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Abstract

Commercial hybrid breeding operations can be described as decentralized networks of smaller, more or less isolated breeding programs.
There is further a tendency for the disproportionate use of successful inbred lines for generating the next generation of recombinants,
which has led to a series of significant bottlenecks, particularly in the history of the North American and European maize germplasm. Both
the decentralization and the disproportionate contribution of inbred lines reduce effective population size and constrain the accessible ge-
netic space. Under these conditions, long-term response to selection is not expected to be optimal under the classical infinitesimal model
of quantitative genetics. In this study, we therefore aim to propose a rationale for the success of large breeding operations in the context
of genetic complexity arising from the structure and properties of interactive genetic networks. For this, we use simulations based on the
NK model of genetic architecture. We indeed found that constraining genetic space through program decentralization and disproportion-
ate contribution of parental inbred lines, is required to expose additive genetic variation and thus facilitate heritable genetic gains under
high levels of genetic complexity. These results introduce new insights into why the historically grown structure of hybrid breeding pro-
grams was successful in improving the yield potential of hybrid crops over the last century. We also hope that a renewed appreciation for
“why things worked” in the past can guide the adoption of novel technologies and the design of future breeding strategies for navigating
biological complexity.
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Introduction
Pioneered by Shull (1908), hybrid breeding is credited as one of
the most significant factors for the tremendous productivity

increases of major field (Duvick 1999) and horticultural (Silva
Dias 2010) crops that enabled food production to keep pace with

population growth. Hybrid breeding programs originally were
centered around maximum exploitation of heterosis, a phenome-

non that remains largely unexplained even after a century of re-

search (East 1936; Lippman and Zamir 2007). This later evolved
into the modern concept of hybrid breeding, characterized by its

distinctive structuring of germplasm into heterotic groups and
patterns (Melchinger and Gumber 1998). Beyond heterotic groups,

the structure of commercial hybrid breeding, particularly in ma-
jor crops like maize, is characterized by the largely isolated and

unique sub-heterotic patterns of the major companies (Mikel
2006; Troyer 2009; White et al. 2020) as well as a high degree of de-

centralization into smaller, more or less disconnected sub-pro-

grams within those (Smith et al. 2006; Cooper et al. 2014). Plant
breeders further have a tendency for relying on only a small set

of elite inbred lines for producing the next generation of recombi-
nants (Rasmusson and Phillips 1997), leading to a series of signifi-

cant bottleneck events in the history of, for example, the North

American maize germplasm (White et al. 2020). These character-
istics drastically reduced the effective population size within
breeding programs and are not predicted to be promising strate-
gies under the additive, infinitesimal model of quantitative ge-
netics (Gaynor et al. 2017). Nevertheless, the consistent long-term
genetic gain has been demonstrated (Duvick et al. 2004).

To better describe and quantify the observed genetic variation
among hybrids, the concept of general and specific combining
ability was developed early on (Sprague and Tatum 1942). The
former, commonly abbreviated as GCA, is a property of the addi-
tive effects of contributing genes and describes the average per-
formance of all hybrids derived from an inbred. The latter,
commonly abbreviated as SCA, is a nonadditive residual term
that describes the deviation of the performance of a particular
hybrid from the expectation based on the parental GCA values.

Running efficient hybrid breeding programs requires a prepon-
derance of additive genetic variation to maximize response to se-
lection in the next generation of inbred lines (Falconer and
Mackay 1996) as well as the predictability of hybrid performance
from the GCA of inbred lines (Reif et al. 2007). A preponderance of
GCA variation also allows identification of inbreds that can serve
as parents of several high-performing hybrids. This greatly sim-
plifies production of commercial seed, which is a major challenge
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for many crops (Technow 2019). Therefore, hybrid breeding pro-
grams have traditionally relied on maximizing and exploiting
GCA variation (Falconer and Mackay 1996; Melchinger 1999;
Hallauer et al. 2010).

The historically grown paradigms around hybrid breeding
designs and strategies are now being challenged by innovative
concepts (e.g., Gaynor et al. 2017; Wallace et al. 2018; Hickey et al.
2019; Voss-Fels et al. 2019; Seye et al. 2020) devised in the wake of
technological advances such as whole-genome prediction
(Meuwissen et al. 2001), high-throughput phenotyping (Araus and
Cairns 2014) and genotyping (Poland and Rife 2012), as well as
gene editing (Jaganathan et al. 2018). While some of these con-
cepts, in particular those aiming to “design” superior genotypes
using gene editing or targeted recombination technology
(Wallace et al. 2018; Brandariz and Bernardo 2019), as opposed to
generating and evaluating natural variation in the genetic and
environmental context in which it occurs, are highly speculative
and might not live up to expectations (Bernardo 2016), it is clear
that the next decades will change plant breeding. However, be-
fore implementing drastic changes to breeding programs we re-
quire a theoretical and simulation framework to explore and
understand the structures and strategies that have contributed
to the success of long-term genetic gain and germplasm improve-
ment. From this historical basis, we can evaluate novel proposals
and draw lessons for design of future breeding strategies.

Empirical reports show a preponderance of additive variation
in many wild, domesticated, and laboratory species (Falconer
and Mackay 1996; Lynch and Walsh 1998; Hill et al. 2008). This
agrees well with published studies showing a preponderance of
additive GCA over nonadditive SCA variation in hybrid breeding
programs (Technow et al. 2014a; Larièpe et al. 2017). At the same
time, however, advances in plant physiology and molecular and
systems biology have stimulated a renewed appreciation of the
intricate interactions at the molecular, metabolical, and physio-
logical level that underlie complex traits (Carlborg and Haley
2004; Hammer et al. 2006; Phillips 2008; Saha et al. 2011; Wilkins
et al. 2016; Jiang et al. 2017). Of particular relevance for hybrid
breeding are recent studies indicating that heterosis is an emer-
gent property of complex metabolic networks (Fiévet et al. 2010;
Goff 2011; Fiévet et al. 2018; Vacher and Small 2019; Vasseur et al.
2019).

The paradox between the complexity of the underlying biology
and the simplicity of the expressed variation can of course be re-
solved by distinguishing between biological and statistical effects
and realizing that the former cannot be inferred from the latter
(Wade 2002; Mackay 2014; Huang and Mackay 2016). Statistical
effects of genes, as well as their aggregates such as GCA and SCA
and their variances depend on the genetic background of the pop-
ulation in which they are evaluated, particularly on allele fre-
quencies and linkage disequilibrium (LD) patterns (Falconer and
Mackay 1996). For example, it was shown that, regardless of the
underlying genetic architecture, genetic variances in random
mating populations are expected to be predominantly additive
when genes are at extreme frequencies and LD is high (Hill et al.
2008).

Thus, ratios of additive to nonadditive variation are not intrin-
sic properties of biological systems but at least partly a function
of allele frequencies and LD patterns and thus dependent on
breeding strategies (for sake of brevity, the reader is referred to
the discussion section “Emergence of additive genetic variance”
for a more in depth treatment of this topic). Because of the im-
portance of additive variation for efficient operation of breeding
programs, a framework to evaluate and study breeding strategies

should allow for the possibility of additivity arising from high
degrees of biological complexity at the genetic level.

In this study, we will use simulations based on the NK model
of genetic complexity (Kauffman 1993) to explore two distinctive,
historically grown characteristics of hybrid breeding: first its
decentralization into smaller, more or less independent sub-pro-
grams, and second the disproportional use of superior inbred
lines for producing the next generation of recombinants. Our goal
thereby is not to make specific recommendations for optimal
structuring of programs, but rather to gain an appreciation for
the properties of these structures in the context of different
degrees of genetic complexity.

