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Abstract

Genome-scale metabolic models are valuable tools for the design of novel strains of

industrial microorganisms, such as Komagataella phaffii (syn. Pichia pastoris). However, as is

the case formany industrial microbes, there is no executablemetabolic model forK. phaffiii

that conforrms to current standards by providing the metabolite and reactions IDs, to

facilitatemodelextensionandreuse, andgene-reactionassociations toenable identification

of targets for genetic manipulation. In order to remedy this deficiency, we decided to

reconstruct the genome-scale metabolic model of K. phaffii by reconciling the extant

models and performing extensive manual curation in order to construct an executable

model (Kp.1.0) that conforms to current standards. We then used this model to study

the effect of biomass composition on the predictive success of the model. Twelve

different biomass compositions obtained from published empirical data obtained under a

range of growth conditionswere employed in this investigation.We found that the success

of Kp1.0 in predicting both gene essentiality and growth characteristics was relatively

unaffected by biomass composition. However, we found that biomass composition had a

profound effect on the distribution of the fluxes involved in lipid, DNA, and steroid

biosyntheticprocesses, cellular alcoholmetabolicprocess, andoxidation-reductionprocess.

Furthermore, we investigated the effect of biomass composition on the identification of

suitable target genes for strain development. The analyses revealed that around40%of the

predictions of the effect of gene overexpression or deletion changed depending on the

representation of biomass composition in the model. Considering the robustness of the in

silico flux distributions to the changing biomass representations enables better

interpretation of experimental results, reduces the risk of wrong target identification,

and so both speeds and improves the process of directed strain development.
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1 | INTRODUCTION

The use of genetic manipulation tomodify specific cellular biochemical

reactions or to introduce new ones is a common approach in the

directed improvement of microbial strains used in biotechnological

processes. In order to achieve this, a comprehensive understanding of

the metabolic network of the “chassis” organism is required in order to

identify the most promising targets to be modified. The availability of

complete genome sequences and advances in systems biology allow

the analysis of large datasets in an integrated manner to increase our

understanding of metabolism and enable model-driven strain design

strategies. Genome-scale metabolic models (GEMs) can be used to

predict themetabolic capabilities of a “chassis” organism, to investigate

the changes in the flux distributions under different conditions, to

identify metabolic bottlenecks, and to evaluate the outcomes of the

possible genetic modifications (Durot, Bourguignon, & Schachter,

2009; Kim et al., 2012; Nielsen & Keasling, 2016; Ostergaard, Olsson,

& Nielsen, 2000; Stephanopoulos, Aristidou, & Nielsen, 1998).

The predictive accuracy of GEMs varies greatly; for instance, their

use to predict genetic interactions provides an accurate picture of the

topology of the interaction network, while failing to predictmost of the

individual interactions revealed in high-throughput experiments

(Szappanos et al., 2011). Therefore, if the predictive accuracy of

these models is to be improved, they must be continuously updated in

the light of current knowledge. Manual curation continues to play an

important role in refining and improving GEMS and, if the whole

research community is to participate in this process, standard formats

(such as, Systems Biology Mark-up Language, SBML; Hucka et al.,

2003) must be employed to present these models. The use of SBML in

combination with the annotation of metabolites, enzymes, and genes

with database IDs facilitates the reuse of models, their extension,

and comparisons between different GEMs for the same species

(Ravikrishnan & Raman, 2015). The construction of a consensus

metabolic network model for Saccharomyces cerevisiae represents a

good example of how the community can continue to update the

model once a reusable consensus network has been constructed

(Herrgård et al., 2008).

Komagataella phaffii (Pichia pastoris) is a well-established host

organism used for recombinant protein production (Demain &

Vaishnav, 2009). Many researchers have worked on improving the

productivity of this host organism by genetic manipulation, usually by

designing new expression vectors or optimizing the copy number of

the transgene (Idiris, Tohda, Kumagai, & Takegawa, 2010; Prielhofer

et al., 2013; Puxbaum,Mattanovich, &Gasser, 2015; Shen et al., 2016).

A GEM for K. phaffii would represent a valuable tool for the in silico

testing of possible genetic modifications designed to improve the yield

or efficiency of biotechnological processes that employ this industrially

important yeast. There are three independently constructed GEMs of

this organism (Caspeta, Shoaie, Agren, Nookaew, & Nielsen, 2012;

Chung et al., 2010; Sohn et al., 2010). Although these models have

potential for the in silico identification of genetic modification targets

(Nocon et al., 2014) or the development of new cultivation strategies

(Irani, Maghsoudi, Shojaosadati, & Motamedian, 2015), their lack of

standard annotation limits our ability to compare and analyze these

models and also to improve these models in the light of current

information. Moreover, these models do not make use of valuable

information about the biomass composition of the K. phaffii, which has

been garnered under a range of experimental conditions (Carnicer

et al., 2009; Jordà, de Jesus, Peltier, Ferrer, & Albiol, 2014).

