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Purpose.Quantitative cerebral blood flow (CBF)measurement using dynamic susceptibility contrast- (DSC-)MRI requires accurate
estimation of the arterial input function (AIF). The present work utilized the independent component analysis (ICA) method to
determine the AIF in the regions adjacent to the middle cerebral artery (MCA) by the alleviated confounding of partial volume
effect. Materials and Methods. A series of spin-echo EPI MR scans were performed in 10 normal subjects. All subjects received
0.2mmol/kg Gd-DTPA contrast agent. AIFs were calculated by two methods: (1) the region of interest (ROI) selected manually
and (2) weighted average of each component selected by ICA (weighted-ICA). The singular value decomposition (SVD) method
was then employed to deconvolve the AIF from the tissue concentration time curve to obtain quantitative CBF values. Results. The
CBF values calculated by the weighted-ICA method were 41.1 ± 4.9 and 22.1 ± 2.3mL/100 g/min for cortical gray matter (GM)
and deep white matter (WM) regions, respectively. The CBF values obtained based on the manual ROIs were 53.6 ± 12.0 and
27.9 ± 5.9mL/100 g/min for the same two regions, respectively. Conclusion.The weighted-ICA method allowed semiautomatic and
straightforward extraction of the ROI adjacent to MCA.Through eliminating the partial volume effect to minimum, the CBF thus
determined may reflect more accurate physical characteristics of the T2∗ signal changes induced by the contrast agent.

1. Introduction

Perfusion is a fundamental physiological characteristic of
brain tissues that can be measured by MRI techniques. One
of the MRI methods commonly applied in clinical settings
for measuring cerebral blood flow (CBF) is the dynamic
susceptibility contrastMRI (DSC-MRI) [1, 2].TheDSC-MRI,
an exogenous contrast technique, allows rapidmeasurements
of MRI signal change when the paramagnetic bolus agent
passes through the brain tissue. DSC-MRI with high SNR
has led to widespread clinical applications such as initial
investigation of stroke and tumor imaging [2, 3].

High concentrations of lanthanide contrast agents (e.g.,
Gd-DTPA) produce significant T2 and T2∗ relaxation and

cause the signal to drop by about 50% when the blood-
brain barrier is intact. Vilringer et al. [4] presented a first-
order model to explain the local magnetic inhomogeneity
across vessels due to the induced susceptibility difference.
They found that inhomogeneity occurs mainly in the regions
of tissue around vessels and the magnitude of variability is
inversely proportional to the square of the distance from the
center of the vessel. In contrast to T1 signal enhancement,
which has a short range of interaction, the T2 susceptibility
effect extends beyond the vascular space, affecting much of
the surrounding brain tissue [5]. Duhamel et al. [6] found that
the arterial input function (AIF) determined from regions
within arteries, instead of around arteries, could result in
uncertainty in the estimated mean transit time (MTT).
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One can conclude from these experiments that it is more
accurate to measure AIF from regions around the artery.

AIF plays an important role in the quantification of
CBF for perfusion measurements. CBF can be obtained by
deconvolving AIF from the measured concentration time
curve of tissue with dilution theory equation [7, 8]. How
and where the AIF was determined has been one of the key
aspects in calculating perfusion parameters. While obtaining
the local AIF for each imaging voxel is difficult, a surrogate
AIF is usually derived from one of the major arteries, for
example, themiddle cerebral artery (MCA) [5, 6]. Practically,
the AIF is commonly determined by manual selection of
regions of interest (ROIs) surrounding large arteries [5,
9]. Compared with that derived from regions within large
vessels, AIF derived from tissues adjacent to vessels avoids
flow artifacts and possible signal saturations while examining
T2 changes resulting from the contrast agent passage. In
addition, it provides more accurate CBF quantification since
the relaxivity constant embedded in the concentration time
curves of the AIF would be closer to that of the tissue. Next
to the understanding of AIF characteristics, postprocessing
of signal extraction is very important. Van Osch et al. [10,
11] have recently used calibration curves incorporated with
partial volume correction algorithm by selecting manually a
region covering the tissue around the internal carotid artery,
which showed improved reproducibility of AIF determina-
tion. However, in their study, AIF was obtained from blood
signals and the vessel was required to be parallel to the main
magnetic field because the phase shift is linear along with the
cross session of the vessel. On the other hand, partial volume
correction factor is also a way to eliminate the partial volume
effect by scaling the tail of concentration time curve of artery
and vein [12, 13]. ForAIF determination by automaticmethod
of ROI selection, several research groups [14, 15] proposed
methods by setting criteria related to the characteristics of the
dynamic signal/concentration time curves, such as full width
at half maximum (FWHM), the maximum concentration
(MC), time-to-peak (TTP), and arrival time (AT). Although
the processes were automatic, these methods were limited
by the lack of biophysical meanings for criterion selected
because the MRI signal was combined with both T1 and
T2 effects, which could vary with different imaging systems,
protocols, and patients or subjects.

