumen et al. [24] and led to the notion that there may not be a consistent geometry of
visual space. Koenderink et al. [28] argued that to explain such data either the experiments are not
appropriate for measuring geometry; or the geometry of visual space would have to be contextual, i.e.,
dependent on what is in the space; momentary, i.e., dependent on where the observer is fixating in the
space; or task dependent, or perhaps all of these.

In our interpretation these data do not preclude the existence of a geometrically invariant
perceived visual space. Based on the invariant Riemannian space (G, g) with metric determined by the
size–distance relationship introduced by the optics of the eye we now use the simulated geodesics of
Section 5 to explain qualitatively from first principles why deviations in the above experiments vary
systematically with separation angle and distance ratio. We then suggest how the disparity in the size
and the pattern of the deviations can be attributed to differing task constraints and computational
strategies within the invariant curved space rather than to changes in the geometry itself.

Figure 5a,b shows spiral geodesics confined to the horizontal plane emanating from two different
exocentric initial points in the plane. Consider a pointing device located at such an initial point. For any
given target in the plane there will be a particular spiral geodesic that emanates from that initial point
and passes through the target. Perceived from the egocentre, this geodesic will appear to be a constant
speed straight line between the pointer and the target in the direction of the geodesic’s initial velocity
vector at the pointer. In other words, due to the warping of the perceived horizontal plane, an observer
will inaccurately aim the pointer in the direction of the initial velocity vector because this direction is
perceived as being the constant speed straight-line direction to the target. The veridical direction is of
course given by the constant speed straight line drawn in Euclidean space from the pointer to the target.
The predicted pointing error is given by the angle between this line and the initial velocity vector for
the geodesic joining the pointer and the target. It can be deduced from the spiral geodesics in Figure 5
that such pointing errors will vary systematically depending on the angle of separation at the egocentre
between the pointer and the target and with their relative distance from the observer. We conclude
that the geometry of (G, g) predicts a systematic variation in errors in both exocentric-pointing and
collinearity tasks.

The simulated geodesics in Figure 5 also provide an explanation from first principles for systematic
errors in the judgement of parallelity. For any given positions of the test rod and the reference rod,
there will be a geodesic passing through both points. Since geodesics are perceived to be constant
speed straight lines, it follows that any vector parallel translated along a geodesic forms a set of vectors
that are perceived as being parallel to each other. They are not parallel in the outside world. The angle
between a vector at an initial point p and this vector parallel translated along the geodesic to any other
point q provides a measure of the angular error between perceived parallelity and veridical parallelity.
It can be deduced from the geodesics in Figure 5 that this error varies systematically with the angle
of separation at the egocentre between such points p and q. Again, the geometry of (G, g) predicts a
systematic variation in errors in the parallelity task.
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The underlying geometry described by the geodesics in Figure 5 is the same for all three types
of experiment. Why then do the pattern of deviations and the size of the deviations measured
experimentally in the parallelity task (and hence the geometry of the visual space computed from
those data) differ from those measured experimentally in the exocentric and collinearity tasks? We will
now argue that this disparity is accounted for not by a varying geometry but by differences in the
computational strategy required within the invariant perceived visual space (G, g) to achieve the
differing task goals.

In the exocentric-pointing and collinearity tasks the target and pointer are sufficiently far removed
from each other that the observer has to switch gaze back and forth between them in order to decide
on an appropriate setting for the pointer. While looking at the target, the observer estimates the
perceived straight-line direction to the memorized location of the pointer and, while looking at the
pointer, the observer estimates the perceived straight-line direction to the memorized location of the
target. If we consider a spiral geodesic (Figure 5) that connects pointer and target, the perceived
directions correspond to the vectors tangent to the geodesic at the positions of the pointer and the
target, respectively. These are not collinear in the Euclidean outside world. But to the observer one
is taken to be the negative of the other, aligned on the same perceived straight line between pointer
and target. We suggest that the observer adopts a strategy of iteratively averaging these estimates by
looking back and forth between target and pointer in order to arrive at a setting. When the negative of
the estimated straight-line direction from target to pointer is averaged with that from pointer to target
the resulting direction is closer to veridical than either of the estimated directions taken separately.
Nevertheless, because of the spiral shape of the geodesic, the averaged direction still deviates from
veridical and that deviation varies with separation angle and relative distance (with an interaction
between them). These predicted variations have a similar size and pattern to those measured for the
exocentric pointing and collinearity tasks of Doumen et al. [24].