Materials and methods
Model of genetic complexity
The NK model, introduced by Kauffman (1993) will form the basis
of the simulations. The NK model allows generation of a tunable
series of models of trait genetic architecture with increasing di-
mensionality and complexity by varying the number of genes N
(dimensionality) and the degree of interaction among them (K,
complexity). The NK framework is an application of graph theory
to network interactions (Csaszar 2018). The motivation for con-
sidering the genetic architecture of traits as graphs through the
NK framework is based on decades of research deciphering the
networks related to plant growth, development, and adaptation
and ultimately the generation of yield and other output traits in
globally important crops such as maize (e.g., Studer et al. 2017),
rice (e.g., Wilkins et al. 2016), sorghum (e.g., Li et al. 2018), soybean
(e.g., Fang et al. 2017), and wheat (e.g., Harrington et al. 2020). The
following section will illustrate this motivation using our first-
hand experience with maize as an example.

Following the availability of the complete maize genome se-
quence and haplotype maps, we have studied the genome to phe-
nome genetic architecture of many traits in historical and elite
maize populations that are relevant to commercial maize breed-
ing. One of the first examples of these was the genetic control of
variation for flowering time which in maize relates to the transi-
tion of the shoot apical meristem from vegetative to reproductive
floral (tassel) development (Dong et al. 2012).

This research generated many insights into the gene regula-
tory network underlying control of flowering time in maize. Dong
et al. (2012) discuss examples of genes that were studied and
tested for their combined influence on flowering time. An impor-
tant investigation was also the detailed consideration of the gene
ZMM28, a maize MADS-box transcription factor, found to have an
important role in genetic variation for grain yield separate from
its effect on flowering time (Wu et al. 2019). The discovery of the
genes involved in the relationship of ZMM28 and grain yield was
enabled by considering the genetic architecture of traits in terms
of the gene networks underlying them.

Another experimental example of a gene network studied by a
combination of mapping, transgenic, and editing approaches was
based on the ARGOS gene family (Guo et al. 2014; Shi et al. 2015,
2017). The network of genes operating around the ARGOS genes
are involved in regulating genetic variation for the ethylene
responses of maize hybrids. These responses have important
influences on genetic variation for yield that are independent of
flowering time. The network of genes discovered in these studies
further motivated our consideration of gene network models us-
ing the NK framework. Many other examples are described by
Simmons et al. (2021).
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The genetic landscape metaphor was introduced and developed
by Wright (1932) to aid in conceptualizing genetic complexity in
high dimensions (Svensson and Calsbeek 2013). As a metaphor it
should not be taken literally but can help to gain an intuition for
the complexity and ruggedness associated with increasing values
of K (Kauffman 1993) as well as making the rather abstract con-
cepts discussed henceforth more tangible. At K¼ 1 (genes acting
strictly additive without any inter- or intra-gene interactions), the
genetic landscape can be imagined as that of Mount Fuji, i.e., a
single, clearly distinguished peak with a steady and monotonous
incline to the top (Figure 1). At intermediate K levels, the land-
scape is characterized by multiple peaks clustered together in a
certain region of genetic space. This might be visualized as akin
to the European Alps, i.e., a mountainous region within an other-
wise flat landscape. Finally, at high value of K, the landscape
resembles a sea of dunes, i.e., a range of peaks of similar height
and shape distributed more or less evenly in space.

Implementation of the NK model
We implemented the NK model according to the generalized ap-
proach described by Altenberg (1994), but adapted the model to
accommodate diploid genomes. Here, the complex trait is de-
scribed as a normalized sum of a set of “fitness components.”
The normalization was done by dividing by N out of convention
(Csaszar 2018). Because N was held constant throughout this
study, normalization was by a constant and thus did not affect
results (e.g., the relative ranking of individuals). The value of each
fitness component is computed as a function of K interacting
genes drawn at random from all N genes. Following Altenberg
(1994), the specific fitness values were calculated with random
functions derived from the ran4 pseudo-random number generator
(Press et al. 1992) and are distributed uniformly between 0 and 1.
For this study, the number of fitness components and the num-
ber of genes were both set to N¼ 500. This number was chosen as
a compromise between research showing that e.g., upwards of
1500 genes and upwards of 1800 metabolites are involved in the
biomass metabolism of a complex organism such as maize (Saha
et al. 2011) and computational tractability. Genes were biallelic
and the simulated organism diploid. The complexity parameter K
was varied from 1 to 15 in steps of 1 (i.e., creating genetic land-
scapes ranging in complexity from Mount Fuji to The Dunes;
Figure 1). Following Altenberg (1994), we allowed for some

variation in the number of genes interacting in each component.
This was achieved by using K as the rate parameter in a Poisson
distribution from which the number of interacting genes was
drawn independently for each fitness component. The sampled
values were then truncated to fall within a range of 1 and 15. The
exception to this was at K¼ 1, where all components were con-
trolled strictly by a single gene. For K> 1, genes were assigned at
random to the fitness components, with the number of genes
assigned to each component depends on the value drawn from
the Poisson distribution, as described. Thus, genes typically influ-
enced multiple fitness components (i.e., act pleiotropically). For
K¼ 1, each of the 500 genes was assigned to exactly one fitness
component, and the values of heterozygous allele configurations
were constrained to be midway between the homozygous config-
urations. Thus, K¼ 1 represents a genetic architecture in which
genes act strictly additive and without any inter-gene interac-
tions. Using order statistics, the expected value of the maximum
of two samples from a Uniform distribution between 0 and 1 is 2/
3. Thus, the expected maximum attainable fitness at K¼ 1 is 2/3.

Quantification of complexity
The complexity of the generated NK models was quantified
following the “one-mutant neighbor” hill-climbing algorithm de-
scribed by Kauffman (1993), but adapted to diploid organisms.
A randomly generated genotype was used as the starting value.
From there, all possible genotypes were generated that differ
from the initial genotype by one allele at one of the 500 loci.
Thus, a homozygous locus was changed to the heterozygous
state while a heterozygous locus was changed to both alternate
homozygotes. Then, the fitness values of all one-allele neighbors
were evaluated according to the defined NK model, and an im-
proved genotype was chosen at random from all fitter one-allele
neighbors. This process was repeated until no fitter one-mutant
neighbor could be found, meaning that the search reached a local
or global optimum. For each level of K, 100 NK models were gen-
erated independently and a minimum of 65 searches, each start-
ing at a random initial genotype, were conducted for each. The
statistics recorded were the average number of steps until a local
optimum was reached, the average Hamming genotypic distance,
i.e., the proportion of different genome positions (Pinheiro et al.
2005), among optima and the correlation between the fitness val-
ues of the optima and the Hamming distance to the highest opti-
mum identified (Kauffman 1993).

The average Hamming distance between the local peaks in-
creased from just below 0.5 at K¼ 2 to 2/3 at around K of 6 or 7
and remained constant at this value from there on (Figure 2A).
Note that with three different genotypes at each locus, 2/3 is the
expected value of the Hamming distance between randomly gen-
erated genotypes. Similarly, the correlation between the fitness
values of the local peaks and their Hamming distance to the
highest identified peak increased from �0.25 at K¼ 2 to zero at
K¼ 9 (Figure 2B). Here, a negative correlation means that local
peaks with higher fitness tend to be found near each other and
clustered around the highest peak. Furthermore, a zero correla-
tion indicates that there is no clustering of the peaks and proxim-
ity to the highest peak. Therefore, local peaks are randomly
distributed throughout the genetic landscape. Thus, somewhere
between K¼ 6 and K¼ 9, the landscape shifts from one in which
local peaks tend to cluster together, to one where local peaks of
arbitrary height can exist anywhere in genetic space. The average
number of steps until a local peak was reached decreased with K
from 500 at K¼ 1 to just 167 at K¼ 15 (Figure 2C). Note that 500 is
the expectation at K¼ 1 when starting from randomly generated

Mount Fuji (K = 1)

The Alps (intermediate K)

The Dunes (high K)

Figure 1 Schematic visualization of genetic landscapes corresponding to
different values of complexity parameter K.
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genotypes, because 1/3 of the 500 loci are already at their highest

possible value, 1/3 are one step removed (the heterozygous geno-

types) and 1/3 are two steps removed (the lower homozygotes).