In this study, we first reconstructed the metabolic network of K.

phaffii through extensive manual curation in order to obtain a reusable

model (Kp.1.0) comprising the standard metabolite and reaction IDs

and gene-reaction associations that permit the in silico simulations and

analyses.Wenext investigated the effect of biomass representation on

the predictive capability of Kp.1.0 by using published biomass

composition datasets for this organism. We then focused on how

the changing biomass representations affected the models predictions

on targets to be engineered to increase this yeast’s productivity. In all,

our study has investigated the potential of a new GEM in identifying

targets for improving the productivity of K. phaffii cells.

2 | MATERIALS AND METHODS

2.1 | Model comparison

We set out to unify the three independently constructed genome-

scale metabolic models of K. phaffii; PpaMBEL1254 (Sohn et al., 2010),

iPP668 (Chung et al., 2010), and ILC915 (Caspeta et al., 2012), initially

by employing the same nomenclatures for cell compartments and

metabolites. For metabolites, all available KEGG (Kanehisa, Sato,

Kawashima, Furumichi, & Tanabe, 2016; Kanehisa & Goto, 2000) and

ChEBI (Hastings et al., 2013) ID associations of all the metabolites in

these models were identified. For instances where the metabolite

name used in the model was not encountered in any database, the

reactions involved were curated manually and appropriate IDs

assigned. Manual comparisons of the reactions were then conducted,

taking into consideration the differences due to directionality,

representation of currency metabolites, or compartmentalization.

2.2 | Network reconstruction

A core network was constructed using all reactions that were found in

at least two of the three models. K. phaffii metabolic pathways in the

KEGG and the MetaCyc (Caspi et al., 2014) databases were used to

resolve any discrepancies in reaction directionality, representation of

currency metabolites, and compartmentalization. Enzyme-gene asso-

ciations were also taken from the KEGG. Reactions were annotated

with KEGG reaction IDs and genes/proteins were annotated with

UniProt IDs (UniProt Consortium, 2008). Cellular compartment

assignments were made using “Gene Ontology” terms whenever

available in (Sterck, Billiau, Abeel, Rouzé, & Van de Peer, 2012) or were

based on orthology with S. cerevisiae (Nash et al., 2007). Dead-end

metabolites (i.e., those that were produced but not used as substrates

in any reaction, or those that were used as substrate but not produced

in any reaction) were identified and any resulting gaps in the network

filled by manual curation.
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2.3 | Representation of biomass formation

The Kp.1.0 model contains 12 different biomass equations that

account for recombinant protein production, different aeration levels,

different ratios of glycerol:methanol co-feeding, and different dilution

rates in continuous cultures. The data regarding the wild-type and

recombinant strains (producing heterologous proteins, namely the

antibody fragment, Fab) grown under different oxygenation levels

(normoxic, oxygen-limited, and hypoxic) were adopted from (Carnicer

et al., 2009). The biomass composition of a K. phaffii strain producing

Rhizopus oryzae lipase (ROL), and grown aerobically in chemostat

cultures fed with 80:20, 60:40, and 40:60 (w:w) glycerol/methanol

mixtures at two dilutions rates (0.05 and 0.16 hr−1) were obtained from

Jordà et al. (2014). The biomass compositions were represented as the

aggregate of the carbohydrates, proteins, lipids, RNA, DNA, as well as

the ATP consumption associated with the growth. Furthermore,

Carnicer et al. (2009) reported the amino-acid composition of the

protein macromolecules and the glycogen and trehalose content of

carbohydrate macromolecule under corresponding conditions and

Jordà et al. reported the amino-acid composition of the aggregated

protein macromolecules at each dilution rate examined. These

datasets were also incorporated into the model to account for the

content change of proteins and polysaccharides, whenever the data

were available.

2.4 | Model construction, simulations, and the
analyses of the results

Kp.1.0 (File S1) was prepared as a COBRA-compliant SBML version 2,

level 4 (Finney & Hucka, 2003; Hucka et al., 2003) in compliance with

the MIRIAM guidelines (Laibe & Le Novère, 2007). Analyses were

conducted using the COBRA tool-box (v.2.0.5) under MATLAB

R2013b (8.2.0.701 Mathworks; Natick, MA) (Schellenberger et al.,

2011) with SBML Toolbox v4.1.0 and libSBML library v5.5.0 using the

Gurobi5 solver. Maximization of biomass production was used as the

objective function in all simulations, unless otherwise stated. The

experimental data used to constrain the model in order to predict the

growth and carbon dioxide exchange rates (CER) under each defined

condition are given in Table 1. Changes in flux distributions due to

genetic mutations (deletions) were investigated employing the FBA

algorithm and by constraining the glucose uptake rate (alone) to unity.