Manual ROI technique and criterion ROI method are
subjective and cumbersome in resolving the confounding
signal which ismixedwith various tissue components around
vessels. Therefore, there has been thriving use of numerical
method to automatically segment the ROI. The statistical
methods that examine the difference in signal characteristics
are appropriate for solving the problem of signal mixture.
Martel et al. [16, 17] applied factor analysis (FA) tech-
nique combined with principle component analysis (PCA)
to remove much of the random noise contamination when
extracting the vessel factor image with the signal intensity
curve for 107 patients with acute stroke. However, additional
assumptions with a priori knowledge were needed to yield
factors with physiological significance. Murase et al. [18]
presented the fuzzy 𝑐-means (FCM) method for determining
AIF within the mask around the internal carotid artery.

Thismethodwas complex inmask decision and had difficulty
defining the number of clusters. Moreover, determining the
fuzzy rules of the cluster was subjective and difficult.

A blind source separation method such as independent
component analysis (ICA), which decomposes the mixture
signals into basic components, can be employed to extract the
signal of interest. ICA is a model-free multivariate statistical
method that has been employed to identify pixels that have
a common underlying time-response behaviors involving the
spatially independent cortical activation areas in functional
MRI (fMRI) [19–25]. It had also been used as a segmentation
technique to visualize the different hemodynamic compart-
ments [26, 27] and to remove the confounding signals from
large vessels to improve images with significantly less artifacts
[28]. The present work proposed using ICA to define regions
around the artery and to determine an accurate AIF from
the regions. AIFs were also obtained from ROIs that were
drawn manually and from the regions within arteries as
determined by ICA. CBFs were then calculated by these
AIFs for comparison. The resultant CBF from ICA-based
method got closer values 41.1 ± 4.9mL/100 g/min and 22.1 ±
2.3mL/100 g/min for graymatter andwhitematter, compared
to the standard values of nuclearmedicine, 43.1mL/100 g/min
and 21.3mL/100 g/min, respectively [29].

2. Materials and Methods

2.1. Simulation Experiment. The purpose of simulation
experiment is to evaluate the performance of image segmen-
tation by ICA. Three squared blocks (each with 81 pixels)
representing the artery (in red), artery-surrounding tissue
(in green), and tissue (in blue), respectively, are shown in
Figure 1(a).The signalsmimicking the contrast agent effect on
vessel and parenchyma are calculated fromKiselev’s approach
[30]. In his approach, he utilized Pade approximation to
bridge the deviance between theoretically known limits with
the account for the results of the Monte Carlo simulation [5].
The deviance caused by the effect of contrast agent is due to
the local field inhomogeneity around the vessel and capillary.
The force of inhomogeneous field around the vessel is the
susceptibility difference between inside and outside vessel,
which is the static dephasing regime (SDR) effect. Another
force causing the field inhomogeneity around capillary is due
to the proton diffusing out toward the tissue, which is called
the diffusional narrowing regime (DNR) effect.

In our simulation, we simply assumed the signal of artery-
surrounding tissue is affected only by the SDR effect and that
of tissue is affected by the combination of the DNR and SDR
effects. The input bolus of artery was given as

𝐶
𝑎
(𝑡) =

𝐶max (𝑡/𝑡0)

exp (−𝑡/𝑡
0
+ 1)

, (1)

where 𝐶max = 3mM and 𝑡
0
= 7ms [30]. The concentration

of contrast agent in blood in the studied tissue was obtained
through the calculation of dilution theory (mean transit time
was assumed as 2.6 s). The inhomogeneity of field around
vessels was related to several factors, such as magnetic field
(𝐵
0
= 1.5 T), pulse sequence (Gradient Echowith TE= 45ms),
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Figure 1: (a) The physiological signals for artery (I), surrounding
tissue (II), and tissue (III) are simulated in three blocks (in red,
green, and blue, resp.). The partial volume fractions between (I, II)
and (II, III) were 0.5. (b) The generated raw signals were calculated
from Kiselev’s approach [30].

blood volume fraction (𝜁
𝑎
= 0.005; 𝜁V = 0.01; 𝜁

𝑐
= 0.02),

vessel radius (𝜌
𝑎
= 𝜌V = 100 𝜇m; 𝜌

𝑐
= 3.5 𝜇m), the magnetic

susceptibility of venous blood (𝜒
0
= 0.038 ppm), the baseline

relaxation rate (𝑅
2𝑎0

= 6.21 1/s; 𝑅
2V0 = 13.43 1/s), and the

relaxivity [30]. The relaxivity was estimated from the known
parameters following the asymptotic forms in [30].

