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The Delta variant is a major SARS-CoV-2 variant of concern first identified
in India. To better understand COVID-19 pandemic dynamics and Delta,
we use multiple datasets and model-inference to reconstruct COVID-19
pandemic dynamics in India during March 2020–June 2021. We further
use the large discrepancy in one- and two-dose vaccination coverage in
India (53% versus 23% by end of October 2021) to examine the impact of
vaccination and whether prior non-Delta infection can boost vaccine effec-
tiveness (VE). We estimate that Delta escaped immunity in 34.6% (95% CI:
0–64.2%) of individuals with prior wild-type infection and was 57.0%
(95% CI: 37.9–75.6%) more infectious than wild-type SARS-CoV-2. Models
assuming higher VE among non-Delta infection recoverees, particularly
after the first dose, generated more accurate predictions than those assuming
no such increases (best-performing VE setting: 90/95% versus 30/67%
baseline for the first/second dose). Counterfactual modelling indicates that
high vaccination coverage for first vaccine dose in India combined with
the boosting of VE among recoverees averted around 60% of infections
during July–mid-October 2021. These findings provide support to prioritiz-
ing first-dose vaccination in regions with high underlying infection rates,
given continued vaccine shortages and new variant emergence.
1. Introduction
The Delta variant (PANGO lineage: B.1.617.2) is a major SARS-CoV-2 variant of
concern (VOC) [1–4] that spread to at least 200 countries and territories (Global
Initiative on Sharing All Influenza Data (GISAID) [5], as of 28March 2022). Several
lines of evidence have indicated that Delta is able to evade immunity from prior
infection by pre-existing variants; these include reduced neutralizing ability of con-
valescent sera and vaccinee sera against Delta [6–9], reduced vaccine effectiveness
(VE) against infection [10–13] and reduced VE against symptomatic disease after
first-dose vaccine (but only slight reduction for full vaccination) [14–16]. In addition,
studies have found a higher secondary attack rate, growth rate or reproduction
number forDelta than prior variants includingAlpha (range of themean estimates:
60–120%) [2,17–21], In particular, Dhar et al. [22], fitting amodel tomortality data in
Delhi, India, estimated a 1.3-fold to 1.7-fold (50%CI) increase in transmissibility and
10–50% (50% CI) immune evasion for Delta; however, the authors noted large
uncertainty in their estimates [22]. Further, factors such as host behavioural changes
and seasonalmodulationof riskdue to changes in environmental conditionsaredif-
ficult to account for and could confound these estimates. As a result, estimates of
prior immunity evasion and relative transmissibility forDelta and the contributions
of these properties to the rapid spread of this variant remain uncertain.

India, where Delta was first identified, experienced an intense pandemic
wave in late March 2021. However, unlike many places seeing a prolonged
Delta pandemic wave, the Delta wave in India only lasted three months and
declined rapidly after peaking mid-May. Cases remained low during
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June–October 2021 (the time of this study). A high infection
rate after the Delta wave has been cited as a reason for this
dramatic epidemic decline, as vaccination coverage was low
at the time (4.2% fully vaccinated at the end of June 2021).
However, given an estimated basic reproduction number
(R0) of 6–7 [20], roughly 83–86% (1–1/R0) of the population
would need immunity for the Delta epidemic to subside.
Assuming 10–50% immunity escape [22] and a 25–35% infec-
tion rate prior to the Delta wave [23], this implies that 53–73%
of India’s 1.4 billion people would have been infected by
Delta within the span of three months, despite a national
lockdown at the time.

To better understand COVID-19 pandemic dynamics in
India and the epidemiological characteristics of Delta, here
we use a model-inference method recently developed for
SARS-CoV-2 VOCs. The model-inference method incorporates
epidemiological, population mobility and weather data to
model SARS-CoV-2 transmission dynamics, while accounting
for case under-ascertainment, impacts of non-pharmaceutical
interventions (NPIs) and vaccination, infection seasonality
and new variants [24]. Applying this method, we have jointly
estimated the immune escape potential and change in trans-
missibility for Alpha, Beta and Gamma, separately, using
data from countries where these three VOCswere first reported
[24]. In addition, several laboratory studies have reported
stronger vaccine-induced immune responses among recovered
vaccinees than naive vaccinees, suggesting potential boosting
of pre-existing immunity [25–28]. In India, while only 23% of
the population have received two vaccine doses, 53% have
received their first vaccine dose, as of the end of October
2021. This large discrepancy in one- and two-dose coverage,
combined with a likely high population infection rate, offers
an opportunity to examine the boosting effect of prior non-
Delta infection on vaccine-induced immunity at the population
level. Therefore, in this study, we first reconstruct the pandemic
dynamics in India during March 2020–June 2021 and estimate
key epidemiological characteristics of Delta. We then further
use our model estimates to retrospectively predict cases and
deaths during July–October 2021, under various vaccination
and VE scenarios, and compare these simulations to obser-
vations in order to estimate the impact of vaccination and VE
for those with prior non-Delta infection.
2. Results
2.1. The first COVID-19 pandemic wave in India,