This account of findings accords with the suggestion by Doumen et al. [26] that for an
exocentric-pointing task an observer needs to make a judgement about the position of both the
pointer and the target whereas, for a parallelity task, the observer does not have to know the actual
positions to perform the task. In the parallelity task, the observer has to look back and forth between
the reference rod and the test rod but, unlike in the exocentric-pointing and collinearity tasks, does not
have to estimate the perceived straight-line path between them. Here the likely strategy is to note the
angle of the reference rod relative to a locally available estimated reference frame, for example a wall.
The angle of the test rod can then be adjusted to match that direction relative to the same reference
frame. In Euclidean space, a local external reference frame such as a wall is invariant and the strategy
would work. However, as shown by the simulated geodesics in Figure 5 and depicted in Figure 3,
the perceived distance to a flat wall varies logarithmically with Euclidean distance and so the perceived
wall is negatively curved towards the observer. This occurs even when the curve in the outside world
corresponds to a geodesic that appears straight. Visual external reference frames in a parallelity task
introduce systematic errors between perceived and veridical parallelity. This is simply because all
visual reference frames are warped by the geometry of the underlying perceived visual manifold
(G, g). Consequently, according to the explanation given here, due to the warped geometry of (G, g)
the angle of the test rod will deviate further from veridical the larger the separation angle between the
rods. The deviation will be positive on the left hand side and negative on the right hand side, passing
through zero for zero separation angle (straight ahead). This prediction produces the same size and
pattern of parallelity errors as measured experimentally by Doumen et al. [24]. Indeed, according to
this explanation, because it is the curved geometry of (G, g) causing the warping of the perceived
visual reference frame that is in turn responsible for errors in judgement of parallelity, it follows that
the parallelity task gives a better measure of the geometry of (G, g) than do the exocentric-pointing or
collinearity tasks. Those tasks do not provide an accurate measure of the geometry.

Doumen et al. [25,26] extended the exocentric pointing experiment beyond the horizontal plane to
include variations in the positions of pointer and target in the vertical dimension both above and below
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the height of the observer’s eyes. They measured the deviations from veridical pointing directions in
the horizontal and vertical planes passing through the pointer (termed slant and tilt respectively) and
found that the vertical separation angle had no effect on the deviations of the slant, but did have a
linear effect on tilt. Despite the complication that neither the horizontal plane nor the vertical plane in
which slant and tilt are measured pass through the egocentre, the size and pattern of 3D pointing errors
measured by Doumen et al. [25] can be accounted for by the same computational strategy within (G, g)
described above for exocentric pointing and collinearity in the horizontal plane; that is, by averaging
the perceived straight-line directions from target to pointer and from pointer to target.

The perceived straight-line directions are determined as follows. Given three points in the outside
world corresponding to the egocentre, the position of the pointer and the position of the target, there
exists a unique plane that passes through all three points. As shown in Section 5, the same pattern of
geodesics given in Figure 5 for the horizontal plane and the same warped geometry of the perceived
visual manifold exists for every plane that passes through the egocentre. Thus, since the unique
inclined plane just described does pass through the egocentre, there exists in it a pattern of spiral
geodesics isomorphic with those in Figure 5 and, among those, there exists a unique spiral geodesic
that passes through the positions of both the pointer and the target. When seen from the egocentre,
this unique geodesic is perceived to be a constant-speed straight line connecting pointer to target
(and target to pointer). Tangent vectors to the geodesic are collinear with the perceived straight line.
If the tangent vectors at the pointer and at the target are averaged to obtain the setting of the pointer
and then the direction of the pointer is projected into the horizontal and vertical planes passing through
the pointer, we deduce that the same size and pattern of slant and tilt deviations as described by
Doumen et al. [25] are obtained. This includes the change in sign in the tilt deviations depending on
whether relative distance is greater than or less than one.

Doumen et al. [25,26] concluded that the structure of visual space is distorted in both the horizontal
and vertical directions but that the deformation is not isotropic. This raises an important point about
the use of the terms isotropy and anisotropy. As explained by Wagner and Gambino [4], “anisotropy”
as used in physics refers to variations in the properties of space as a function of direction from the
observer. Lee [57] (Chapter 3, p. 33) states, using standard terminology, that a Riemannian manifold
M is homogeneous if its geometry is the same at every point. Given a point p ∈ M, the Riemannian
geometry is isotropic at p if the geometry is the same in every direction out from the point p ∈ M.
Clearly, a homogeneous Riemannian manifold that is isotropic at one point is isotropic at every point;
in that case, one says M is homogeneous and isotropic. A homogeneous Riemannian manifold looks
geometrically the same at every point, while an isotropic Riemannian manifold looks the same in every
direction at every point.