The noise-free signal time curves for the three compo-
nents (I, II, and III) were converted from the simulated
concentration time curves and shown in Figure 1(b). The
partial volume fraction in the overlapped areas (I&II and
II&III) was set to be 0.5. Various levels of noise were added to
generate contrast-to-noise ratios (CNRs) ranged from 30 to
70 for the arterial signal time curve. Images of 80 time points
with 1.5 s per time point were simulated for each CNR. Using
ICA, 10 components were extracted and three of them were

selected for each of the three signal sources. The IC maps
were transferred into 𝑧-value maps, and the first 50 voxels
with maximum 𝑧-values were selected. The performance of
segmentation was evaluated with percent detected voxels in
the ROIs with and without partial volume averaging.

2.2.MRI Acquisition. Eight healthy volunteers (4males and 4
females), 30–45 years old (average = 35.5 years), participated
in this study with informed consent. All experiments were
performed at Chang GungMemorial Hospital with protocols
approved by the institutional review board.

A single-shot spin-echo EPI sequence was employed
to perform the perfusion imaging on a 1.5 T MR scanner
(Magnetom Vision, Siemens, Erlangen, Germany) with the
following parameters: TR/TE = 1,500/60ms, flip angle = 90∘,
field of view = 218 × 218mm2, matrix size = 64 × 64, and
slice thickness = 6mm. Seven image slices with 60 time
points per slice were obtained for each subject. The images of
the first three time point images were discarded as dummy
scans. In each perfusion measurement, the contrast agent
Gd-DTPA (0.2mmol/kg b.w., Magnevist, Schering, Berlin,
Germany) was injected in the left antecubital vein using an
MR-compatible injector (Spectris, Medrad Inc., Indianola,
PA). The injection rate was set to be 5mL/s and the volume
of the dose was 25mL. The time point (TP) of injection was
at 7th TP of scan. Two volunteers were excluded from the
evaluation due to significant motions during the DSC-MRI
scan.

2.3. Data Processing. AIF was selected using both themanual
and ICAmethods. For themanualmethod, a region (about 30
pixels) around the MCA was singled out as the candidate of
AIF calculation. As for the ICA method, the data process is
described as follows.

ICA decomposed the input data into their constituent
sources, according to statistical independence [31, 32]. In
this technique, an unmixed matrix (𝑊

𝑞×𝑝
) is employed to

project data into its own reconstructed source (𝑁
𝑞×V) in the 𝑞

direction where data distribution is non-Gaussian:

𝑀
𝑞0×V ≈ 𝑁𝑞×V = 𝑊𝑞×𝑝𝑋𝑝×V, (2)

where𝑀
𝑞0×V is the source matrix with 𝑞

0
sources and spatial

size V; 𝑋
𝑝×V is the observed data matrix with 𝑝 time series;

𝑊
𝑞×𝑝

is the unmixed matrix with 𝑞 × 𝑝 matrix size; 𝑁
𝑞×V is

the component matrix which is employed to approach the
original component source (𝑀), where 𝑞 ≦ 𝑞

0
.

Forty constitutional IC maps (covering 99% of the eigen-
values) were generated based on tissue characteristics with
which tissue had its temporal performance in the indepen-
dent spatial domain. Of all IC maps, two maps of interest,
namely, the artery (ICA-a) and the tissue around the artery
(ICA-s), were selected according to their hemodynamic
characteristics; that is, artery has early, narrow, and high peak
features of responsive concentration. In order to decide a
global AIF, the selected IC map was transferred into 𝑧-value
maps, and the first 50 voxels of maximum 𝑧-value were used
as the ROI of AIF calculation. The 𝑧-value is defined as 𝑧

𝑖
=

(𝑥
𝑖
− meanIC)/StdIC, where 𝑥𝑖 is the voxel value of an IC
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image; “meanIC” and “StdIC” are the average and standard
deviation over an IC map [32]. Therefore, the time course
per voxel in the ROI was weighted by the 𝑧-value of the IC
map to generate an AIF.This weighted time course embodied
the tissue’s response to contrast agent and facilitated deciding
a more purified region with respect to the representation
of tissue. That is because, in ICA calculation, the temporal
behaviors of voxels having the same tissue properties were
grouped into a component map because it contributed the
same value to the location of anatomy. Taking this advantage,
ICA selected voxels with higher weighting to calculate AIF
and removed the partial volume effect.The weighted-AIF can
be defined by