March 2020–January 2021
From March 2020 to January 2021, India recorded over 10
million COVID-19 cases (0.77% of its population); however, a
nationwide serology survey suggested that approximately
24% of its population had been infected by December 2020
[23]. Accounting for under-detection of infection (electronic
supplementary material, figure S1), implemented NPIs,
seasonality and vaccination, we used the model-inference
system to reconstruct pandemic dynamics in India since
March 2020 (figure 1a). Model-estimated infection rates closely
match with measurements from three nationwide serologic
surveys conducted during the early, mid and late phases of
the first pandemic wave (figure 1b). Our analysis indicates
that the two-month-long national lockdown (24 March–31
May 2020) and the less favourable weather conditions during
pre-monsoon season (i.e. March–May) probably contributed
to initial low infection rates. By mid-May 2020, the model-
inference system estimates that only 0.43% (95% CrI: 0.19–
1.7%) of the population had been infected (versus 0.73% (95%
CI: 0.34%, 1.13%) among adults estimated by serosurvey [29]).
As the country lifted its lockdown in June 2020 and entered
the monsoon season (June–September), when conditions are
probably more favourable for transmission (figure 1c), the first
pandemicwavebegan.Nevertheless, continued regional restric-
tions during June–November 2020 and less favourable weather
conditions during the autumn (October–November; see mobi-
lity and seasonal trends in figure 1c) probably mitigated
pandemic intensity. The estimated mean of the reproduction
numberRt (i.e. average number of secondary infections per pri-
mary infection) was above 1 but less than 1.35 from June to
mid-September; in addition, Rt dropped below 1 during
October–November (figure 1d). By the end of January 2021
when case rates reached a minimum following the first wave,
the model-inference system estimates that 26.1% (95% CrI:
19.9–33.0%) of the population had been infected (figure 1b).

2.2. The second pandemic wave in India and estimated
epidemiological characteristics of Delta

Infections resurged dramatically in late March 2021, largely
due to the rise of the Delta variant. Despite a week-long
second national lockdown implemented beginning 20 April
2021, India reported another 19 million cases during late
March–June 2021, about twice the number reported during
the previous 12 months. Accounting for under-detection (elec-
tronic supplementary material, figure S1), we estimate that
32.3% (95% CrI: 22.4–46.5%) of the population were infected
during this three-month period, including reinfections. This
intense transmission was probably facilitated by the higher
transmissibility and immune evasive capabilities of the Delta
variant. Estimated transmissibility increased substantially
during the second pandemic wave (figure 1e). In addition, esti-
mated population susceptibility increased at the start of the
secondpandemicwave (figure 1f ), suggesting the loss of popu-
lation immunity against Delta. Due to this immune escape, an
estimated 50.5% (95% CrI: 21.8–79.0%) of the population
remained susceptible at the end of June 2021, despite two
large pandemic waves and rollout of mass vaccination (of
note, 19% of the population had received at least first dose of
vaccine by the end of June 2021). These findings along with
the seasonal trends described above suggest that the decline
of the second wave was largely due to the NPIs implemented
and less favourable weather conditions during March–May,
rather than high population immunity.

Combining the model-inference estimates during the
first and second pandemic waves in India, we estimated
that Delta was able to escape immunity among 34.6%
(95% CI: 0–64.2%) of individuals with prior wild-type infec-
tion and was 57.0% (95% CI: 37.9–75.6%) more transmissible
than wild-type SARS-CoV-2. Estimates are similar under
different VE settings (electronic supplementary material,
figure S2).