The predictive ability of the model was evaluated using phenotypic

data for the S. cerevisiae orthologs of K. phaffii genes (Table 2).

The significance of the effect of biomass composition on the flux

distributions was assessed by using both Mann–Whitney U test (p-

value < 0.01) and fold change (FC > 2) analyses. For each case, 100

random values for each flux in the distribution were generated such

that each value remainedwithin bounds of the allowable range for that

flux, which was determined through flux variability analysis. The

Mann–Whitney U test was applied to those values for each individual

flux separately, in order to identify those changes, which have

appreciable biological impact, the average of the 100 values for each

individual flux were employed in all possible pairwise comparisons in

fold change analyses. A similar analysis was also conducted for sample

sizes of 50, 1,000, and 10,000 to test the effect of the sample size on

the significance analysis. Flux values lower than 10−5 were taken as

zero. The significance of between-biomass comparisons under

different conditions was calculated using Mann–Whitney U test for

each macromolecule.

Princeton GO Tools were used to conduct the GO-term

enrichment analysis employing GO Term Finder (Boyle et al., 2004).

The .obo gene ontology mapping file and K. phaffii annotation file

(34378.P_pastoris_GS115.obo) were downloaded from EMBL-EBI

(http://www.ebi.ac.uk) on March 29, 2016. Orthologous genes were

obtained from InParanoid 8 database, considering only data that have

100% bootstrap confidence value (Sonnhammer & Östlund, 2015).

Flux Scanning based Enforced Objective Function (FSEOF) (Choi,

Lee, Kim, & Woo, 2010) was used to identify the overexpression

targets that would increase human copper/zinc superoxide dismutase

(hSOD) production. The reactions that were catalyzed by isoenzymes

and promiscuous enzymes were not considered as candidates.

RobOKoD (Stanford, Millard, & Swainston, 2015) was employed to

identify potential knockout targets for overproduction of hSOD.

Similarly, only the reactions that have 1:1 gene-reactions mappings

were considered.

3 | RESULTS

3.1 | Manual curation is necessary to generate a
consensus from non-standardized models

The lack of standard IDs for metabolites, enzymes, and reactions in the

three available metabolic models for K. phaffii (Caspeta et al., 2012;

Chung et al., 2010; Sohn et al., 2010) complicates both their re-use and

the task of constructing a consensus model. In order to obtain a

reusable model, we started to reconstruct the metabolic network of

K. phaffii by comparing the existing independently constructed

networks. Each construction had eight compartments, where the

cell-boundary compartment was unique to iLC915, while the nucleus

was included only in PpaMBEL1254 and iPP668 (Figure 1). All nine

compartments were included in our reconstruction. We found 1,793

metabolites that were compartmentalized into nine different compart-

ments in these three extant models and ca. 42% of themwere found in

all three models (Figure 1, File S2). There were 2,132 reactions, 28% of

which were present in all 3 networks (Figure 1, Table S2). It should be

noted that not all of the representations of these reactions were

exactly same; the differences involving currency metabolites, direc-

tionality, and compartmentation. For instance, of the 597 reactions

that were common to all threemodels, only 276 reactionswere exactly

same. This fact, alone, illustrates the need for manual intervention in

order to assess the similarity between metabolic models when the

standard reaction ID’s are not provided.

An initial core networkwas constructed considering only reactions

found in at least two of the three models. Even some of these were

omitted due to the lack of any evidence for their existence in K. phaffii

or due to the lumping together of multiple reactions (e.g., in fatty acid
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metabolism) in the iPP668 and PpaMBEL1254 models, which

precluded the assignment of standard reaction IDs. Following this

manual cross-checking exercise, our initial core network comprised

915 reactions and 965metabolites. Further analysis revealed gaps and

a high proportion (∼45 %) of dead-end metabolites, and so required

further manual curation.

3.2 | Deficiencies in lipid metabolism and compound
transport were the main contributors to poor
network connectivity

There were three main reasons for the high proportion of dead-end

metabolites in the initial core network: missing pathways, incon-

sistencies in the compartmentation of the network, and insufficient

representation of intracellular transport processes. Fatty acid metab-

olism, which (as indicated earlier) was notwell defined in the initial core

network, was the principal contributor to gaps in the network. The

level of detail in the representation of the fatty acid biosynthesis,

elongation, and degradation pathways varied between the three

extant models. This required the de novo reconstruction of these

pathways, using the information for K. phaffii metabolism in KEGG

(Kanehisa et al., 2016; Kanehisa & Goto, 2000). Based on published

experimental evidence for the generation of acyl groups up to a C16

chain length by themitochondrial FAS pathway in yeast (Hiltunen et al.,

2009), the fatty acid biosynthesis reactions involving acyl carrier

protein (ACP) were assigned to the mitochondrial and cytosolic

compartments. Fatty acid elongation reactions involved in the

elongation of fatty acids up to C24 were incorporated into the

endoplasmic reticulum in the model, whereas the reactions involved

in fatty acid degradation were localized to the peroxisome. Further

gap-filling was conducted using information on gene orthology with S.

cerevisiae.