Thus, the complexity and ruggedness of the genetic landscapes

increase further after they become uncorrelated around K of

6 to 9.

Genome definition
The simulated genome comprised 10 diploid chromosomes of

1 Morgan length each. Each of the chromosomes received a

random subset of 50 of the 500 genes, which were distributed

evenly across the chromosome. Recombination was simulated

according to the Haldane mapping function with the R package

“hybrid” (Technow 2013), in the version available from the

supplement of Technow and Gerke (2017).

Simulation of the hybrid breeding process
The simulation process is visualized in Figure 3. The specific pro-

cess depicted in this figure as well as the following explanations

correspond to the distributed program structure of which more

details will be given below. This structure is the most general of

the ones considered and allows us to cover all features of the

simulated process. The other structures considered, which are

described in a later section as well, are special cases of this. The

starting point of the simulation was a base population of inbred

lines of size 1000 (Figure 3A). This population was simulated sto-

chastically as described by Montana (2005) to result in an

expected LD between two loci t Morgan apart equal to r2 ¼
0:5 � 2�t=0:1 and with minor allele frequencies distributed uni-

formly between 0.35 and 0.50. The lines from the base population

were then separated at random into two heterotic groups (arbi-

trarily labeled “1” and “2”) and further into sub-populations

within those. The size of those sub-populations depended on the

scenario. One sub-population from one heterotic group was then

paired with one sub-population from the other group to form

sub-heterotic patterns. These population pairs will henceforth be

referred to as “breeding programs.” Hybrids were produced

strictly across heterotic groups, by crossing lines from one sub-

population of a program with lines from the other. Breeding

crosses, i.e., crosses to generate a new generation of recombinant

lines were done within and among sub-populations, depending

on the scenario but strictly within heterotic groups (Figure 3B).

The simulation of the breeding process described above is an ap-

proximation of the structure and evolution of long-term hybrid

breeding akin to what we have observed in practice; i.e., starting

from an initial germplasm base, separation into distinct heterotic
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lines from other programs used in its breeding crosses, with the highest
ranked program A not using any.
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groups and future separation into sub-populations (Duvick et al.
2004; Mikel and Dudley 2006).

Evaluation of genetic performance
The GCA of the lines was evaluated with an incomplete mating
design (Melchinger et al. 1987; Seye et al. 2020) by performing 10
crosses per line with random partners from the opposite sub-pop-
ulation of the same program. The performance of the resulting
hybrids, as determined according to the defined NK model, was
then averaged. Finally, a normally distributed noise variable with
zero mean and variance equal to one-half of the variance of the
GCA values of that sub-population was added to those averages
to represent residual experimental and environmental noise vari-
ation. The so obtained “observed” GCA values thus had a herita-
bility, on a progeny mean basis, of 2/3, a value easily achievable
in multi-environment, multi-testcross field trials (Schopp et al.
2015). Those GCA observations were then used to predict the per-
formance of all possible inter-group hybrids of that program. The
top hybrids, how many exactly depended on the scenario, were
then selected and their true performance determined according
to the NK model. The average of this select group of hybrids,
which represents a set of advanced experimental hybrids, was
used to quantify the overall performance of the program in the
current cycle. The selected hybrids from all programs were then
ranked according to their true performance and the value of the
top-ranked hybrid was defined as the peak performance of the
whole breeding operation in the current cycle and used as a met-
ric of genetic gain. This metric reflects that commercial breeding
programs release only a handful of hybrid products each cycle.

Selection of breeding parents
Breeding crosses among inbred lines for initiating the next re-
combination cycle were chosen by assigning each inbred line a
usage probability, which was a product between an individual
and population level relative contribution value. To determine
the former, the lines within each sub-population were ranked
according to their observed GCA values (Figure 3C). Only the top
lines, how many depended on the scenario, were selected as po-
tential parents, the remainder given an individual contribution
value of zero. The relative contributions of the selected lines
from a given sub-population were drawn from a Dirichlet distri-
bution. The concentration parameters of this distribution were
used to modulate the relationship between selection rank and
relative contribution. Further details about this will be given later
when describing the setting for the “parental contribution
theme.”

The population-level contribution values describe the overall
contribution of lines from one sub-population to the breeding
crosses of another. They are thus defined anew for each target
population and hence the contribution value of population “A” to
the crosses for population “B” might be different than that to the
crosses of population “C.” The process will be explained using the
example visualized in Figure 3B. Here, there are three programs
(labeled “A,” “B,” and “C,” with subscript 1 or 2 indicating the het-
erotic group).

In each cycle, the programs are ranked from highest to lowest
performing according to the average performance of the selected
set of experimental hybrids, as described above. This means that
the relative performance ranking of the programs was subject to
change from cycle to cycle. Germplasm, in the form of lines used
as crossing partners, is exchanged only from higher to lower per-
forming programs. Specifically, the number of crosses with lines
from other programs increased from zero for the best performing

program (A) to a proportion of Pmax for the lowest performing
program (C), with intermediate programs staggered equidistantly
between. In the example, Pmax ¼ 50%. Thus, program A will per-
form no crosses with lines from other programs, program B will
use lines from other programs in 25% of its new crosses and pro-
gram C in 50% of its crosses. How much of that overall proportion
was derived from each of the other programs was proportional to
the relative performance differences. In the example, the differ-
ence between program C and program A is twice as large as that
between C and B, thus, lines from program A were used in twice
as many crosses than lines from program B (33% from A and 17%
from B for a total of 50%).

This process thus reflects that highly successful programs
tend to exploit their own genetics while less successful programs
have more of an incentive to explore superior genetics from other
programs. The Pmax values considered in this study were 25, 50,
and 75%.

The relative individual contributions were then multiplied
with the relative population contributions to arrive at a final rela-
tive contribution value for each line to the crosses of a given pop-
ulation. The actual breeding crosses were then determined by
sampling the lines with probabilities proportional to their contri-
bution values. This was done with replacement, meaning that
the same cross could have been made multiple times, but exclud-
ing crosses that would result in selfings. One recombinant line
was derived from each crossing (e.g., two full-sib progenies would
have been created if a crossing was made twice). This was done
through seven generations of single-seed descent selfing, after
which the lines were assumed to be fully homozygous and any
residual heterozygosity was ignored. This new generation of
recombinants fully replaced the previous generations, i.e., a line
was considered as a crossing partner in only one generation. The
so obtained new recombinants then form the next breeding cycle.
The simulations were conducted for 30 cycles in total and re-
peated independently at least 500 times for each scenario stud-
ied. All computations were conducted in the R environment for
statistical computing (R Core Team 2018).

Recorded metrics
In addition to the already described true performance of the best-
identified hybrid, which was used as a measure of peak perfor-
mance in a given cycle, several other measures were recorded to
describe and understand the dynamics of the system.

The proportion of GCA to total genetic variance (%GCA) describes
the amount of exploitable additive genetic variation currently
available. It was estimated using the hybrids generated for evalu-
ating the GCA of the inbred lines. For this, the following mixed
model was fitted: hij ¼ lþ gi þ gj þ eij, where hij was the true per-
formance of the hybrid between line i from heterotic group 1 and
line j from group 2, l the overall mean, gi and gj were the GCA
effects of lines i and j from the two heterotic groups and eij a re-
sidual term. Because the true genetic performances of the
hybrids were used, eij approximates the SCA component. The
model was fitted using the R package “lme4” (Bates et al. 2015)
and %GCA then calculated as ðVgi

þ Vgj
Þ=ðVgi

þ Vgj
þ Veij

Þ, where
Vgi

etc. were the estimated variance components. In scenarios
with multiple programs, %GCA was estimated separately
for each and then averaged to arrive at a single estimate for each
cycle.