2.3. Impact of vaccination and prior non-Delta infection
on boosting vaccine-induced immunity

Despite the likely conducive conditions during the monsoon
season (June–September), easing of NPIs, and relatively high
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Figure 1. Model-inference estimates and validation. (a) Model fit. (b) Model validation. (c) Observed relative mobility and estimated disease seasonal trend, com-
pared with case and death rates over time. Key model-inference estimates are shown for (d ) the real-time reproduction number Rt, (e) transmissibility RTX and ( f )
population susceptibility, expressed relative to the population size (i.e. St/N × 100%). Blue lines and surrounding areas show the estimated mean, 50% (dark) and
95% (light) CrIs. Boxes and whiskers show the estimated mean, 50% and 95% CrIs for weekly cases and deaths in (a) and infection rates in (d–f ). Grey shaded
areas indicate the timing of national lockdowns (darker) or local restrictions (lighter); horizontal arrows indicate the timing of variant identification and vaccination
rollout. In (c), for mobility (blue line; y-axis), values below 1 (dashed horizontal line) indicate reductions due to public health interventions. For the disease seasonal
trend (orange line; y-axis), values above 1 indicate weather conditions more conducive for transmission than the yearly average and vice versa. Note that the
transmissibility estimates have removed the effects of changing population susceptibility, NPIs and disease seasonality; thus, the trends are more stable than
the reproduction number (Rt in d) and reflect changes in variant-specific properties.
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susceptibility estimated at the end of June 2021, cases and
deaths in India remained at relatively low levels during
July–October 2021. Counterfactual modelling suggests that
the faster rollout of vaccination during this period substan-
tially mitigated the epidemic risk (figure 2). Projected cases
and deaths assuming no further vaccination uptake are
much higher than observed; in contrast, models including
the reported vaccination rates more closely match reported
cases and deaths (figure 2). Further, models assuming
higher VE for non-Delta infection recoverees generated more
accurate projections than those assuming no boosting effect
(figure 3). The boosting effect appears to be more pronounced
for the first vaccine dose (see e.g. figure 3a where larger dots,
representing higher VE after the first dose, had smaller errors).
Overall, the model assuming 90%/95% VE for the first/
second dose of vaccine for non-Delta infection recoverees
generated the most accurate projections. These projections
estimate that vaccination rollout combined with the
boosting effect averted 57% of infections during July–
mid-October 2021.
3. Discussion
Combining epidemiological, behavioural and weather observa-
tional data with a comprehensive model-inference system, we
estimate the Delta SARS-CoV-2 variant escaped immunity in
roughly one-third of individuals with wild-type infection
during the previous year and was around 60% more infectious
than wild-type SARS-CoV-2. In addition, our analysis suggests
the large increase in population receiving their first vaccine dose
(approx. 50%byend ofOctober 2021) combinedwith the boosted
VE for non-Delta infection recoverees probably helped mitigate
the epidemic intensity in India during July–October 2021.

Previously, we have estimated the changes in transmissi-
bility and immune escape potential for three other major
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SARS-CoV-2 VOCs: namely, a 46.6% (95% CI: 32.3–54.6%)
increase in transmissibility but nominal immune escape for
Alpha (i.e. B.1.1.7), a 32.4% (95% CI: 14.6–48.0%) increase in
transmissibility and 61.3% (95% CI: 42.6–85.8%) immune
escape for Beta (i.e. B.1.351), and a 43.3% (95% CI: 30.3–
65.3%) increase in transmissibility and 52.5% (95% CI:
0–75.8%) immune escape for Gamma (i.e. P.1). Compared
with Alpha, data from the UK have shown that the secondary
attack rate for contacts of caseswith Deltawas around 1.5 times
higher than Alpha (12.4% versus 8.2%), during 29 March–11
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May 2021 [2]. In a partially immunized population, the second-
ary attack rate reflects the combined outcome of the
transmissibility of the etiologic agent and population suscepti-
bility to that agent. Consistent with the UK data, our estimates
of the relative transmissibility and immune escape potential
combine to a 44.1% (95% CI: 4.2–86.6%) higher secondary
attack rate by Delta than Alpha (i.e. (1 + 57%)/(1 +
46.6%) × (1 + 34.6%)− 1 = 44.1% increase). This higher competi-
tiveness of Delta over Alpha explains the rapid variant
displacement observed in regions previously dominated by
Alpha (e.g. the UK and the USA).