The inconsistencies in the assignment of reactions involved in

glycerophospholipid metabolism to compartments also resulted in

the formation of dead-end metabolites. The localization

assignments were performed using the GO (Ashburner et al.,

2000) cellular component terms of the genes encoding the

enzymes that catalyze those reactions. Since the biomass

representation in the three pre-existing models did not include

sphingolipid content, sphingolipid metabolism was not connected

with the rest of the metabolism. Tomàs-Gamisans, Ferrer, and Albiol

(2016) recently published an integrated genome-scale metabolic

model (iMT1026) of K. phaffii, where they updated both sphingolipid

metabolism and the sphingolipid content of the biomass equation

based on the literature information. Their representation of

sphingolipid metabolism, as reported in iMT1026, was incorporated

into the Kp.1.0 model.

The other major cause of dead-end metabolites was the absence

of transport reactions to enable those metabolites to move between

organelles. The localization of all reactions involving dead-end

metabolites was cross-checked and either the localization assignments

TABLE 1 Datasets used to constrain the modela

qGlu qMet qGly qO2
qEtOH qAra qFab

Carnicer et al. (2009)

Wild type

Normoxic 0.99 n/a n/a 2.35 n/a n/a n/a

Oxygen-limited 1.28 n/a n/a 2.01 0.31 0.13 n/a

Hypoxic 1.72 n/a n/a 2.01 0.84 0.33 n/a

Fab producing

Normoxic 1.01 n/a n/a 2.44 n/a n/a 0.0004

Oxygen-limited 1.37 n/a n/a 1.99 0.41 0.19 0.0007

Hypoxic 1.56 n/a n/a 1.81 0.83 0.24 0.0007

Rußmayer et al. (2015)

Wild type

Grown on Glu 1.02 n/a n/a 2.39 n/a n/a n/a

Grown on Met + Gly n/a 0.81 1.64 3.09 n/a n/a n/a

aGlu, Met, Gly, O2, EtOH, Ara, and Fab denote glucose, methanol, glycerol, oxygen, ethanol, arabitol and antibody Fab fragment, respectively. q denotes

specific utilization rates for glucose, methanol, glycerol, oxygen, and specific production rates for ethanol, arabitol and antibody Fab fragment and given in
mmol/gCDW/hr.

TABLE 2 Evaluation of the predictive ability of the gene essentiality

Kp.1.0 prediction
for deletion of K.
phaffii gene

Deletion mutant
phenotype of S.
cerevisiae ortholog

Viable Viable True positive (TP)

Viable Inviable False positive (FP)

Inviable Inviable True negative (TN)

Inviable Viable False negative (FN)
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were amended or the required transport reactions were included, as

necessary.

3.3 | Implementation of gene-reaction associations to
the executable K. phaffii model to allow automated
gene deletion studies

After the gap-filling step, the final version of the metabolic network

contains 1,424 reactions (including the 12 different biomass formation

reactions and 2 different reactions corresponding to recombinant

protein production) and 1,221 metabolites. Gene-reaction associa-

tions were built on this network. Comparison of the gene-reaction

associations given in the existingmodels revealed crucial differences in

these associations and also in the logical rules applied when multiple

genes were associated with a single reaction. There were instances

where the reactions in the glycolysis, amino-acid biosynthesis, purine

metabolism, pyrimidine metabolism, and fatty acid elongation path-

ways were associated with a single enzyme in iPP668 but with more

than one enzyme in iLC915 (File S2). For Kp.1.0, we used the reaction-

enzyme associations in KEGG database (Kanehisa et al., 2016;

Kanehisa & Goto, 2000) to assign gene-reaction relationships and

formulate rules to determine gene essentiality. Sub-cellular localiza-

tion of proteins and gene-deletion phenotypes were based on

orthology with S. cerevisiae. By these means, we determined that

1,135 of the 1,424 reactions in Kp.1.0 were associated with 720 K.

phaffii genes.

3.4 | Ability of the model to predict gene essentiality

The model was evaluated in terms of its success in predicting

whether or not null mutants (deletants) were viable. Since there is, as

yet, no comprehensive collection of K. phaffii deletants, empirical

data on mutant phenotypes are not available for this species. Instead

we assigned phenotypes to null mutants of K. phaffii genes based on

their orthology with S. cerevisiae genes. Among the 720 genes

involved in the model, 612 genes have an ortholog in S. cerevisiae

(Sonnhammer & Östlund, 2015). In all, 26% of the 720 genes

represented in the model were predicted to be essential (File S3).