The modified Rogers’ distances (Reif et al. 2005) between the het-
erotic groups within each program were used as measures of het-
erotic group divergence. The distances were calculated for all
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programs and averaged to arrive at representative value for that

cycle.
To describe the distribution of allele frequencies within each

sub-population and hence the amount of available allelic diver-

sity we calculated the proportion of loci with a minor allele fre-

quency of less than 5%. This probability measures the thickness

of the extreme tail of the allele frequency distribution and thus

reflects the degree to which it follows a “U-shape” (Hill et al. 2008).

This metric was evaluated for all sub-populations in each cycle

and then averaged.
As a more high-level diversity metric, we considered the effec-

tive population size (Ne) of each sub-population. Ne was calculated

according to the method described by Corbin et al. (2012) for esti-

mating constant effective population size. The so obtained values

were averaged across sub-populations.

Hybrid breeding “themes”
The term “theme” will be used to refer to a particular component

of a holistic hybrid breeding strategy. The themes considered

were the program structure and the relative parental contribution of

successful inbred lines to the next generation. All previously de-

scribed parameters, such as parameters related to the NK model

and genetic architecture, parameters related to testcross

evaluation, and so on, were kept constant across the themes in-

vestigated.
In the program structure theme, we explored consequences of

separating hybrid breeding programs into smaller, more or less

isolated, units. In addition to the previously described distributed

structure, we considered two other, more extreme program struc-

tures for “searching” (Podlich and Cooper 1999) genetic space,

which can be viewed as special cases of the distributed structure

(Figure 4): one comprised a single, large program (centralized struc-

ture), the other structure comprised multiple smaller, but fully

isolated programs (isolated structure).
The centralized structure was characterized by a single pro-

gram consisting of one sub-population per heterotic group. The

size of each was 500, for a total of 1000 lines generated in each

cycle. The number of lines selected to contribute to the next

generation was 125 per sub-population. The relative individual

contributions of these lines decreased proportionally with their

performance ranks. The number of selected experimental

hybrids was 125. The isolated program structure comprised five

programs, each with one sub-population per heterotic group. The

sub-population size was 100 of which 25 were selected. Also here,

the relative individual contributions of the lines were

proportional to their performance ranks. The number of experi-
mental hybrids selected per program was 25.

For the distributed structure, we considered three levels of Pmax:
25, 50, and 75%. The number of programs as well as lines and
hybrids created and selected for each followed those of the isolated
structure. Note, thus, that the total number of lines and hybrids
were the same across all structures as was the selection intensity.

In the parental contribution theme, we explored the conse-
quences of different degrees of imbalance in the relative contri-
butions of the selected inbred lines to the next generation.
Throughout, the program structure corresponded to the distrib-
uted structure with Pmax ¼ 50%. Only the relative usage of in-
bred lines was varied. As described above, the observed relative
contributions were drawn from a Dirichlet distribution with con-
centration parameter chosen in a way to result in a certain aver-
age relationship between relative contribution and performance
rank. Three contribution scenarios were considered (Figure 5). In
the balanced contribution scenario, all selected inbreds contrib-
uted equally on average, in the proportional scenario, the relative
contribution declined proportionally with the performance rank
of the lines. In the disproportional scenario, contributions halved
with every 5 ranks, meaning that the highest performing line will
contribute twice as much to the next generation as the 5th
ranked line. The increasing imbalance in contributions can be
quantified as 1=b0b (with b being the vector of relative contribu-
tions), which is an estimate of the effective number of contribut-
ing lines (Boichard et al. 1997). For the balanced scenario, this was
25 and thus equal to the actual number of selected lines within
each sub-population. It decreased to 19.1 and 13.6 for the propor-
tional and disproportional scenarios, respectively.

Data availability
The authors affirm that all data necessary for confirming the conclu-
sions of this article are represented fully within the article and its fig-
ures and supplemental material. The R and C code for the simulations
is provided as supplementary material. The supplementary material
is available at figshare: https://doi.org/10.25387/g3.14036627.

Results
Program structure theme
Which structure achieved the highest peak performance
depended on the value of the complexity parameter K, with the
centralized structure being superior at low K< 5, the distributed
structure at intermediate K and the isolated structure at high
values of K above 8 (Figure 6A). The differences between the

centralized structure distributed structure isolated structure

hybrid crosses

breeding crosses

(sub) population

program

A B C

Figure 4 Schematic visualization of the three basic structures explored in the program structure theme: (A) centralized: a single program with one large
population in each heterotic group; (B) distributed: multiple programs with smaller populations in each heterotic group that exchange germplasm; (C)
isolated: multiple programs with smaller populations in each heterotic group that do not exchange germplasm.
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structures tended to increase with increasing K. The centralized
and distributed structures came very close to reaching the theo-
retical maximum peak performance under purely additive gene
action (K¼ 1), but the isolated structure remained considerably
below that. Within the distributed structure, the highest Pmax
value of 75% was superior at K-values below eight and the lowest
Pmax of 25% at high K (Figure 6B). The case of Pmax ¼ 50% had
peak performance in between the two extremes, but more similar
to Pmax ¼ 75%. All Pmax scenarios achieved virtually identical
peak performance at K¼ 1.

For brevity, trajectories across cycles are shown only for K-val-
ues of 1, 6, and 15, representing the additive, multi-peaked but
clustered, and fully uncorrelated landscapes, respectively (Figure
7, A–L). Results for all values of K are available as supplemental
information (Supplementary Figure S1). At K¼ 1, the centralized
program structure had the highest peak performance in all
cycles, closely followed by the three versions of the distributed
structure (Figure 7, A–C).

The peak performance of the isolated structure was consider-
ably lower than that of the other strategies as it increased at a
lower rate and seemed to reach a plateau at around cycle 20. At
K¼ 6, the isolated structure achieved the highest peak perform-
ances in the earlier cycles but was overtaken by the distributed
structures later. Those had very similar peak performances until
the last few cycles when the version with Pmax of 25% fell be-
hind. The centralized structure had the lowest peak performan-
ces throughout, with the differences to the other structures being
particularly large between the intermediate cycles 15–20. Finally,
at K¼ 15, only the isolated structure had a sizable increase in
peak performance cycle over cycle. The distributed structures
showed an increase only in the last few cycles and the centralized
structure did not increase peak performance at all.

As expected %GCA was equal to one for all scenarios at K¼ 1
(Figure 7, D–F). At K¼ 6, %GCA started at just below 10% and in-
creased from there with each cycle. The rate of increase was
greatest for the isolated structure which reached a %GCA of al-
most 100 in the final cycles. The centralized structure had the
slowest increase and was still below 50% in the final cycle. The
distributed structures were intermediate between these two
extremes. The increase was steepest for Pmax ¼ 25% case, which
translated to it having a markedly higher %GCA than the Pmax ¼
50% case and Pmax ¼ 75% case during intermediate cycles 15–20.
However, all three converged to a similar value of around 80% in
the final cycle.

At K¼ 15, %GCA started at zero and only the isolated structure
saw a marked increase in early cycles. The distributed program
structure saw an increase in %GCA noticeably above zero only in

A

B

C

Figure 5 Scenarios for distribution of relative individual contributions of
selected inbred lines considered in the parental contribution theme. (A)
Balanced: selected parents contribute evenly to the next generation; (B)
proportional: contribution of selected parents to next generation is
proportional to their performance rank; and (C) disproportional: higher
ranked parents contribute disproportionately more than lower ranked
parents.

A

B

Figure 6 Relationship between the NK model complexity parameter K
(average number of interacting genes) and peak genetic performance in
the last cycle for the strategies explored in the program structure theme:
(A) comparing the isolated, distributed, and centralized structures; (B)
the different values of Pmax within the distributed structure. The curve
of the distributed structure in (A) is an average across the three Pmax
scenarios within it. Pmax gives the maximum percent of breeding
crosses conducted with lines from other programs.
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the final cycles and the centralized structure remained at zero
throughout.