In addition, we estimate that 34.6% (95% CI: 0–64.2%) of
individuals with acquired immunity from wild-type infection
would be susceptible to Delta due to immune escape. This esti-
mate is also in line with Dhar et al. [22] reporting a 27.5%
reinfection rate during the Delta pandemic wave in Delhi,
India, based on a small subset of peoplewith repeated serology
measures. In addition to immune escape from wild-type infec-
tion, studies have also reported reduced ability of sera from
Beta- and Gamma-infection recoverees to neutralize Delta
[8,30], suggesting Delta can also escape immunity conferred
by those two VOCs. Such immune escape ability would also
allow Delta to rapidly replace Beta and Gamma in regions pre-
viously hard-hit by those two VOCs, as has been observed in
many countries in Africa and South America [5]. More funda-
mentally, these findings highlight the complex, nonlinear
immune landscape of SARS-CoV-2 and the importance to
monitor the immune escape potential of new variants against
both previous and concurrent circulating variants.

Despite the successful development of multiple vaccines,
shortage of supplies—particularly in resource-limited
countries—remains an impediment to global mass vacci-
nation [31]. In response, researchers have proposed dose
sparing strategies such as fractionation [32] and one-dose vac-
cination for recoverees [33]. The latter one-dose strategy
draws on laboratory studies showing higher vaccine-induced
immune response among recovered vaccinees than naive vac-
cinees (i.e. boosting of pre-existing immunity) [25–28]. Here,
we used model-inference estimates and vaccination data in
India to test the impact of boosting at the population level.
The findings further support the effectiveness of first-dose
vaccination for recoverees. In the light of continued vaccine
shortages, prioritizing first-dose vaccination thus may be an
effective strategy for mitigating COVID-19 burden in
countries with high underlying SARS-CoV-2 infection rates.

Due to a lack of detailed epidemiological data (e.g. age-
specific and subnational) and thus model simplification,
our estimates have uncertainties as indicated by the large cred-
ible intervals. Nevertheless, these estimates are in line with
independent data from three nationwide serology surveys
conducted at three time points during the first pandemic
wave in India (figure 1b), as well as Delta-related epidemio-
logical data from the UK [2] and Delhi, India [22], as
discussed above; these consistencies support the accuracy of
our estimates. Unlike estimates from the contact tracing data,
however, here we are able to separately quantify the changes
in transmissibility and immune escape potential of the
Delta variant. In addition, our analysis also suggests high VE
of one-dose vaccination among those with prior infection.
These findings and the methods used to generate them could
support better understanding of future SARS-CoV-2 variant
dynamics given local prior infection rates, variant prevalence
and vaccination coverage.
4. Methods
4.1. Data sources and processing
We used reported COVID-19 case and mortality data to capture
transmission dynamics, weather data to estimate infection season-
ality, mobility data to represent concurrent NPIs and vaccination
data to account for changes in population susceptibility due to vac-
cination in the model-inference system. COVID-19 case and
mortality data from the week of 8 March 2020 (the first week
COVID-19 deathswere reported in India) to theweekof 17October
2021 came from the COVID-19 Data Repository of the Center for
Systems Science and Engineering at Johns Hopkins University
[34,35]. Surface station temperature and humidity data were
accessed using the ‘rnoaa’ R package [36]. We then aggregated
these data for all weather stations in India (n = 390 stations) with
measurements from January 2020 to October 2021 and calculated
the average for each week of the year. Mobility data were derived
from Google Community Mobility Reports [37]; we aggregated all
business-related categories (i.e. retail and recreational, transit
stations and workplaces) in all locations in India to weekly inter-
vals. Vaccination data (first and second dose) were obtained
from Our World in Data [38,39].
4.2. Model-inference system
The model-inference system was developed and described in
detail in our previous study [24]. Below we describe each
component in brief.
4.2.1. Epidemic model
The epidemic model follows an SEIRSV (susceptible-exposed-infec-
tious-recovered-susceptible-vaccination) construct per equation (4.1)

dS
dt

¼ R
Lt

� btetmtbtIS
N

� 1� v1,t � v2,t,

dE
dt

¼ btetmtbtIS
N

� E
Zt

þ 1,

dI
dt

¼ E
Zt

� I
Dt

and
dR
dt

¼ I
Dt

� R
Lt

þ v1,t þ v2,t,

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð4:1Þ

where S, E, I, R are the number of susceptible, exposed (but not
yet infectious), infectious and recovered/immune/deceased individ-
uals,N is the population size and ϵ is the number of travel-imported
infections (here nominally set to 1 per 10 days per 1 million people).
The model is run stochastically and includes the following key
components:

(i) Virus-specific properties, including the time-varying
variant-specific transmission rate bt, latency period Zt,
infectious period Dt and immunity period Lt. Note the
subscript, t, denotes time in weeks, as all parameters are
estimated for each week as described below.