This percentage was 29% for the genes having S. cerevisiae

orthologs. Based on the deletion mutant phenotypic data reported

for orthologs of these genes in S. cerevisiae (Nash et al., 2007), the

Kp.1.0 model could predict 80% of the viable and 57% of the inviable

phenotypes (Table 3). The stoichiometric model of the

S. cerevisiae metabolic network (Yeast 7) (Aung, Henry, & Walker,

2013) was also used to predict viable/lethal phenotypes of S.

cerevisiae strains bearing deletions of the genes having K. phaffii

orthologs. Using the S. cerevisiae Y7.6 model, the viable and lethal

phenotypes could be predicted correctly in 82% and 70% of the

cases, respectively (Table 3, File S3). A similar analysis could only be

conducted with iLC915, since it is the only existing model that

contains gene-reaction associations in the SBML version. In this

case, the viable phenotypes were correctly predicted in 90% of the

cases whereas only 11% of lethal phenotypes could be correctly

predicted (Table 3).

Next, we checked whether or not the orthologs of the 608 genes

in Kp.1.0 have paralogs within the S. cerevisiae genome. Of the 608

genes in Kp.1.0 with a S. cerevisiae ortholog, 76 genes were identified

to have a second, paralogous, copy that arose from the whole-genome

duplication (File S4). For 16 of those genes, model simulations using

Kp.1.0 predicted an inviable phenotype, whereas their yeast orthologs

were reported to be viable. This is indicative of the lower level of

genetic redundancy in the K. phaffii genome, and is entirely congruent

with the fact 11 of those 16 genes were reported to have a synthetic

lethal interaction with their paralogs in S. cerevisiae (Stark et al., 2006).

3.5 | Ability of the model to predict K. phaffii
physiology

After benchmarking ourmodel by predicting gene essentiality, we next

investigated the ability of the Kp.1.0model to predict the physiological

performance of K. phaffii. In this case, in contrast to predicting gene

essentiality, we were able to use published experimental data on the

FIGURE 1 Comparison of the existing GEMs of K. phaffii. The numbers in the intersection sets of the models for the metabolites and
reactions represent the number of entities commonly found either two or all of the models. The remaining metabolites and reactions were
classified as unique to each model

CANKORUR-CETINKAYA ET AL. | 2609



growth characteristics, at different oxygen levels (Carnicer et al.,

2009), of both wild-type K. phaffii cells and those producing a

recombinant protein. In addition, data were available comparing the

growth of wild-type cells on either glucose or methanol/glycerol

(Rußmayer et al., 2015). These empirical data were used to constrain

the model as shown in Table 1, and the growth rate and CO2 exchange

rate (CER) were predicted employing condition-specific biomass

compositions, in the case of Carnicer et al., and using the biomass

composition of wild-type cells under normoxic conditions for the other

dataset. The error rates were within a 1–15 % range with one

exception, where the CO2 exchange rate (CER) for wild-type, glucose

grown-cells was predicted to be ∼25% higher than the reported

experimental value (Table 4).

3.6 | The impact of biomass composition on
predictions made with Kp.1.0

Using a methanol and glycerol mixture as a co-carbon source is widely

employed cultivation strategy for K. phaffii, but there are no

experimental data on the biomass composition of wild-type cells

grown under this condition. For this reason, we decided to use this

culture strategy as a test case with which to evaluate the effect of

biomass composition on model predictions and flux distributions. We

performed in silico experiments inwhichwild-type cells were grown on

methanol/glycerol (8.5/49 g/g) in carbon-limited chemostat culture at

a dilution rate of 0.1 hr−1. Glycerol, methanol and oxygen uptake rates

were constrained according to the data of (Rußmayer et al., 2015) and

the simulations were repeated using 12 different representations of

biomass composition. Both growth rate and CO2 exchange rate

predictions were used to evaluate the predictive accuracy of the

Kp.1.0model. The% errors in predicting the CO2 exchange and growth

rates were, in all cases, below 25% and 15%, respectively (Table 5). To

test the effect of biomass representation on the predicting the

phenotypes of null mutants, simulations for single-gene deletantswere

conducted using the different biomass composition representations. In

no case did the biomass composition have any impact on the mutant

phenotype.

Given this result, we decided to investigate the effect of biomass

composition on the flux distributions. To achieve this, we constructed

two correlation matrices showing: (1) correlations between the flux

distributions obtained when the biomass compositions measured

experimentally under different conditions were used (Figure 2a), and

(2) correlations between the coefficients of the macromolecules of

biomass content under these conditions (Figure 2b). We found that,

even when two different growth conditions produced very similar

(experimentally determined) biomass compositions, the cells grown

under those two conditions could have widely different in silico flux

distributions.

Flux variability analysis was conducted to identify the reactions

that display the greatest variability, and the impact of the biomass

composition on these changes was investigated. It was observed that

the highly variable reactions were catalyzed by enzymes involved in

phosphorus, carbohydrate, and ribonucleoside diphosphate metabo-

lism; these associations were significant (p-value < 0.01). We found

that the reactions that show high variability did not change when

different biomass representations were used.