Applying this terminology to the Riemannian manifold (G, g) we can say it is neither
homogeneous nor isotropic. In general, it is inhomogeneous and anisotropic but with special
restrictions within the manifold this does not apply. All visual spheres are both homogeneous and
isotropic. At the egocentre (and only the egocentre), (G, g) is isotropic; as far as the observer is
concerned the geometry of (G, g) looks the same in all directions. As can be seen in Figures 5 and 8,
the radial geodesics emanating in all directions from the egocentre are accelerating straight lines. These
show that while the perceived distance to a target on a radial line is underestimated, the perceived
direction from the egocentre to the target and from the target back to the egocentre are collinear and,
therefore, an observer can aim accurately at such a target. In other words, egocentric pointing is easy
since the geometry of (G, g) is isotropic at the egocentre (and only at the egocentre) and the warping
of (G, g) does not disrupt an observer’s ability to aim accurately at a target located anywhere in the
3D outside world. However, for any other point q ∈ (G, g) the geometry of (G, g) is anisotropic. As a
consequence, exocentric pointing is not a trivial task as the warping of (G, g) impedes the observer
from pointing accurately from q ∈ (G, g) to a target located anywhere (other than the egocentre) in the
3D outside world.
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Despite the results of experimental attempts to measure perceived visual space being fraught with
the obscuring effects of constraints and strategies involved in the testing, the systematic deviations
found in exocentric-pointing, collinearity and parallelity tasks speak to an anisotropy of visual space
that is consistent with (G, g). It is important to understand that anisotropy does not preclude invariant
geometry and, as our simulations show, (G, g) is both. It is our contention that the geometry of an
invariant and anisotropic (G, g) will underlie all attempts to measure perceived visual space, so the
revelation of anisotropy in such results is no surprise.

8.6. 2D versus 3D Representations

Some authors hold that the 2D perspective images projected on to the retinas do not have to be
transformed into a 3D representation to account for perceptual phenomena. For example, Glennerster
and colleagues [51] argue that a view-based manifold of 2D images can explain human perception in
their expanding virtual room experiment and, using optical flow of 2D retinal images, can account
for navigation from image to image in a 3D environment. Erkelens [116,121] has shown that a 2D
perspective structure of visual space can account for straight lines in the 3D environment being
perceived as straight lines. He demonstrated that collinearity but not parallelism is preserved in
perspective space and that angles are not invariant under translation and rotation, properties of visual
space shown experimentally. Also, according to Gilson and Glennerster [122], in constructing an
immersive 3D virtual environment using a head-mounted stereo display it is necessary to ensure
that the stereo-projected light rays into each eye from points in the virtual environment match the
angles of light rays entering each eye from corresponding points in the actual 3D space as the person
moves about in the virtual environment. In other words, the simulator has to present veridical 2D
perspective projections of the 3D environment to each eye in order to create the illusion of moving
about in an actual 3D world. It would be easy to conclude from this that veridical 2D view-based
perspective projections are all that is required to form a representation of visual space. This may well
be so for monocular vision and for looking into pictures. However, for binocular vision, whether in
an actual 3D environment or in a 3D stereo immersive virtual reality, this does not take into account
the ability of the nervous system to employ stereopsis (triangulation and retinal image disparity) to
obtain an estimate of Euclidean distance to the array of points in the environment projecting on to
each of the left and right retinal hyperfields. In this circumstance, the encoding of the projected 2D
images on the retinas is augmented with depth information. Even during the brief interval of a single
fixed gaze from a fixed point in the environment, the nervous system can form a 3D representation
of the 2D visible curved surfaces of objects in the 3D environment. Because of this, as described in
Section 7.2, by reciprocally mapping place-encoded images on to each other, the nervous system can
remove occlusions and construct a cognitive (fibre bundle) model of the 3D environment seen from
any place with the correct 3D perspective.

8.7. Visuospatial Memory

When looking at the outside world from any one place, it is possible, based on the experience
of having seen the same local environment from many other places, to visualize the 3D shapes of
objects in the environment with the correct perspective as seen from that place. We claim that the
fibre-bundle structure of visuospatial memory described in Section 7, together with its vector-bundle
morphisms, forms this type of 3D holographic representation of the environment seen from any place
in the environment.

Given that vector-bundle morphisms H =
[

H1
(

pi, pj
)
, H2

(
qpi , qpj

)]
illustrated in Figure 11 can

be wired-in to the visual system, it follows that a place-encoded visual image acquired through visual
scanning at one place in the environment and stored in one vector bundle can be transformed into
place-encoded visual images seen from other places in the environment stored in other vector bundles.
In other words, as well as filling in occlusions, the vector-bundle morphisms transform the perspective
of the image so it becomes appropriate for the new place. By transforming between each and every
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vector bundle in this way, the vector-bundle morphisms can fill in occlusions in all place-encoded
images in every vector bundle for every place p ∈ P in the environment. As a result of transformations
occurring continuously between vector bundles (the visual cortex is known to be active even when the
eyes are shut or in the dark [123]), any one vector bundle can include images transformed from all
other vector bundles (i.e., vector-bundle partitions of place-encoded visuospatial memory).

