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Over 1.7 million people worldwide suffer 
from blindness caused by retinitis pigmentosa 
(RP), a group of hereditary disorders that 
cause progressive loss of first rod and then 
cone photoreceptors. Mutations in rhodopsin 
(Rho) account for close to 30% of all autosomal 
dominant (ADRP) cases, and the most common 
mutation in North America, RhoP23H, involves a 
single amino acid change at position 23 at the 
N-terminal region of the protein.1,2 

The molecular/cellular mechanism leading 
to rod cell death in RhoP23H-linked RP is still 
subject to debate. Current models include 
misregulation of stress pathways, involving 
endoplasmic reticulum-associated degradation 
(ERAD) and unfolded protein response (UPR),3-7 
or the disruption of membrane disks in the outer 
segment (see Figure 1 for current models).8-12 
Studies in transfected cells and transgenic 
animals show RhoP23H to be a misfolded protein 

that forms aberrant oligomers and aggregates, 
and is largely found within the cell body.3,13-

15 Notwithstanding the many unanswered 
questions on the etiology of the disease, it 
is this accumulation of abnormal protein 
aggregates that is thought to eventually lead 
to photoreceptor cell death.3-6,8,10 Currently, 
there are no effective treatments for RP. 
Translational approaches focus on 1) removing 
the mutant protein by suppressing expression 
or enhancing degradation, 2) promoting cell 
survival by delivering neurotrophic factors, or 
3) suppressing cell death.16,17 

Several models that recapitulate aspects 
of RhoP23H pathology are used in these 
studies.11,15,18-21 Animal models (frog, rat, mouse, 
pig) offer platforms that are photoreceptor-
cell-based and thus more relevant from a 
pathophysiological standpoint. In these systems, 
however, the large-scale approaches necessary 

Figure 1. In healthy vertebrate photoreceptor cells (diagrammed on the left), wild type rhodopsin (WT RHO) is 
correctly folded and delivered to the membrane disks in the rod outer segment (OS). Very little, if any, rhodopsin is 
detected in the inner segment. Instead, improperly folded mutant rhodopsins (particularly Class II mutants4) are prone 
to forming oligomers and aggregates that are found largely in the cytoplasm but also in small amounts within the rod 
OS (diagrammed on the right). The pathogenic mechanism by which RhoP23H leads to cell death is still the subject of 
debate3-12. Experimental evidence suggests one of two possible sites of action: 1) within the cell body, by impairing the 
protein quality-control systems (ERAD and UPR), or 2) in the rod OS, by disrupting some critical function of the disks 
or the rod’s structural integrity.3-12 
ERAD, endoplasmic reticulum-associated degradation; UPR, unfolded protein response
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for genetic or pharmacological screens are 
either not feasible (frog, pig) or prohibitively 
expensive (mouse, rat). On the contrary, cell 
culture is ideally suited for large-scale studies. 
Nevertheless, heterologous cell types lack 
critical features of photoreceptor cells, including 
specialized cellular structures and the machinery 
to house and process enormous quantities 
of membranes (protein and lipids). For these 
reasons and the resulting Rho-induced toxicity, 
the cell culture model is significantly limited.

Invertebrate models have been extensively 
used in the study of disease mechanisms thanks 
to their low cost, robust conservation of key 
physiological processes, and availability of 
sophisticated tools for detailed analyses as 
well as large-scale approaches (for instance, 
in the study of human neurodegenerative 
diseases).22-25 Among them, Drosophila presents 
an extremely well studied visual system whose 
developmental origin relies on many of the same 
molecular factors as the vertebrate eye.26 Yet, the 
fruit fly has been rarely utilized in the analysis 
of mammalian proteins linked to vision loss, 

largely because of the structural and functional 
distinctiveness of compound and camera eyes.

Is the Drosophila Model Relevant to the 
Metabolism of Mammalian Opsins?

There are striking differences between 
photoreceptor cells of flies and vertebrates, 
particularly in visual transduction and cellular 
structure (see comparison in Figure 2).27 These 
differences obviously reflect a long history of 
independent evolution of light perception and 
vision in vertebrates versus invertebrates. For 
this reason, Drosophila has not been exploited 
as a host organism in the study of mammalian 
opsins. However, this should be reconsidered 
in light of new findings on the morphogenesis 
of the phototransduction compartments and the 
maturation, transport and degradation of opsins 
in flies and mouse photoreceptors. 

Drosophila photoreceptor cells (aka R-cells) 
can produce bovine or murine Rhodopsin as 
stable proteins that can traffic correctly to 
the rhabdomere (Fig. 3A).28 The bovine opsin 

Figure 2. In Drosphila, rhodopsin (r-opsin) interacts with a G-protein (Gq) to activate phospholipase C (PLC) resulting 
in breakdown of phosphoinositide biphosphate (PIP2) and opening of ion channels (depolarization). In vertebrates, 
rhodopsin (c-opsin) interacts with a G-protein transduction to activate a phosphodiesterase (PDE) resulting in 
hydrolysis of guanosine 3,5-cyclic monophosphate (cGMP) and closure of ion channels (hyperpolarization).27
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has also been shown to be functional when 
presented with the appropriate G protein, Gt 
Transducin.28 Moreover, a number of studies 
have uncovered similarities in the processing 
and transport of opsins. Transport of both the 
fly rhodopsin Rh1 and mammalian Rho involve 
the exocyst complex, Rab11 and myosins (V 
in flies and VIIA in mouse).29-33 In regards to 
Rhodopsin degradation, the ERAD effector 
valosin-containing protein (VCP) acts as a 
molecular chaperone for both fly and mammalian 
proteins.34,35 Additional evidence comes from 
the associations of factors required in R-cells 
with human eye diseases. Mutations in Crumbs 
homolog 1 (the vertebrate homologue of Crumbs, 
a critical cell polarity factor that also facilitates 
rhodopsin trafficking in fly photoreceptors) are 
associated with retinal degeneration in fly and 
mouse, and retinitis pigmentosa in humans.36,37 
Multiple cases of Usher syndrome have been 
mapped to the region of the DENN/MADD 
domain containing 4A (DENND4A) locus, the 
human homologue of fly Crag, which plays an 