The percent of loci with MAF < 0.05 increased over cycles for
all program structures and complexity levels (Figure 7, G–I). In all
cases, the increase over cycles was strongest for the isolated
structure, where it reached close to 100% in the final cycles and
weakest in the centralized structure. The curves for the three
Pmax levels of the distributed structure were similar to each
other and intermediate compared to the two other structures.
The differences between the structures increased with K because
the increase in the proportion of loci at extreme frequencies
slowed for the distributed and centralized structures with

increasing K. At the highest levels of complexity, only between 30
and 40% of loci showed a MAF < 0.05 in the different distributed
structures and less than 20% in the centralized structure.

The modified Rogers Distance between heterotic groups in-
creased over cycles for all structures (Figure 7, J–L). For all levels
of complexity, this distance was highest for the isolated structure
and lowest for the centralized structure, with the three versions
of the distributed structure having similar values that were inter-
mediate to the two extremes (Figure 8).

The Ne differences among the structures remained largely
constant across cycles and levels of K. For the sake of brevity
results will only be reported for cycle 15 and K¼ 7. The estimated

A B C

D E F

G H I

J K L

Figure 7 Evolution of metrics over cycles in the program structure theme for scenarios with K of 1 (A, D, G, and J), 6 (B, E, H, and K), and 15 (C, F, I, and L).
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Ne for each-sub-population for the isolated structure was 20.0, for

the three versions of the distributed structure it was 23.7 (Pmax

¼ 25%), 31.3 (Pmax ¼ 50%), and 35.4 (Pmax ¼ 75%), respectively,

and for the centralized structure 98.3.

Parental contribution theme
Which parental contribution scenario achieved the highest peak

performance depended on the complexity level K (Figure 9). At

the additive case of K¼ 1, all contribution scenarios achieved

very similar peak performances close to the theoretical maxi-

mum of 2/3. Until K¼ 8, the highest peak performances were

reached with proportional contribution of the selected inbred

lines. For K> 8, disproportional contribution of inbred lines

resulted in the highest peak performances. Balanced contribution

generally resulted in the lowest peak performance, except for

K< 4, where it was slightly ahead of the disproportional contribu-

tion option. The differences between the contribution scenarios

tended to increase with K.
For brevity sake, we also here show the trajectories across

cycles only for K of 1, 6, and 15 (Figure 10, A–L). Results for all val-

ues of K are provided in Supplementary Figure S2. The cycle over

cycle increase in peak performance was initially higher the more

disproportional the contribution of the inbreds lines (Figure 10,

A–C). However, except for the highest level of complexity, this did

not result in the highest maximum performance for this sce-

nario, because the increase started to level off in the last 5 to 10

cycles. Scenarios with proportional and balanced contribution,

therefore, had the highest peak performance at K¼ 1, though the

differences were small. At the intermediate level of K¼ 6, the dis-

proportional contribution scenario was overtaken by the propor-

tional contribution scenario in the last cycles. The differences

between these two were small, however. Finally, at K¼ 15, only

the disproportional contribution scenario achieved a sizable in-

crease in peak performance.
At K¼ 1, %GCA stayed constant at one for all scenarios, as

expected. At K¼ 6, %GCA increased most strongly for dispropor-

tional contribution, followed by proportional and balanced con-

tribution (Figure 10, D–F). Reaching above 90% for the former,

and above 80 and 50% for the latter two, respectively. At K¼ 15,

%GCA remained near zero for the balanced and proportional con-

tribution scenarios throughout. For the disproportional contribu-

tion scenario, it remained at zero as well until cycle ten and

increased from there to almost 60%.
For all strategies and values of K, the percent of loci with a

MAF < 0.05 increased from its initial value of zero (Figure 10, G–I).

The increase over cycles was strongest for disproportional paren-

tal contribution, for which it reached close to 100% at K of 1 and

6. The proportional contribution scenario had the second stron-

gest increase and the balanced scenario the weakest. As was the

case in the program structure theme, the differences between the

scenarios tended to increase with K. At the highest level of K¼ 15,

the proportional and balanced scenarios stayed below 40%,

whereas the disproportional contribution scenarios reached close

to 80%.
The modified Rogers distance between heterotic groups in-

creased over cycles in all scenarios (Figure 10, J–L). Throughout it

was highest for disproportional contribution, followed by propor-

tional and balanced contribution. Overall, the distance was great-

est for the intermediate complexity level of K¼ 6.
Ne, again reported only for cycle 15 at K¼ 7, was 23.2, 31.3, and

44.6, for the disproportional, proportional, and balanced parental

contribution scenarios, respectively.

Discussion
The objective of this study was to explore properties of histori-

cally grown commercial hybrid breeding programs, particularly

in maize, and aid the understanding of why they successfully

generated significant amounts of genetic gain in the past and

thereby impacted global food security. The infinitesimal frame-

work (Barton et al. 2017), in which traits are described as the sum

of a large number of genes all having additive, context-indepen-

dent effects of similar magnitude, is our starting point. However,

we seek extensions to account for the empirical observations

that (a) there are results observed from operating a long-term

breeding effort that is not consistent with or not easily explained

within the infinitesimal model framework (Rasmusson and

Phillips 1997) and (b) reflect the reality of a highly complex trait

biology (Hammer et al. 2006). Therefore, we are motivated to con-

sider the influence of complexity of trait genetic architecture on

breeding strategies from the perspective of a long-term commer-

cial breeding program (Duvick et al. 2004; Cooper et al. 2014).

Figure 8 Modified Rogers Distance between heterotic groups as a
function of K, averaged across programs, in the program structure
theme. The curve of the distributed structure represents the average
across the three Pmax levels.

Figure 9 Relationship between the NK model complexity parameter K
and peak genetic performance in the last cycle for the scenarios explored
in the parental contribution theme.
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Emergence of additive genetic variance
As a representation of genetic complexity, we chose the NK
model framework developed by Kauffman (1993), which allows
exploration of the full continuum from complete additivity to
deep and almost intractable genetic complexity. For reference,
the NK models used in this study, corresponding to the Mount
Fuji landscape at K¼ 1 (Figure 1) and to the “Alps” landscape
from K¼ 2 to K of 7 or 8. After this, the genetic models transi-
tioned from the multi-peaked but correlated “Alps” landscape to
the uncorrelated landscape represented by the “Dunes” metaphor
(Figures 1 and 2). In complex genetic landscapes, additive genetic

variance, the sine qua non of genetic gain, is not a constant factor

of trait biology (i.e., deducible from the molecular properties of

genes) but rather emerging from the interplay of biology and nat-

ural or artificial properties of population structure (Wade 2002;

Cooper et al. 2005). Statistical additivity is thus conditional on the

sample of allele contrasts that can be observed in a breeding pop-

ulation and the properties of the underlying trait biology (as rep-

resented by the NK network here). In particular, additive genetic

variance emerges in response to a constraining of the dimension-

ality of genetic space, or, in other words, by limiting genetic diver-

sity. In practice, such constraints in dimensionality are achieved

A B C

D E F

G H I

J K L

Figure 10 Evolution of metrics over cycles in the parental contribution theme for scenarios with K of 1 (A, D, G, and J), 6 (B, E, H, and K), and 15 (C, F, I,
and L).
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through fixation or near fixation of genes (Wade 2002; Hill et al.
2008). This process is illustrated in Figure 11 for a simple digenic
epistatic network (Holland 2001) that corresponds to a NK model
with N¼K¼ 2 and two distinct fitness peaks. Thus, as genetic
complexity increases, the breeder needs practical ways to reduce
this complexity to a manageable level that allows genetic prog-
ress. This study explored two practical approaches that have
been adopted within commercial hybrid breeding, particularly in
maize. With the availability of genomics and novel thinking
about genetic complexity, we can now study the genetic implica-
tions of these practical approaches, many of which were devised
and adopted prior to the availability of a theoretical and empiri-
cal framework to study their effects.