One has only to look at an object and then close the eyes to appreciate that the directly-encoded
image of an object in the environment is more intense and contains more detail than the memorized
image. Similarly, when visualizing the 3D shape of an object seen from a fixed place, or visualizing the
layout of a familiar room on the other side of an opaque wall, the visualized images are less intense
and contain less information than the directly-encoded images. Nevertheless, the visualized images
and the directly-encoded images do not interfere and can be perceived separately or together. This can
be accounted for within the fibre bundle by the proposal that, as well as being partitioned into vector
bundle sub-memories, visuospatial memory consists of at least three layers within each vector bundle.
Like images composed of layers in image-processing software, the three layers can be superimposed
and perceived together, or they can be separated and perceived separately. We propose that the first
layer represents the neural activity in cortical hypercolumns held in working memory during the
interval of fixed-gaze encoding of the left and right retinal images associated with that fixed point
of gaze. This is the most intense and detailed image. The second layer corresponds to the visual
images stored into the G-memories within the vector bundles. The third layer consists of those images
transformed into each vector bundle from every other vector bundle by vector-bundle morphisms.
Memorized images in layers two and three are less intense and less detailed than the directly-encoded
images in layer one.

8.8. Visuospatial Representation as a Philosophical Issue

With respect to differences between “perceiving” and “sensing” and the philosophical distinction
between “direct perception” and “indirect perception” [124], the Riemannian geometry of 3D
binocular perception developed in this paper is firmly in the school of indirect perception. We have
addressed such issues in the past in our paper entitled “Berkeleian principles in ecological realism:
an ontological analysis” [125]. Therein we have argued that Gibson’s notions of direct perception
and affordances [126] (like the proposal of George Berkeley (1685–1753) that the external world is
“merely ideas in the mind” and the proposal of Thomas Reid (1710–1796) that “what we see, what we
visualize, what we believe of an object, is that object’s true reality”) lead to the conclusion that we
do not need a brain to perceive reality but require only a direct perception of it. While there is no
unambiguous way to measure the conscious perceptions of other people, we do of course have our own
perceptual experience of visual space to examine. How this conscious perception is related to neural
processes in the brain is an unanswered question. It may be a metaphysical question or consciousness
may be an illusion, as argued by Dennett [127]. Nevertheless, it seems to us that an individual’s
conscious visual perceptions are inexorably linked to physical processes in the eye and brain. After all,
people are rendered blind by poking out their eyes and various disorders of visual perception can
be traced to lesions of various types in the brain. Persuaded by this, we hold that the geometrical
structure of perceived visual space can be mapped to its representation by physical processes within
the brain. Of course given the non-linear limit-cycle behaviour of neurons and neural circuits and the
activity-driven synaptic plasticity of thousands of millions of synaptic connections within the brain’s
neural networks, such physical processes are notoriously difficult to describe. Nevertheless, we submit
that Riemannian geometry provides the best mathematical framework for investigating the non-linear
dynamical brain processes yet to be understood.

9. Future Directions

Manifolds, vector fields, metrics, curvature tensors, vector bundles, fibre bundles and so forth are
constructs from Riemannian geometry that we have shown to be of value in describing computational
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processes underlying the warped geometry of 3D binocular visual perception. By defining links
between experimental observations and structures within Riemannian geometry (e.g., encoding of
retinal image features in V1 as vector fields over a manifold) we have been able to employ the theorems
and propositions of Riemannian geometry to illustrate some of the computational issues underlying
3D binocular visual perception. There is, however, a caveat. Our theory should not be taken as
implying that the visual system actually performs geometric computations. The nervous system may
well have evolved its own methods of processing and transforming visual signals; e.g., by means of
networks of neural adaptive filters [83]. The value of Riemannian theory lies in its ability to reveal
the computational issues involved in transforming retinal images into 3D perceptions of the world
and in its ability to demonstrate the logical feasibility that such computational issues can be resolved.
As described by Marr [90], how neural circuits actually implement these computational processes
requires a second stage of analysis beyond the computational theory.

Despite the detail in the theory there are many phenomena of visual perception that are yet to be
addressed. For example, the issue of the perception of accelerating straight lines and accelerating planar
surfaces mentioned in Section 8.1 needs further development. In physics, the accelerations of geodesic
spray fields are often augmented with accelerations attributable to potential energy conservative
force fields such as gravity. This gives rise to accelerating trajectories that deviate from geodesic
trajectories. An analogous theory promises to account for perception of accelerating straight lines and
accelerating planar surfaces within the curved visual manifold (G, g). While the Riemannian theory
depends on stereopsis to obtain measures of Euclidean distance, no explanation is given (other than
referring to top-down mechanisms) for monocular depth perception or the ability to perceive depth in
pictures. Details of colour perception within the framework of extracting SVD retinal image features
or of adaptation of the size of retinal receptive fields to changing levels of luminosity have not been
discussed. The ability to predict optical flow when moving in an unfamiliar environment is yet to be
explored, as is the ability to construct a 3D perception of a novel environment from recognition of
familiar objects within that environment. Clearly there is more to be done, particularly with regard to
object recognition.

One important direction for future work is described by Wagner and Gambino [4]. In conjunction
with their meta-analysis of the anisotropy and geometry of visual space, these authors review research,
both old and new, showing that visual space is strongly influenced by context, judgement methods,
instructions, and stimulus conditions. They argue, however, that this does not mean we should
abandon the concept of visual space which always exists within our visual experience even though its
exact geometry can change with circumstances. They do not agree with people who say we should
abandon the concept of visual space just because there are contextual effects and state that “the goal of
our studies should be to specify exactly how metric estimates of visual space change in response to
these contextual variables. Mathematically, we should incorporate these other factors into our metric
equations to predict perceptual judgements” [4] (p. 585).