(ii) The impact of NPIs. Specifically, we use relative population
mobility (see data above) to adjust the transmission rate via
the term mt. To further account for potential changes in
effectiveness, the model additionally includes a parameter,
et, to scale NPI effectiveness.

(iii) The impact of vaccination, via the terms v1,t and v2,t.
Specifically, v1,t is the number of individuals successfully
immunized after the first dose of vaccine and is computed
using vaccination data and vaccine efficacy for first
dose; and v2,t is the additional number of individuals
successfully immunized after the second vaccine dose
(i.e. excluding those successfully immunized after the
first dose).
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(iv) Infection seasonality, computed using temperature and
specific humidity data as described previously (see
supplemental material of Yang & Shaman [24]). The
estimated relative seasonal trend, bt, is used to adjust
the relative transmission rate at time t.

4.2.2. Observation model to account for under-detection
and delay

Using the model-simulated number of infections occurring each
day, we further computed the number of cases and deaths each
week to match with the observations, as done in Yang et al.
[40]. For example, for case data, we include (i) a time-lag from
infectiousness to detection (i.e. an infection being diagnosed as
a case) to account for delays in detection and (ii) an infection-
detection rate (rt), i.e. the fraction of infections (including
subclinical or asymptomatic infections) reported as cases, to
account for under-detection. Specifically, to compute the
model-simulated number of new cases per week, we used the fol-
lowing observation model:

Ct ¼
Xk¼7tþ7

k¼7tþ1

Xs¼S

s¼1

psrtIk�s, ð4:2Þ

whereCt is themodel-simulated number of new cases duringweek
t. In the inner summation, Ik−s is the model-simulated number of
new infectious individuals from s days before their detection as
cases; s is the time from infectiousness to detection (up to a maxi-
mum delay of S days; S was set to 14 days here) and ps is its
probability distribution (here modelled as a gamma distribution
with mean Tmean and standard deviation Tsd). That is, the inner
summation computes the model-simulated number of cases per
day, given the infection-detection rate (rt) and time-lag in detection;
the outer summation computes the weekly total by aggregating
daily estimates over the 7 days of the week. Note that Tmean, Tsd

and rt are estimated using the model-inference system along
with other model parameters and state variables and the weekly
totals are used for model-inference, fitting to the observed data
(see below).

4.2.3. Model-inference and parameter estimation
The inference system uses the ensemble adjustment Kalman filter
(EAKF) [41], a Bayesian statistical method, to estimate model
state variables (i.e. S, E, I, R from equation (4.1); electronic sup-
plementary material, figure S3) and parameters (i.e. bt, Zt, Dt,
Lt, et, from equation (4.1) as well as rt and other parameters
from the observation model; electronic supplementary material,
figure S4). Briefly, the EAKF uses an ensemble of model realiz-
ations (n = 500 here), each with initial parameters and variables
randomly drawn from a prior range (see electronic supplemen-
tary material, table S1). After model initialization, the system
integrates the model ensemble forward in time for a week (per
equation (4.1)) to compute the prior distribution for each
model state variable and parameter, as well as the model-simu-
lated number of cases and deaths for that week. The EAKF
then combines the prior estimates with the observed case and
death data for the same week to compute the posterior per
Bayes’ theorem [41]. Importantly, the EAKF adjusts the model
state variables and parameters following each assimilation of
observations, instead of working from a fixed set of parameter
proposals. As such, the continuous parameter adjustment
allows for time-evolving estimation of these values.