Two processes, in particular, accelerate such constrainment:
namely the creation of population bottlenecks and the subdivi-
sion of larger populations into more or less independent “demes”
(Katz and Young 1975; Goodnight 1995). Equivalent processes in
the context of plant breeding programs are the degree of connec-
tivity between breeding programs and the relative contribution of
superior inbred line parents in breeding crosses for producing the
next generation, both “themes” were explored in this study.

Program structure theme
Classical quantitative genetics infinitesimal theory was used to
design and optimize commercial hybrid breeding programs, in
combination with empirical experience of what worked and what
did not (Hallauer et al. 2010). Yet, even though the infinitesimal

model implies optimality of a single, homogenous population,
there were discussions about the relative merits of large central-
ized vs decentralized breeding programs early on (Baker and
Curnow 1969). Later on, Podlich and Cooper (1999) explored this
problem on the basis of Sewall Wright’s shifting balance theory,
(Wright 1931, 1977; Wade and Goodnight 1998). The shifting bal-
ance theory describes an evolutionary process in which genetic
drift resulting from population subdivision enables random
movements across genetic space (i.e., against selection gradients)
and also converts epistatic to additive genetic variation through
constraining genetic space as described above. This then enables
local adaptation in complex genetic landscapes which is followed
by differential migration from higher to lower performing sub-
populations and thus “spreading” of superior gene complexes
across the whole meta population.

While this theory remains controversial as a model of natural
evolution (Coyne et al. 1997), there are remarkable similarities be-
tween meta populations in the context of the shifting balance
theory and the population structure of large commercial breeding
operations. The latter also do not operate as a centralized unit
but rather as a decentralized network of smaller programs with
the most successful germplasm being shared across (Cooper et al.
2014). The same seems to be the case at the industry level, with
the major commercial breeding operations being based on
unique and distinct germplasm backgrounds, with only occa-
sional exchange of elite material, e.g., through ex-PVP lines (Mikel
2006; White et al. 2020). As a result of this decentralization, plant

Figure 11 Illustration of a two-locus epistatic network corresponding to a NK model with N¼K¼2 and two fitness peaks (panels C and D). Neither the A
nor the B locus exhibit any additive variation when all alleles have allele frequency of 0.5 (panels A and C). When the B locus becomes fixed for the B1

allele while the allele frequencies at the A locus remain at 0.5, however, the network is reduced to an additive system in which the substitution effect of
the A locus explains 100% of the variation (B and D). Note that the substitution effect of the A locus would be reversed in sign when the B2 allele became
fixed instead. Colors blue, yellow, and red represent high, intermediate, and low-phenotypic values, respectively.
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breeding programs are also characterized by having low effective
population sizes (Cowling 2013), which makes them more suscep-
tible to genetic drift.

Here, we expanded on the work of Baker and Curnow (1969)
and Podlich and Cooper (1999) by exploring breeding program
structures with different levels of decentralization (Figure 4),
ranging from a large centralized program with high Ne to an iso-
lated set of smaller programs with low Ne, with a series of scenar-
ios with decentralized but connected programs with Ne values in
between these two extremes. We indeed found that strategies
resulting in low within program Ne through increased decentrali-
zation and isolation became increasingly superior in terms of
peak hybrid performance, as genetic complexity K increased,
while a centralized program structure with high Ne was superior
in less complex landscapes. These results thus confirm the find-
ings of Podlich and Cooper (1999) that a distributed, decentralized
program structure is superior in complex genetic landscapes.
Increasing isolation and decentralization and the associated Ne

reduction led to quicker increases over cycles and higher overall
values of %GCA (Figure 7). At the highest levels of complexity,
only complete isolation generated amounts of GCA variation suf-
ficient for making genetic improvements cycle over cycle. The
better ability to expose additivity in the form of GCA variation of
the more isolated and decentralized structures was expected as
per the discussion at the beginning of this section outlining the
relationship between amounts of additive variation and con-
strainment of genetic space. This explains the clear advantages
in terms of genetic peak performance of the isolated program
structure at the highest levels of K.

The corollary of the constrainment of genetic space of course
is a more rapid decline in genetic diversity and susceptibility to
genetic drift, which ultimately limits the selection potential of
the programs. Indeed, for values of K below eight, which marked
the switch from an uncorrelated to multi-peaked but correlated
genetic landscape (Figure 2), decentralized programs with in-
creasing rates of germplasm exchange became superior.
Accordingly, having a large centralized program became optimal
at lower values of K. Here, the genetic landscape was simple
enough to not require severe constrainment of genetic space to
expose sufficient amounts of GCA variation. The genetic drift ex-
perienced by small, isolated programs then unnecessarily led to
the fixation of unfavorable alleles. This was most apparent at
K¼ 1 where all variation is additive and a decentralized structure
is not expected to have any advantage (Rathie and Nicholas
1980). Here, the isolated structure experienced a fixation of al-
most all loci from cycle 20 onward and a stalling of genetic gain
significantly below the theoretically achievable maximum
(Figure 7).

An alternative hypothesis for the advantage of decentralized
commercial breeding program structures can be made assuming
that the selected genetic combinations associated with locally
additive landscape peaks discovered by individual breeding pro-
grams are transferable to a globally additive landscape peak.
Testing this alternative hypothesis would require investigation of
the global structure of NK adaptation landscapes and their fea-
tures that persist following evolution, domestication, and breed-
ing in an agricultural context. This is an open area for further
investigation applying the NK framework in combination with
the growing body of empirical evidence generated from extensive
pangenome to panphenome studies for the traits contributing to
crop adaptation and performance for historical genotype-envi-
ronment trajectories. We expand on the importance of genotype

by environment interactions below and consider extensions of
the NK framework.

The establishment of genetically divergent heterotic groups
has always been a central tenant of hybrid breeding (Melchinger
and Gumber 1998). Originally, optimal exploitation of heterosis
was the main driver of their establishment (East 1936). Later,
however, maximization of GCA vs SCA variation was identified as
an import secondary feature of heterotic groups (Melchinger and
Gumber 1998). While this is well established for dominant gene
action (Reif et al. 2007; Fischer et al. 2009), there are also indica-
tions for the conservation of favorable epistatic patterns that are
disrupted when lines from different heterotic groups are recom-
bined (Bernardo 2001). Often, heterotic groups are established
from populations that evolved in isolation for a long time. One of
the best examples for this is the Dent by Flint heterotic pattern in
maize which is prevalent in Central Europe and is comprised of
populations that evolved in separation for centuries (Rebourg
et al. 2003). Heterotic groups are thus a different and additional
form of constrainment of genetic space through historically
grown genetic isolation. In our simulations, the different heter-
otic groups were originated from the same base population, yet
we still observed a significant degree of genetic differentiation
evolve over cycles (Figure 7), as expected in recurrent, reciprocal
selection regimes (Labate et al. 1999; Longin et al. 2013). A portion
of this differentiation can be attributed to genetic drift (Gerke
et al. 2015), as evidenced by the nonzero genetic distance at K¼ 1,
where all effects are additive and increasing genetic differentia-
tion between heterotic groups would have no effect on the pro-
portion of GCA variance. However, the genetic differentiation was
considerably higher for K> 1 (Figure 8), indicating that there in-
deed was a selection advantage to increased heterotic group di-
vergence in complex genetic landscapes.

This was particularly clear for the isolated program structure,
where heterotic patterns could form uninterrupted within pro-
grams. For the centralized and decentralized structures, the dif-
ferentiation was maximal at lower values of K, because %GCA,
and hence the effectiveness of recurrent, reciprocal selection, de-
clined afterward.