The metric equations described in this paper suggest a basis from which such future work
could be constructed. If top-down cognitive mechanisms based on experiential knowledge of
size–distance relationships were to modify the cyclopean co-ordinates associated with image points
in the environment, this would temporarily retune the sites in the gaze-based G-memory where the
vectors of retinal image features are stored. This will alter the size, depth and shape of the perceived
image. In the case of the Ames room or the virtual expanding room, for example, the changed
geometry of the perceived image will be altered to match the expected perceived shape of rooms
derived from previous experience. Recognition of an object with recall of its associated properties
may take precedence in terms of functional (survival) value over verisimilitude. This could explain
why a cognitive overlay of object recognition based on a probabilistic analysis of past experience may
sometimes overrule the perception of size and shape based on binocular vision and stereopsis. Perhaps
in the future we can come to see the inhomogeneous geometry associated with cognitive overlays
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simply as the predictable perturbations of the underlying invariant geometry introduced by the optics
of the eye.

Meanwhile, the proposed structure of fibre bundles with wired-in vector-bundle morphisms
(Section 7 and Figure 11) already contributes a substantial account of how we see the way we do.
It provides a geometric model of the visual environment as seen from any place and does so in a way
that is neurally feasible. It allows the 3D shapes of objects in the environment to be visualized in the
correct perspective no matter from where they are viewed. By virtue of its Riemannian structure,
it accounts for the perceived size of such objects. It incorporates the laws of optical flow and thus
allows visualization of the changing 3D images associated with progression of the head along any
path in the environment. Moreover, it lends itself to other visual roles. For example, it can play a role
in object recognition by correcting for changes in perceived size and shape as a function of position
and orientation of the object relative to the observer. It accounts for an ability to change the position
of a reference metric (perceptual tape measure, Section 6.1) in the perceived visual manifold. It can
function as a model of the environment in model-based reinforcement learning [128–131]. It can play
a role in seeing the world from another person’s point of view. It can be involved in the acquisition
of new motor skills through imitation and mental imagery. It can allow familiar 3D environments to
be visualized as if seen from a place not previously experienced enabling, for example, the drawing
of a plan of furniture layout in a familiar house as if seen through the roof from a point above the
house. Also, as we will show in a subsequent paper, it can be integrated with our previously published
Riemannian geometry theory of human movement [52] and our Basic Unit of Motor Production (BUMP)
theory of response planning [132,133] to explicate the proprioceptive-visual and visual-proprioceptive
transformations and the selection of task-compatible movement synergies required in the planning
and execution of visuospatial motor tasks.

To account for the results of their expanding virtual room experiment, Glennerster and
colleagues [51,97] have proposed a view-based approach to spatial representation in human vision,
suggesting that observers use view-based methods [134] to guide their actions and to represent the
spatial layout of the scene. They also write that “a robot or animal stores views or ‘snapshots’ of a
scene and records something about the motor output required to move between one view and the next,
without integrating this information into a Cartesian map” [51] (p. 196). In other words, they suggest
that as persons move about in a room they form a manifold of views of the room. Each point in the
manifold corresponds to a single view and neighbouring points correspond to views from neighbouring
vantage points. The goal is to navigate across the manifold of images.

The Riemannian geometry theory of visuospatial representation described in this paper has much
in common with this view-based approach. The notion of a geometric fibre bundle is analogous to a
“manifold of views” except that the place-encoded images can be 3D. The possible role of optical flow in
navigating a person through a visual environment is similar in both theories. However, the fibre-bundle
theory goes beyond the view-based approach by taking the warped geometry of the 3D perceived
visual manifold into account. Moreover, by integration with our Riemannian geometry theory of
human movement [52], a generalized fibre-bundle conceptualization of visuomotor performance
promises to quantify Glennerster’s “something about the motor output required to move between one
view and the next.”
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Appendix A. Extraction of Non-Linear Orthogonal Visual Image Features Using Singular Value
Decomposition (SVD)

A1. Extraction of Linear Orthogonal SVD Image Features

Consistent with the work of Simoncelli and Olshausen [76] mentioned in Section 2.5, extraction
of orthogonal stochastic feature signals from images on retinal hyperfields by the hypercolumns
of V1 can be seen as a two-stage process. The first stage, analogous to the principal components
stage of Simoncelli and Olshausen, is accomplished by singular value decomposition (SVD) [135,136].
This is achieved by slow tuning of synaptic weights connecting left retinal hyperfields to left ocular
dominance minicolumns and corresponding right retinal hyperfields to right ocular dominance
minicolumns within the same hypercolumns. SVD learning rules are described by many [137–141]
and, with the tuning of the synaptic weights occurring over several weeks, the process is similar to
Hebbian learning [142] in which, basically, synapses that fire together wire together with winner take all
collateral inhibition.