4.2.4. Estimating the immune escape potential and changes in
transmissibility for Delta

To identify themost plausible combination of changes in transmis-
sibility and level of immune evasion, per methods developed in
[24], we ran the model-inference, repeatedly and in turn, to test
14 major combinations of these two quantities and select the
best-performing run. Based on the best-performing model esti-
mates, we then computed the variant-specific transmissibility
(RTX) as the product of the variant-specific transmission rate (bt)
and infectious period (Dt). To reduce uncertainty, we averaged
transmissibility estimates over the first pandemic wave and the
period when Delta is dominant, separately. We then computed
the average change in transmissibility due to Delta as the ratio of
the two averaged estimates (i.e. after : before the rise of Delta).
To quantify immune evasion, we recorded the changes in immu-
nity at each time step t as ΔImmt = St+1− St + it (with St as the
susceptibility at time t and it as the new infections occurring at
time t); we then sum over all ΔImmt estimates during the second
wave when the new variant is predominant to compute the total
change in immunity due to the new variant. We further compute
the level of immune evasion as the ratio of the total change in
immunity during the second wave to the model-estimated popu-
lation immunity at the end of the first wave (i.e. the baseline
before the new variant surge). This ratio provides an estimate of
the fraction of individuals previously infected who are susceptible
to re-infection with the new variant.

Model-inference was done continuously from the week start-
ing 8 March 2020 to the week starting 27 June 2021. To account
for model stochasticity, we repeated the model-inference process
300 times, each with 500 model realizations, and summarized the
results from all 150 000 model estimates. As a sensitivity test and
part of the effort to examine the impact of prior non-Delta infec-
tion on VE, we performed the analysis using 12 different VE
settings (see details below).
4.3. Model validation using independent data
To compare model estimates with independent observations
not assimilated into the model-inference system, we identified
three measurements of cumulative infection rates from three
nationwide serology surveys in India: (i) the first national sero-
survey conducted during 11 May–4 June 2020 (n = 28 000 adults
18 years or older); [29] (ii) the second national serosurvey con-
ducted during 18 August–20 September 2020 (n = 29 082
individuals 10 years or older); [42] and (iii) the third national ser-
osurvey conducted during 18 December 2020–6 January 2021
(n = 28 598 individuals 10 years or older). [23] To account for
the delay in antibody generation, we shifted the timing of each
serosurvey 14 days when comparing survey results to model-
inference system estimates of cumulative infection rates in
figure 1b.
4.4. Estimating the impact of vaccination and
prior non-Delta infection on boosting
vaccine-induced immunity

We generated retrospective projections of cases and deaths from
the week starting 4 July 2021 to the week starting 17 October
2021 (i.e. 16 weeks following the model-inference period),
under various vaccination and VE settings. We considered
four levels of VE for those recovered from non-Delta infection:
(i) no boosting effect, i.e. using the same VE values as those with-
out prior infection, (here, we set VE at 14 days after the first dose
(VE1) to 30% and at 7 days after the second dose (VE2) to 67%,
based on data for the AstraZeneca vaccine against Delta); [15]
(ii) higher VE for the first dose but no future boosting for the
second dose (here, VE1 is set to 40%, 50% or 60%, and VE2
fixed at 67%); (iii) higher VE for the second dose but not first
dose (here, VE1 is fixed at 30% and VE2 set to 75%, 85% or
95%); and (iv) higher VE for both doses (here, VE1/VE2 are
set to 50%/75%, 60%/80%, 70%/85%, 80%/90% or 90%/95%).
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To test the impact of vaccination, in addition to projections
using reported vaccination rates, we also generated counter-
factual projections assuming no further vaccination during the
16-week period.

For all projections, the model was initiated using model-
inference estimates made at the week of 27 June 2021, except
for the infection-fatality risk (IFR). For IFR, estimates were
decreasing during June 2020 (electronic supplementary material,
figure S1B) and model-inference extended to the end of July
2021 showed continued decreases, probably due to improved
healthcare and increased protection from prior infection or vacci-
nation. We thus assumed that IFR would decrease linearly for the
first six weeks of the projection period and then flatten and
remain at that low IFR until the week of 17 October 2021. To
account for NPIs, we used mobility data during the week of
4 July 2021 to the week of 17 October 2021. As for the model-
inference runs, we repeated the projections for each scenario
300 times (each with 500 model realizations) and summarized
the projections from all runs. To evaluate the projection accuracy,
we computed the relative root-mean-square-error (RRMSE) and
1

correlation between the projected and observed values for cases
and deaths, respectively.

Data accessibility. All data used in this study are publicly available as
described in the ‘Data sources and processing’ section. All source
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