Parental contribution theme
The history of North American and European maize germplasm
can be described as a succession of key inbreds that were heavily
used in breeding crosses and had a distinct and lasting impact on
germplasm (Mikel and Dudley 2006; Technow et al. 2014b; White
et al. 2020). Those inbreds owe their success either to the out-
standing general combining ability relative to their peers at the
time, such as was case for the important North American line
B73 (Mikel and Dudley 2006) or their unique adaptation to specific
climatic conditions, such as the European Flint lines F2 and F7
(Messmer et al. 1992; Böhm et al. 2014). The highly disproportion-
ate importance of successful inbreds led to a significant reduc-
tion in genetic diversity (Rasmusson and Phillips 1997; White
et al. 2020), particularly relative to the source populations from
which they were derived (Böhm et al. 2017). However, this con-
strainment also might be responsible for the emergence of addi-
tive genetic variation from complex gene action through the so-
called founder or bottleneck effect (Goodnight 1988; Cheverud
and Routman 1996; Naciri-Graven and Goudet 2003; van
Heerwaarden et al. 2008). We indeed observed that %GCA in-
creased faster over cycles and reached higher values overall the
more uneven the contribution of selected parents to breeding
crosses (Figure 10), with the exception of K¼ 1, where all variance
is additive by definition. At the highest degrees of landscape
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complexity only disproportionate contribution of parental inbred

lines, resulting in very low Ne, succeeded in generating amounts

of %GCA sufficient for genetic improvements. Like in the program

structure theme, the higher values of %GCA of the dispropor-

tional contribution scenario translated into superior peak per-

formances only at the values K> 8, i.e., after the landscape

transitioned from multi-peaked but correlated to uncorrelated.

Before that, balanced and particularly proportional contribution,

both having higher Ne, achieved superior peak performances.

Maintenance of diversity
In our simulations, the constrainment of genetic space and re-

duction of Ne through decentralization and isolation or dispropor-

tionate contribution of inbred lines, while necessary for exposing

additive genetic variation, led to a rapid fixation of alleles and a

slowing of genetic gain in later cycles. This was partly a conse-

quence of genetic drift caused by the low Ne (Cowling 2013).

However, the reduction of Ne was also caused in part by the

effects of selection, particularly once the majority of the genetic

variation was additive. This has not generally happened in com-

mercial breeding programs, where genetic gain continues apace

(Rasmusson and Phillips 1997; Duvick et al. 2004; Fischer et al.

2008; Pfeiffer et al. 2019). Several factors that maintain diversity

in practical programs were not included in the simulation model.

For example, the simulation implicitly assumed that the environ-

ment and management conditions remained constant across all

cycles, whereas both change more or less rapidly in reality.

Changing selection environments imply changing selection tar-

gets and trajectories (Hammer et al. 2009; Messina et al. 2011),

which reduce the pressure on particular alleles or allele com-

plexes and thus slow or prevent fixation. Long-term selection

experiments have shown that selection response can be main-

tained even in isolated and narrow populations (Dudley and

Lambert 2010; Durand et al. 2010, 2015). Several hypotheses were

proposed for these surprising results, including epistasis

(Carlborg et al. 2006), de novo genetic mutations, particularly

when magnified through effects on epistatic complexes

(Rasmusson and Phillips 1997; Durand et al. 2010), creation of her-

itable epigenetic variation (Hauben et al. 2009), activity of trans-

posable elements (Dubin et al. 2018), as well as the presence of

“cryptic genetic variation” through phenomena such as canaliza-

tion (Gibson and Dworkin 2004). Of these, only epistasis was pre-

sent in our simulations. While highly speculative, these

biological phenomena might explain the presence of abundant

genetic variation and continued genetic gain in largely isolated

and genetically narrow commercial plant breeding programs.
Genetic gain, however, is not just a function of additive genetic

variance but also of the intensity and accuracy of selection

(Falconer and Mackay 1996). Increases in the latter two, can par-

tially or fully compensate for decreases in additive genetic vari-

ance. In the present study, resources and thus selection intensity

and accuracy were kept constant across cycles. This is in contrast

to what happened in commercial plant breeding operations,

where investments have increased considerably over the last few

decades (Duvick and Cassman 1999; Kusmec et al. 2021). Thus, in

addition to de novo creation of genetic variation and changing

environments, the compensating effect of increased investments

can partially explain why no significant decrease in the rate of ge-

netic gain was observed in commercial plant breeding opera-

tions.

Applications of the NK model for plant breeding
The NK model of biological complexity, developed by the theoreti-
cal biologist Stuart Kauffman, continues to be in wide use for
studying problems in theoretical biology and evolutionary genet-
ics (e.g., Hayashi et al. 2006; Aita et al. 2007; Rowe et al. 2010;
Franke et al. 2011; Østman et al. 2012; Schmiegelt and Krug 2014;
Nahum et al. 2015; Weinreich et al. 2018). Recent empirical exten-
sions to the infinitesimal model of quantitative genetics also
seem to validate key tenents of the NK model. One example of
this is the “omnigenic” model (Boyle et al. 2017a, 2017b), which,
based on insights from genome-wide association studies and sys-
tems genetics, postulates that complex traits are influenced by
virtually all genes in a genome through highly interactive regula-
tory networks. The NK model has also been proposed as an ab-
straction for explicit gene to phenotype models, such as crop
growth models (Messina et al. 2011; Makumburage et al. 2013;
Cooper et al. 2021). Outside of biology, the NK model has been rec-
ognized as a generic model for complex systems and found appli-
cations in disparate fields such as business administration
(Csaszar 2018), organizational learning theory (Lazer and
Friedman 2007), infrastructure design (Grove and Baumann
2012), and physics (Qu et al. 2002). Following the example of
Podlich and Cooper (1999), we here used the NK model to repre-
sent genetic complexity navigated by commercial hybrid breed-
ing operations to study the effect of the degree of isolation
between programs as well as the degree of imbalance in parental
contribution, both key aspects of breeding strategies. We propose
that this model can serve as an ideal starting point to study other
aspects of hybrid breeding strategies. For example, Cooper and
Podlich (2002) proposed an extension to the NK model that adds
an environmental dimension and thus allows modeling concepts
related to genotype by environment interaction (Cooper and
DeLacy 1994), yield stability (Piepho 1998; Tollenaar and Lee
2002), product placement (Messina et al. 2018), and the target
population of environments (Comstock 1977). These so-called
E(NK) models represent different environments or management
practices through a series of more or less similar genetic land-
scapes. This of course adds considerable complexity to the al-
ready complex static landscapes studied here and poses
interesting dilemmas. For example, rapidly exposing additive var-
iation, e.g., through isolation, might be even more important than
in static landscapes because local optima have to be exploited
quickly before they disappear once the environment shifts, for
example, through changes in management such as the historical
increases in plant population for commercial maize production
(Hammer et al. 2009). However, retaining allelic diversity, which
hampers the exposing of additivity, is required to enable renewed
adaptation to the changed environmental conditions. We here
showed that a decentralized program structure can be superior
over a centralized structure even if only a single environment
type is targeted. We hypothize that the benefit of decentraliza-
tion increases even further when mulitple distinct environment
types have to be targeted simultaneously and require local adap-
tation (Smith et al. 2006). The E(NK) framework is well suited to
investigate the implications of a simultaneous presence of ge-
netic and environmental complexity on breeding program struc-
ture design.

We noted that genetically distinct heterotic groups are an ad-
ditional means by which genetic space is constrained. A simula-
tion framework based on the NK model could be used to compare
the efficacy of different strategies of identifying and maintaining
heterotic patterns, particularly for crops which are still in the
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early stages of heterotic group formation (Melchinger and
Gumber 1998).