The resulting synaptic weights for each ocular dominance minicolumn correspond to a rank-one
matrix in SVD of the average image falling on the hyperfield over an interval of several weeks
or more. Each rank-one matrix of synaptic weights corresponds to an orthogonal stochastic feature (i.e.,
a rank-one orthogonal hyperfield image) extracted from the averaged hyperfield image. The synaptic
weights for left ocular dominance minicolumns in a hypercolumn are tuned in this way to extract
orthogonal stochastic feature signals from the left retinal hyperfield projecting to the hypercolumn.
Similarly, the synaptic weights for right ocular dominance minicolumns in the same hypercolumn are
tuned to extract orthogonal stochastic feature signals from the corresponding right retinal hyperfield
projecting retinotopically to the same hypercolumn. Since the stochastic amplitude spectrum of images
falling on each hyperfield has a spatial-frequency bandwidth of only 10 cycles per degree or less,
it follows that 10 rank-one matrices of synaptic weights is more than sufficient to encode the correlations
within each stochastic hyperfield image. For a simulator demonstration of the relationship between
bandwidth of a stochastic signal and the number of singular values required, see [83]. The number
10 is not critical in what follows but it is used here to give a ball-park indication of the number of
minicolumns required.

The synaptic weights tune so slowly over several weeks that during the interval of a single fixed
gaze they can be regarded as fixed or wired-in to the minicolumns. Thus, the image IL(θ̂,ϕ̂) falling on a
left retinal hyperfield during the interval of a fixed gaze is decomposed by the fixed synaptic weights
connecting it to 10 left ocular dominance minicolumns into a set of 10 orthogonal rank-one image
features. The set of 10 orthogonal stochastic feature signals encoded by the temporospatial pattern
of neural activity within the 10 left ocular dominance minicolumns corresponds to the 10 singular
values (σL1, · · · , σL10) of the SVD. Similarly, the image IR(θ̂, ϕ̂) falling on the corresponding right
retinal hyperfield during the same interval of fixed gaze is decomposed by the fixed synaptic weights
connecting it to 10 right ocular dominance minicolumns in the same hypercolumn into a set of
10 orthogonal stochastic feature signals represented by 10 singular values (σR1, · · · , σR10) encoded by
the temporospatial pattern of activity in the 10 right ocular dominance minicolumns.

Each singular value σi measures, in a matched-filter fashion, the strength of the corresponding
rank-one stochastic feature in the image I(θ̂, ϕ̂) falling on the hyperfield during the interval of a
fixed gaze. In other words, the hyperfield image is decomposed into 10 rank-one orthogonal hyperfield
images that, if added together in the appropriate proportions σi, would recreate the hyperfield image.
Because of disparity between left and right retinal images, the point in the environment projecting
on to a left retinal hyperfield is shifted relative to the point in the environment projecting on to
the corresponding right retinal hyperfield. When gaze is shifted to a new gaze point, the retinal
images change and a new set of stochastic features is extracted by the rank-one matrices of fixed
synaptic weights on each minicolumn producing a different temporospatial pattern of neural activity
in the minicolumns.
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A2. Extraction of Non-Linear Orthogonal SVD Image Features

The second stage of visual image feature extraction described by Simoncelli and Olshausen [76]
takes non-Gaussianity (non-linearities) of stochastic images into account. We have shown
previously [83] that this can be achieved within an SVD adaptive filter using only a small number
of extra adaptive synaptic weights. The procedure takes advantage of the fact that a non-linearity
described by a second-order Volterra kernel is equivalent to a linear filter in cascade with a squarer,
while a non-linearity described by a third-order Volterra kernel is equivalent to a linear filter in cascade
with a cuber [143,144]. This allows a considerable reduction in the number of adaptive parameters
required given that a Volterra model of a third-order non-linear dynamic filter typically requires
hundreds of thousands of adaptive parameters. Using the squarer and cuber method, non-linear
orthogonalization can be achieved with only 60 extra adaptive parameters as demonstrated previously
with a third-order non-linear SVD singular-vector adaptive filter that was thoroughly tested using
signals with a variety of non-white spectral density functions and non-Gaussian amplitude probability
density functions [83].

Accordingly, to account for skewness and kurtosis associated with the presence of third- and
fourth-order moments, our second stage process takes the singular values (σL1, · · · , σL10) and
(σR1, · · · , σR10) from the first stage and begins by squaring and cubing each σi. It then employs
a Hebbian-like learning rule (i.e., least mean square (LMS) adaptive filter algorithm [145–147]) to tune
minicolumn synaptic weights so as to orthogonalize the linear, squared, and cubed singular value
signals

(
σ1

i (t), σ2
i (t), σ3

i (t)
)
, i = 1, . . . , 10 extracted from left and right hyperfields. This gives a total of

30 stochastic non-linear orthogonal feature signals ΣL = (ΣL1, · · · , ΣL30) for the left retinal hyperfield
image encoded by 30 left ocular dominance minicolumns within the hypercolumn, and 30 stochastic
non-linear orthogonal feature signals ΣR = (ΣR1, · · · , ΣR30) for the corresponding right retinal
hyperfield encoded by 30 right ocular dominance minicolumns within the same hypercolumn.
This type of spatiotemporal orthogonalization not only encodes the non-Gaussianity of stochastic
hyperfield images but, as shown in [83], it also tracks changes in the probability density and spectral
density functions of hyperfield images that occur over time.