The significance of the change in flux values was evaluated, for

each reaction, by comparing each condition with every other. For a

sample size of 100, we found that 433 out of the 1,474 reactions in

Kp.1.0 showed a significant change in at least one of the

comparisons (p-value < 0.01, FC > 2) (Figure 3, File S5). There was

no difference in the number of significantly changed fluxes between

TABLE 3 A comparison of the predictive ability of Kp.1.0 and Y7.6

Kp1.0 Y.7.6 iLC915

# of genes 720 909 915

Essential genes 26% 17% 9%

# of orthologous genes in GEM 612 517 726

Essential genes (among orthologs) 29% 21% 10%

# of TP 370 338 483

# of FP 62 32 171

# of TN 82 74 21

# of FN 95 73 51

Sensitivity 80% 82% 90%

Specificity 57% 70% 11%

Positive predictive value 86% 91% 74%

Negative predictive value 46% 50% 29%

%Correct prediction 74% 80% 69%

TABLE 4 Model predictions on growth characteristics

Experimental values Predicted values

Growth
rate
(hr−1)

CER
(mmol/
gCDW/hr)

Growth
rate
(hr−1)

CER
(mmol/
gCDW/hr)

Wild type

Normoxic 0.1 2.43 0.10 2.62

Oxygen-
limited

0.1 2.55 0.09 2.71

Hypoxic 0.1 3.21 0.09 3.37

Fab producing

Normoxic 0.1 2.52 0.09 2.70

Oxygen-
limited

0.1 2.68 0.09 2.88

Hypoxic 0.1 2.94 0.09 3.16

Wild typea

Grown on
Glu

1 2.11 0.10 2.66

Grown on

Met + Gly

0.1 1.86 0.10 2.15

aThe model predictions provided in this table were obtained when the
biomass composition for cells grown under normoxic conditions for wild-
type cell were used.
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the conditions that have significantly different biomass compositions

(p-value < 0.1) and those that showed no significant difference in

biomass content.

Both the correlation and significance analyses indicated that the

effect of biomass representation on flux distribution could not be

predicted. There were 215 genes associated with the reactions whose

flux was significantly changed by altering biomass composition,

independent of the sample size. GO analysis showed that this gene

set was significantly enriched for the following biological process

terms: steroid biosynthesis, lipid biosynthetic, cellular alcohol meta-

bolic process, and oxidation–reduction (p-value < 0.01). When the

same analysis was conducted with a sample size of 100 using iLC915,

incorporating the same biomass equations, it was observed that 693

reactions, which were associated with 452 genes were significantly

changed. These genes were identified to be enriched only with the

process terms cellular lipid metabolic process and cell cycle, and

cellular catabolism (p-value < 0.05) (File S6). The same analysis was

repeated for sets of flux distributions of various sample sizes of 50,

1,000, and 10,000, in order to identify any possible biases for sample

size, and the results of the analysis indicated that the number of

reactions whose fluxes were significantly different and the number of

genes associated with those reactions, remained within ±1.25% and

±2.50% of one another, respectively; thus no size-dependent trends

were observed. More than 92% of both the reactions and the genes

associated with these reactions were common in all sets and

consequently the GO Process Term enrichment analysis highlighted

the same processes for all of them, demonstrating the robustness of

this analysis (Table S1, File S5).

Observation of the impact of biomass representation on flux

distributions prompted us to investigate the effect of the biomass

content on target identification. Overexpression targets to improve

production of human copper/zinc superoxide dismutase (hSOD) were

predicted using 12 different biomass representations and, in all, 59

genes were identified as candidates. Among these 59 genes, 37 were

classified as targets in all cases, whereas 22 were identified only using

some of the biomass representations. The genes encoding the

enzymes catalyzing those reactions identified to have an increased

flux in all analyses were enriched with histidine and lysine metabolic

processes; whereas the genes catalyzing the reactions that showed

condition-dependent increase were enriched with glutamine family

amino-acid biosynthetic process (p-value < 0.01).

The effect of the biomass composition on predicting knockout

targets to improve hSOD production was evaluated using RobOKoD

(Stanford et al., 2015), which allows the comparison of the score-

based rankings of the potential knock-out targets. Thirteen genes

were identified as potential knockout targets (File S7). Eight of these

genes were identified in all cases, whereas five of them were

biomass dependent. These genes were not significantly enriched

with any process term. Comparison of the rankings of the candidates

revealed that there were some cases, where a gene that was

identified as the best candidate for some cases was ranked down the

list for another case. For instance, PAS_chr1-4_0149 was identified

as the best candidate when the simulations were conducted using

either the biomass representation for normoxic conditions or when

cells were grown at a dilution rate of 0.16 hr−1, but this gene was

ranked lower when the results were obtained using the biomass

representation for wild type cells grown under hypoxic conditions

(File S7).