A high degree of genetic complexity also implies a high degree
of context dependency of genetic effects. Observe, for example,
that the additive substitution effect of the “A” locus in Figure 11
changes sign when the B1 allele instead of the B2 allele becomes
rare. This has consequences on the persistence of accuracy of es-
timated QTL effects and genomic prediction models and can be
addressed through iteratively updating training populations for
genetic model parameterization (Podlich et al. 2004; Wolc et al.
2016; Forneris et al. 2017). The NK model framework can help ad-
dress questions about the frequency with which this has to hap-
pen and whether data from previous generations can be used.
Recently, approaches were proposed that attempt to capture
those context dependencies through biological models represent-
ing the interdependencies underlying the traits of interest
(Technow et al. 2015). Such models are only approximations of
the true biological complexity. However, Cooper et al. (2005), us-
ing the NK framework, have shown that even incomplete knowl-
edge of biological networks can improve predictability of genetic
effects and genetic gain. The context dependency of genetic
effects, i.e., the effects being neither universally positive or nega-
tive (Wade 2002), also has implications on innovative proposals
for using CRISPR-Cas9 gene editing (Jaganathan et al. 2018; Gao
et al. 2020) to either target recombination to create superior hypo-
thetical linkage groups (Brandariz and Bernardo 2019) or even the
large scale “editing away” of deleterious mutations (Wallace et al.
2018). Finally, this framework might help devise strategies for the
efficient introduction of exotic or ancient germplasm (Yu et al.
2016; Böhm et al. 2017), which evolved not just in a very different
environment, but also a different genetic context from the cur-
rent elite breeding germplasm.

Back to the future
The structure of commercial plant breeding programs, particu-
larly in major crops like maize, is characterized by a large degree
of decentralization with exchange of successful germplasm
within companies (Cooper et al. 2014), while isolation is the norm
among companies (Mikel and Dudley 2006). Plant breeders fur-
ther have a tendency for relying on only a small set of elite inbred
lines for producing the next generation (Rasmusson and Phillips
1997), leading to a series of significant bottleneck events (White
et al. 2020). All of these features lead to a drastically reduced ef-
fective population size and are not predicted to be promising
strategies under the additive, infinitesimal model of quantitative
genetics. Yet commercial hybrid breeding has delivered incredi-
ble amounts of genetic gain over the last century, and has thus
contributed to food security and resource conservation (Duvick
1999). Here, we postulated that the described structure of plant
breeding programs, with its constrainment of genetic space, is, in
fact, necessary for enabling the exploration and exploitation of
genetic variation in complex genetic landscapes and that the suc-
cess of a breeding program is not only determined by its germ-
plasm per se, but by the structures that allow it to evolve. The
breeding program structure described here grew historically
(Crabb 1947) and we do not claim that it was set up with this in-
tention. However, by doing “what worked,” breeders in preceding
generations might have nonetheless been able to take advantage
of the process described and postulated in this study.
Understanding why these historic structures “worked” will be
critical for designing breeding programs that can tackle the chal-
lenges of the century ahead.
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2021. Successes and insights of an industry biotech program to

enhance maize agronomic traits. Plant Sci. 307:110899.

Smith S, Löffler C, Cooper M. 2006. Genetic diversity among maize

hybrids widely grown in contrasting regional environments in

the United States during the 1990s. Maydica. 51:233–242.

Sprague GF, Tatum LA. 1942. General vs. specific combining ability

in single crosses of corn. Agronj. 34:923–932.

Studer AJ, Wang H, Doebley JF. 2017. Selection during maize domes-

tication targeted a gene network controlling plant and inflores-

cence architecture. Genetics. 207:755–765.

Svensson E, Calsbeek R. 2013. The Adaptive Landscape in

Evolutionary Biology. Oxford: Oxford University Press.

Technow F. 2013. hypred: Simulation of Genomic Data in Applied

Genetics. R package, version 0.4. Hohenheim: University of

Hohenheim.

Technow F. 2019. Use of F2 bulks in training sets for genomic predic-

tion of combining ability and hybrid performance. G3 (Bethesda).

9:1557–1569.

Technow F, Gerke JP. 2017. Parent-progeny imputation from pooled

samples for cost-efficient genotyping in plant breeding. PLoS

One. 12:e0190271.

Technow F, Messina CD, Totir LR, Cooper M. 2015. Integrating crop

growth models with whole genome prediction through approxi-

mate Bayesian computation. PLos ONE. 10:e0130855.

Technow F, Schrag TA, Schipprack W, Bauer E, Simianer H, et al.

2014a. Genome properties and prospects of genomic prediction

of hybrid performance in a breeding program of maize. Genetics.

197:1343–1355.

Technow F, Schrag TA, Schipprack W, Melchinger AE. 2014b.

Identification of key ancestors of modern germplasm in a breed-

ing program of maize. Theor Appl Genet. 127:2545–2553.

Tollenaar M, Lee EA. 2002. Yield potential, yield stability and stress

tolerance in maize. Field Crop Res. 75:161–169.

Troyer AF. 2009. Development of hybrid corn and the seed corn in-

dustry. In JL Bennetzen, S Hake, editors Handbook of Maize. New

York, NY: Springer, p. 87–114.

Vacher M, Small I. 2019. Simulation of heterosis in a genome-scale

metabolic network provides mechanistic explanations for in-

creased biomass production rates in hybrid plants. Syst Biol Appl.

5:24.

van Heerwaarden B, Willi Y, Kristensen TN, Hoffmann AA. 2008.

Population bottlenecks increase additive genetic variance but do

not break a selection limit in rain forest drosophila. Genetics.

179:2135–2146.

Vasseur F, Fouqueau L, Vienne D. D, Nidelet T, Violle C, et al. 2019.

Nonlinear phenotypic variation uncovers the emergence of het-

erosis in Arabidopsis thaliana. PLoS Biol. 17:e3000214.

Voss-Fels KP, Cooper M, Hayes BJ. 2019. Accelerating crop genetic

gains with genomic selection. Theor Appl Genet. 132:669–686.

Wade MJ. 2002. A gene’s eye view of epistasis, selection and specia-

tion. J Evol Biol. 15:337–346.

Wade MJ, Goodnight CJ. 1998. The theories of Fisher and Wright in

the context of metapopulations: when nature does many small

experiments. Evolution. 52:1537–1553.

Wallace JG, Rodgers-Melnick E, Buckler ES. 2018. On the road to

breeding 4.0: unraveling the good, the bad, and the boring of crop

quantitative genomics. Annu Rev Genet. 52:421–444.

Weinreich DM, Lan Y, Jaffe J, Heckendorn RB. 2018. The influence of

higher-order epistasis on biological fitness landscape topogra-

phy. J Stat Phys. 172:208–225.

White MR, Mikel MA, Leon N. D, Kaeppler SM. 2020. Diversity and

heterotic patterns in North American proprietary dent maize

germplasm. Crop Sci. 60:100–114.

Wilkins O, Hafemeister C, Plessis A, Holloway-Phillips M-M, Pham GM, et

al. 2016. EGRINs (environmental gene regulatory influence networks)

in rice that function in the response to water deficit, high tempera-

ture, and agricultural environments. Plant Cell. 28:2365–2384.

Wolc A, Kranis A, Arango J, Settar P, Fulton JE, et al. 2016.

Implementation of genomic selection in the poultry industry.

Anim Front. 6:23–31.

Wright S. 1931. Evolution in Mendelian populations. Genetics. 16:

97–159.

Wright S. 1932. The roles of mutation, inbreeding, crossbreeding, and se-

lection in evolution. Proceedings of the Sixth International Congress

of Genetics, Ithaca, NY: Brooklyn Botanic Garden. p. 356–366.

F. Technow, D. Podlich, and M. Cooper | 17



Wright S. 1977. Evolution and the Genetics of Populations. Chicago,

IL: University of Chicago Press.

Wu J, Lawit SJ, Weers B, Sun J, Mongar N, et al. 2019. Overexpression

of zmm28 increases maize grain yield in the field. Proc Natl Acad

Sci USA. 116:23850–23858.

Yu X, Li X, Guo T, Zhu C, Wu Y, et al. 2016. Genomic prediction con-

tributing to a promising global strategy to turbocharge gene

banks. Nat Plant. 2:16150. 10.1038/NPLANTS.2016.150

Communicating editor G. P. Morris

18 | G3, 2021, Vol. 11, No. 7