Appendix B. Computing Curvatures

B1. Gaussian Curvatures and Sectional Curvatures

Suppose
(

G̃, g̃
)

is a 2D submanifold isometrically embedded ι :
(

G̃, g̃
)
→ (G, g) in the 3D

ambient perceived visual manifold (G, g). At any point q ∈
(

G̃, g̃
)

the 3D tangent space TqG is

called the ambient tangent space over the 2D submanifold
(

G̃, g̃
)

. The 3D ambient tangent space TqG

can be partitioned into two g-orthogonal vector subspaces, the 2D tangent space TqG̃ tangent to the

submanifold
(

G̃, g̃
)

and the 1D tangent space NqG̃ g-normal to the 2D submanifold
(

G̃, g̃
)

. Suppose

there are two vector fields X and Y in the 2D tangent bundle TG̃ over the submanifold
(

G̃, g̃
)

. These
two vector fields can be extended arbitrarily into the 3D tangent bundle TG over the ambient manifold
(G, g). The covariant derivative ∇XY of the extended vectors X and Y in the ambient manifold at
the point q ∈

(
G̃, g̃

)
can be computed because, as described in Section 4.2, the geodesic spray field

f2
(
q,

.
q
)

is known for every
(
q,

.
q
)

in the ambient tangent bundle TG. The covariant derivative∇XY is a
vector in the 3D ambient tangent space TqG. This vector can be projected into the g-orthogonal spaces

TqG̃ and NqG̃. The component in TqG̃ is the covariant derivative ∇̃XY in the submanifold
(

G̃, g̃
)

compatible with the unknown metric g̃. The component of ∇XY projected into the normal space NqG̃

is denoted by I I(X, Y) and is known as the second fundamental form at q ∈
(

G̃, g̃
)

.
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The second fundamental form I I(X, Y) is independent of the arbitrary extension of the vectors X
and Y into TG, it is bilinear over real-valued smooth functions C∞

(
G̃
)

on
(

G̃, g̃
)

, and it is symmetrical

in X and Y. From the projection of ∇XY into TqG̃ and NqG̃, we obtain the Gauss formula:

∇XY = ∇̃XY + I I(X, Y). (A1)

The Gauss formula relates the connection ∇̃ on the submanifold
(

G̃, g̃
)

to the connection ∇ on the
ambient manifold (G, g).

The Gauss equation can be derived from the Gauss formula. For any vector fields X, Y, Z, and W
in the 2D tangent bundle TG̃ over the submanifold

(
G̃, g̃

)
, the Gauss equation,

Rm(X, Y, Z, W) = R̃m(X, Y, Z, W)− 〈I I(X, W), I I(Y, Z)〉g + 〈I I(X, Z), I I(Y, W)〉g (A2)

relates the Riemann curvature tensor R̃m(X, Y, Z, W) of the submanifold
(

G̃, g̃
)

at the point q ∈
(

G̃, g̃
)

to the Riemann curvature tensor Rm(X, Y, Z, W) of the ambient manifold (G, g) at the same point
q ∈ (G, g). For any two vectors X and Y spanning the 2D vector space TqG̃ tangent to the submanifold(

G̃, g̃
)

at the point q ∈
(

G̃, g̃
)

, the Gaussian curvature of the submanifold at that point is given by:

K̃(X, Y) =
R̃m(X, Y, Y, X)

‖X‖2
g̃‖Y‖

2
g̃ − 〈X, Y〉2

. (A3)

If the vectors X and Y are g-orthogonalized using the Gramm–Schmidt algorithm, we obtain two
orthonormal vectors e1 and e2 spanning TqG̃. The Gaussian curvature of the submanifold at the point

q ∈
(

G̃, g̃
)

can then be written as:

K̃(e1, e2) = R̃m(e1, e2, e2, e1). (A4)

We have applied the above relationships to curvatures of the perceived visual manifold in Section 5.
There we construct a family of geodesics in the outside world emanating from an initial point q = α(0)
with unit initial velocity vectors vi, i = 0, 1, · · · , 35 confined to the plane II in the tangent space at the
initial point q = α(0) spanned by two specified orthonormal vectors e1 and e2. These geodesics sweep
out a 2D surface SI I in the outside world called the plane section determined by the plane II. Any geodesic
γ(t) contained in SI I emanating from the initial point q = γ(0) is, by construction, also a geodesic in
the ambient 3D outside world. Thus at the initial point q both the covariant derivative ∇̃ .