integral role in the trafficking of Rh1.38,39 Lastly, 
prominin, a factor recently implicated in the 
elaboration of phototransduction compartments 
in both rhabdomeric and ciliary photoreceptors, 
is linked to retinitis pigmentosa and Stargardt 
disease.40-42 As many genes involved in the 
processing of Rh1 and Rho have not been 
identified, additional factors in common between 
vertebrates and invertebrates will certainly 
emerge from further studies. 

In addition, nearly all Rho-processing 
components have corresponding fly homologues 
that may also be active in processing of Rh1, or 
be recruited for production of Rho in R-cells. 
Interestingly, maturation of the mammalian 
protein does not require the Rh1-specific, 
endoplasmic reticulum (ER)-based chaperone 
NinaA (a cyclophillin),28,43 but does appear 
to depend on Nuf, a fly homologue of Rab11 
family-interacting protein 3 (Fig. 3B), a critical 
factor for the transport of Rho from the trans-
Golgi network in mouse rods.30 Further analysis 
of evolutionarily conserved and fly-specific 

Figure 3. Analysis of wild type and P23H mouse rhodopsins-GFP fusions in fly photoreceptor cells. (A-C) Anti-GFP 
antibody staining of fly photoreceptors expressing (A) mRho-eGFP, (B) mRho-eGFP + NufRNAi, or (C) mRhoP23H-eGFP. 
Cells are marked by dashed lines. White bar = 5 microns. (A) mRho-eGFP localizes to the rhabdomere (arrowheads). 
(B) mRho-eGFP is also found in intracellular inclusions when Nuf/FIP3 is knocked down (NufRNAi). Thus, Nuf/
FIP3, which facilitates the post-Golgi trafficking of Rho in mammals, also appears to affect mRho-eGFP localization 
in fly photoreceptors. (C) mRhoP23H-eGFP is found mostly in cytoplasmic inclusions (arrows), with very little protein 
reaching the rhabdomere (arrowheads). This mislocalization of mRhoP23H-eGFP recapitulates the phenotype observed 
in vertebrate models of RhoP23H RP. The stability of the mutant protein is also lower. The signal in panel C has been 
enhanced using Adobe Photoshop for clarity. (D) Western blot analysis shows that mRhoP23H-eGFP (D, right side), 
but not mRho-eGFP (D, left side), is found in oligomers in day 1 and 3 adult fly heads. Monomers, dimers and larger 
oligomers can be visualized as bands of progressively higher molecular weight. NT = wild type fly, non transgenic 
control. (E-H) Detection of opsin-eGFP fluorescence in live flies. Red bars = 100 microns (E) Normal eye phenotype 
of GMR-Gal4 UAS mRho-eGFP flies shows that overexpression of mRho-eGFP does not disrupt eye morphology. 
(F-H) mRho-eGFP fluorescence is easily visible in the eyes of live adult flies after 1 second (F) and 50 millisecond 
(G) exposures. (H) Reflecting its predominantly intracellular localization and lower stability, no mRhoP23H-eGFP 
fluorescence is visible after a 50 millisecond exposure (not shown); only diffuse background fluorescence due to natural 
pigment is detected after 1 second (H).
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factors in our mRho-GFP model will shed light 
on the processing of mammalian rhodopsin in 
Drosophila photoreceptors.

Is Drosophila Relevant to the Study of the 
Mutant Rho?

To explore this question, we expressed mouse 
mutant RhoP23H (mRhoP23H) in R-cells. In 
contrast to wild type mRho, the mutant opsin 
does not localize to the rhabdomere, displays 
lower protein stability, oligomerizes and forms 
abnormal intracellular foci (Figures 3C and 
3D). In essence, mRhoP23H shows a pattern of 
phenotypic abnormalities in R-cells strikingly 
similar to the aberrant behavior of this protein 
in vertebrate photoreceptors. 

Importantly, we can detect alterations 
in the localization and/or stability of this 
mutant rhodopsin by measuring changes in 
GFP-fluorescence. This is achieved by using 
Rho-eGFP fusions and detecting fluorescence 
in adult eyes or dissected retinas (live or fixed 
tissue) (Figures 3F-I and 3A-C, respectively). 
Hence, modifiers that increase stability, folding, 
and rhabdomeric localization of RhoP23H-eGFP 
will lead to increased fluorescence, whereas 
modifiers that decrease rhabdomeric localization 
and/or protein stability will lead to decreased 
fluorescence. Thus, a fly model of mammalian 
RhoP23H may address the present lack of 
photoreceptor-based models suitable for large-
scale applications.

In conclusion, a screening platform for 
genetic and pharmacological modifiers of 
misfolded mammalian rhodopsin is now 
available in the powerful genetic Drosophila 
model.44 This provides an innovative, in vivo 
approach for the discovery of novel drugs or 
targets. 
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