4 | DISCUSSION

If GEMs are to fulfill their potential as tools to enable strain design in

synthetic biology, theymust satisfy at least four essential criteria. First,

a GEM must be executable in order to allow analyses and simulations

TABLE 5 Biomass effect on model prediction

Biomass content
data under
description of
condition

Predicted CER
(mmol/gCDW× hr)
(experimentally
determined: 1.86
mmol/gCDW× hr)

Predicted growth
rate (hr−1)
(experimentally
determined: 0.1 hr−1)

1. Wild type—
normoxic

2.15 0.10

2. Wild type—
oxygen limited

2.18 0.09

3. Wild type—
hypoxic

2.21 0.09

4. Fab producing
—normoxic

2.14 0.09

5. Fab producing

—oxygen
limited

2.24 0.09

6. Fab producing
—hypoxic

2.28 0.10

7. 80/20
glycerol/
methanol—
D = 0.05 hr−1

2.23 0.10

8. 60/40
glycerol/
methanol—
D = 0.05 hr−1

2.16 0.11

9. 40/60

glycerol/
methanol—
D = 0.05 hr−1

2.17 0.10

10. 80/20
glycerol/
methanol—
D = 0.16 hr−1

2.03 0.11

11. 60/40
glycerol/

methanol—
D = 0.16 hr−1

2.02 0.11

12. 40/60
glycerol/
methanol—
D = 0.16 hr−1

2.16 0.11

CANKORUR-CETINKAYA ET AL. | 2611



to be performed. Second, the model must be readily manipulable by

the user, both to enable analyses to be performed and allow the entire

research community to participate in model curation to ensure the

GEM is as comprehensive, accurate, and up-to-date as possible. This

requirement means that the metabolic model must be presented in a

standard format, of which the most widely used is the Systems Biology

Mark-up Language (Hucka et al., 2003). Fulfillment of the second

criterion also demands all metabolites, enzymes, and genes are

unambiguously annotated with database IDs. The use of standard

formats and IDs facilitates the extension of a model, as well as

comparisons of different versions of the same model or different

GEMs for the same species (Ravikrishnan & Raman, 2015). Thirdly, if a

GEM is to be used to identify genes to target in strain design, it

must incorporate unambiguous gene–enzyme assignments. This last

requirement is non-trivial since two or more genesmay specify a single

enzyme, or a single gene may specify a protein product with more than

one enzyme activity. This problem brings us to the final requirement:

the GEM must specify the sub-cellular location in which each reaction

occurs or in which each enzyme functions.

We constructed Kp.1.0 as a GEM for the industrial yeast

K. phaffii since none of the existing models satisfied all these

requirements. Our consensus model is provided in SBML format

including the relevant systematic IDs for the metabolites

and reactions as previously proposed (Herrgård et al., 2008;

Ravikrishnan & Raman, 2015) in order to permit reusability and

improvement by the community. The currently available GEMs for

K. phaffii were first reconciled and then extensive manual curation

was carried out to generate Kp.1.0. The manually curated gene-

reaction associations in the SBML version of the model will allow

synthetic biologists to carry out target identification. A recent

reconstruction of a K. phaffii GEM (Tomàs-Gamisans et al., 2016)

did not consistently incorporate the AND/OR relationships into the

executable version of the model when a reaction is catalyzed more

than one gene product.

Kp.1.0 was validated through evaluating its success in predicting

whether single-gene null mutants would be viable or inviable. The

essentiality information on S. cerevisiae used in this validation

exercise exploits the orthology between K. phaffii and S. cerevisiae

genes, since a deletion collection of K. phaffii is not yet available.

Conservation of gene essentiality between yeast species is well

known and is found even between the extremely distantly related

yeast species, Schizosaccharomyces pombe and S. cerevisiae (Kim

et al., 2010). Kp.1.0 was found to have a comparable success to that

of the S. cerevisiae GEM Yeast v.7 (Aung et al., 2013) in predicting

the viability of the null mutants. Moreover, some predictions,

which were considered as false-negatives based on orthology

information, could be explained by the fact that, unlike S. cerevisiae,

K. phaffii has not undergone an ancestral whole-genome duplication

FIGURE 2 Correlations between flux distributions and
corresponding biomass compositions. The plot represents (a) the
correlations between the flux distributions when the simulation
were conducted using different biomass compositions (b) the
correlation between the corresponding biomass compositions. The
labels in the abscissa and ordinate corresponds to conditions where,
wild type cells grown under normoxic (1), oxygen limited (2),
hypoxic environment (3), Fab producing cells grown under normoxic
(4), oxygen limited (5) and hypoxic environment (6), cells grown at a
dilution are of 0.05 hr−1 using 80/20 glycerol/methanol (7), 60/40
glycerol/methanol (8), 40/60 glycerol/methanol (9) as the carbon
source and cells grown at a dilution are of 0.16 hr−1 using 80/20
glycerol/methanol (10), 60/40 glycerol/methanol (11), 40/60
glycerol/methanol (12) as the carbon source. The color bar indicates
values of the Pearson correlation coefficient: an increase from red
to blue means transition from high correlation to low correlation