γ

.
γ in SI I and

the covariant derivative ∇ .
γ

.
γ in the ambient outside world are zero.

Thus, from the Gauss formula Equation (A1), the second fundamental form I I vanishes at the
initial point q. Consequently, from the Gauss equation Equation (A2), it follows that,

Rm(e1, e2, e2, e1) = R̃m(e1, e2, e2, e1), (A5)

where, by definition, K(e1, e2) = Rm(e1, e2, e2, e1) is the sectional curvature of the ambient manifold (G, g)
at the initial point q and K̃(e1, e2) = R̃m(e1, e2, e2, e1) is the Gaussian curvature of the plane section SI I at
the initial point q ∈ SI I . This is a special property of the plane section SI I constructed as described.
It does not apply to embedded submanifolds in general. The total curvature of the perceived visual
manifold at the initial point q ∈ (G, g) is equal to the sum of the sectional curvatures of all the plane
sections at that point.
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B2. Principal Curvatures, Principal Directions and Perceived Curvatures

The relationships presented in Section 6.3 derive from the following reasoning in Lee [57]
(Chapter 8). Since E1 and E2 in TqG̃ are tangent to the submanifold at q ∈

(
G̃, g̃

)
while n is g-orthogonal

to the submanifold at the same point, it follows that 〈n, E1〉g = 0, so we can write:
0 = ∇E1〈n, E1〉g =

〈
∇E1 n, E1

〉
g +

〈
n, ∇E1 E1

〉
g.

Therefore:〈
∇E1 n, E1

〉
g = −

〈
n, ∇E1 E1

〉
g,

= −
〈

n, ∇̃E1 E1 + h(E1, E1)n
〉

g
, (using the Gauss formula and Equation (37))

= −〈n, h(E1, E1)n〉g, (because ∇̃E1 E is g-orthogonal to n)
= −h(E1, E1)〈n, n〉g,
= −h(E1, E1), (because 〈n, n〉g = 1)
= −〈SE1, E1〉g, (using Equation (38))
= −〈κ1E1, E1〉g, (using Equation (39))
= −κ1〈E1, E1〉g,
= −κ1, (because 〈E1, E1〉g = 1).

Thus, from
〈
∇E1 n, E1

〉
g = −〈SE1, E1〉g we obtain:

∇E1 n = −SE1 = −κ1E1. (A6)

In other words, the negative of the perceived rate of change ∇E1 n of the unit normal vector n for
movement in the direction E1 tangent to the submanifold is collinear with E1 and its g-norm equals the
perceived maximum principal curvature κ1 of the submanifold at that point. The principal direction
E1 can be easily detected because the perceived rate of change ∇E1 n of the unit normal vector n is
collinear with the direction of movement only for the principal direction E1. By similar reasoning:

∇E2 n = −SE2 = −κ2E2. (A7)

Since the shape operator S is symmetrical, the direction E2 is g-orthogonal to E1 in the 2D tangent
space TqG̃.

Substituting the principal directions E1 and E2 into the Gauss equation Equation (A2) we obtain:

Rm(E1, E2, E1, E2) = R̃m(E1, E2, E1, E2)− h(E1, E2)h(E2, E1) + h(E1, E1)h(E2, E2). (A8)

We define:
h11 = h(E1, E1) = 〈SE1, E1〉g̃ = 〈κ1E1, E1〉g̃ = κ1,
h22 = h(E2, E2) = 〈SE2, E2〉g̃ = 〈κ2E2, E2〉g̃ = κ2,
h12 = h(E1, E2) = 〈SE1, E2〉g̃ = 〈κ1E1, E2〉g̃ = 0,
h21 = h(E2, E1) = 〈SE2, E1〉g̃ = 〈κ2E2, E1〉g̃ = 0.

Thus, Equation (A8) can be rewritten as Rm(E1, E2, E1, E2) = R̃m(E1, E2, E1, E2) + κ1κ2.
Rearranging and using skew-symmetry of the Riemann curvature tensor, we obtain the perceived
curvature κ1κ2 of the submanifold at the point q ∈

(
G̃, g̃

)
to be:

κ1κ2 = R̃m(E1, E2, E2, E1)− Rm(E1, E2, E2, E1), (A9)

where R̃m(E1, E2, E2, E1) is the Gaussian curvature of the submanifold
(

G̃, g̃
)

at q ∈
(

G̃, g̃
)

and
Rm(E1, E2, E2, E1) is the sectional curvature of the ambient perceived visual manifold (G, g) at q ∈
(G, g) associated with the plane in TqG spanned by the two orthonormal vectors E1 and E2 tangent to
the submanifold at that point. Both the Gaussian and sectional curvatures in Equation (A9) depend
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on the position q ∈ (G, g) in the perceived visual manifold and on the orientation of the submanifold
defined by the plane in (G, g) spanned by E1 and E2 tangent to the submanifold at q ∈

(
G̃, g̃

)
.
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