FIGURE 3 Volcano plot of the flux distributions obtained using
different biomass composition reactions. The plot represents the
comparison of the flux values for every possible combination of 12
different distributions. The x-axis shows the log 2 fold changes and
the y-axis shows the log 10 of the p-values. Each blue dot
corresponds to a reaction for a specific comparison. The orange
dots represents the threshold for fold change values (FC > 2) and
the black dots represent the threshold used for p-values (p-
value < 0.01)
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(Förster, Halbfeld, Zimmermann, & Blank, 2014). Because of this,

genes that are duplicated in S. cerevisiae are present in only a single

copy (and are, therefore, essential) in K. phaffii.

In order to confidently and unambiguously define gene-reaction

associations, putative genes and genes with unknown function, which

comprise 5–10% of the genes included in the other K. phaffii GEMS

were omitted from Kp.1.0. Furthermore, during the construction of

Kp.1.0, enzymes catalyzing reactions that led to an increase in the

number of dead-end metabolites (e.g., in the glycosylphosphatodyli-

nositiol (GPI) anchor biosynthesis pathway, and in lipoic acid

metabolism) were omitted, together with their cognate genes. This

was done because as the number of genes associated with dead-end

reactions increases, the number of genes predicted to be non-essential

will also increase, irrespective of the model structure. The low

specificity of the iLC915GEM in predicting gene essentiality is thought

to be a consequence of this fact (Table 3).

The biomass composition of microbial cells is bound to vary

between different physiological conditions (e.g., different carbon

sources, nitrogen limitation, pH, aeration, temperature, mode of

cultivation, genetic manipulation; Aguilar-Uscanga & Francois, 2003;

Carnicer et al., 2009; Jordà et al., 2014) such that we have previously

referred to biomass composition as the “elephant in the room” of

metabolic modeling (Dikicioglu, Kırdar, & Oliver, 2015). A great

advantage to modeling the metabolic network of K. phaffii is that, in

contrast to S. cerevisiae, extensive data on biomass composition of this

yeast have been collected under different experimental and genetic

conditions. This provided a great opportunity to study the effect of

biomass composition on the success of the Kp.1.0 model in predicting

growth characteristics, flux distributions, gene essentiality, and the

identification of the targets to be engineered for production of a

specific r-protein.

These analyses showed that growth characteristics could be

predicted with an error rate changing between 2% and 22% depending

on the biomass composition used in Kp.1.0. It was observed that the

varying the representation of biomass composition did not affect the

prediction of gene essentiality. On the other hand, when the flux

distributions were investigated, it was seen that the wiring of some

parts of the metabolic network changed greatly depending on the

biomass composition. The analyses of these significantly altered fluxes,

and the genes encoding the enzymes that catalyze the reactions

involved, revealed the impact of biomass compositionwas not random;

rather, it affected specific domains of metabolism, including lipid and

secondary alcohol biosynthesis and oxidation-reduction processes. A

similar analysis conducted with iLC915, the only other K. phaffii GEM

for which gene-reaction associations are available, also highlighted the

lipid metabolic processes as being sensitive to changes in biomass

composition. This suggests that the specific effects of changes in

biomass composition are not peculiar to a particular network

reconstruction but, rather, are intrinsic to the metabolism of this

industrial yeast species.

The representation of biomass content also affected the

predictions on potential targets to be engineered for improving

r-protein production when flux distribution based approaches such as

FSEOF approach were used. Identification of the overexpression

targets to improve hSOD production using Kp.1.0model employing 12

different biomass representations showed that 37% of the targets

were classified as targets conditionally. Moreover, further investiga-

tion of the effect of biomass representation on predicted beneficial

genetic interventions revealed that not only different reactions might

be identified as candidates but also the rankings of the candidate

targets altered when the biomass content was changed in the model.

These results showed that biomass content was a key player in target

identification using metabolic modeling.

We believe that the Kp.1.0 genome-scale metabolic model

represents a useful tool with which to design more productive strains

of K. phaffii. It is suitable to conduct such analyses and has been

made, available to the community through the BIOMODELS database

(Chelliah et al., 2015) and assigned the identifier

MODEL1703150000. Since obtaining a consensus model is only

possible with community effort, we believe that Kp.1.0 can form a

basis for future improvements of both the basic model and

its modification for specific applications in biotechnology (Irani,

Kerkhoven, Shojaosadati, & Nielsen, 2016).
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