AIF =
𝑛

∑
𝑖

𝑄
𝑖
× S
𝑖

𝑛 = voxels in VOI, (3)

where 𝑆
𝑖
is the signal intensity time curve of the 𝑖th voxel

in the ROI selected after 𝑧-value thresholding and region
clustering in each ICA map of interest. 𝑄

𝑖
is the weighting

matrix of the 𝑖th voxel whose value is the normalized value
from the IC map, and herein AIF is termed as AIF

(ICA-w).
Before calculating CBF, the MR signal intensity was

transferred into the concentration of contrast agent [5, 30] by
the following equation:

𝐶 (𝑡) =
−𝐾

TE
ln(𝑆 (𝑡)

𝑆
0

) , (4)

where 𝐾 is the relaxivity, which is related to the tissue type
and magnetic field. For 1.5 T magnetic field, 𝐾 is about
7.62m/M/s; 𝑆(𝑡) is the signal intensity at time 𝑡; and 𝑆

0
is

the baseline intensity before the contrast arrival. Afterward,
the concentration time curve of candidate AIFs was fitted
using the data period of 7th–25th time points with a gamma-
variate function to determine the TTP, arrival time, FWHM,
and peak height as the indicators of AIF for comparison of
two AIFs. Later, the concentration of candidate AIFs was
employed to calculate CBF using the SVD deconvolution
method with adaptive thresholds [33].

3. Results

In the simulation experiment, the performance of signal
segmentation with ICA as a function of CNR was presented
in Figure 2. The three IC component maps (which selected
at most 50 pixels for each ROI) corresponding to each
of the three signal sources were demonstrated in Figures
2(a)–2(e) for different CNR levels. The alleviation of partial
volume effect (in I&II and II&III areas) was observed as CNR
increase. The segmentation performance at various CNR
was summarized in Figure 2(f). Comparing to surrounding
tissue, the localization of signal for artery and tissue was
fully achieved. The partial volume effect affected the signal
decomposition, especially for regions containing boundary at
lowCNR condition. However, the segmentation of surround-
ing tissue was quite accurate, even at low CNR level (>90%
accuracy).

Figure 3 shows the resultant segmentations at three
regions for one clinical dataset: a region drawn manually by

the manual ROI method and two regions segmented by the
ICAmethod. It was found that ICA yielded better segmented
boundaries along the MCA compared with the manual ROI,
especially at the regions where the partial volume effect
prevailed. In addition, the AIF concentration time curves for
all subjects obtained from different methods were presented
in Figure 4. As can be seen, the dynamic curve of the selected
ROI showed its own tissue characteristic. The artery curve
(solid dark gray line) had greater amplitude than the others
and therewas a clear recirculation after the first bolus passage.
The surrounding tissue curve (solid light gray line) showed a
lower peak than both the artery curve and the curve obtained
from the manual ROI method (black line). Moreover, the
manual ROI curve showed an intermediate characteristic
between the above two. Although characteristics of AIF
vary among subjects in onset time, peak height, FWHM
and TTP, a consistent tendency among three AIFs deter-
mined by the different tissue location was consistent across
subjects.

The results of AIF concentration time curves fitted with
gamma-variate function for all eight subjects were listed in
Table 1.The table showed the statistics of paired 𝑡-test between
(a) manual ROI (Manu-roi) and the artery ROI with the
weighted-ICA method (ICA-aw); (b) manual ROI (Manu-
roi) and the surrounding tissue ROI with the weighted-ICA
method (ICA-sw); and (c) artery ROI (ICA-aw) and the
surrounding tissue ROI (ICA-sw) with the weighted-ICA
method. Significant differences in peak height were found in
various tissues, with the highest value in the artery and the
lowest value in the surrounding tissue. A similar significant
pattern was observed in arrival time, with the fastest for the
artery and the slowest for the surrounding tissue. In addition,
the TTP for the manual ROI was found to be longer than
that for the other two methods while the FWHM for the
surrounding tissue is smaller than that for the other two
methods.

Table 2 showed the CBF values of gray and white matters
and their ratios, obtained using AIFs calculated from the ROI
selected by three methods. CBF values obtained from the
AIFw of surrounding tissue were significantly smaller than
those obtained from the other two datasets. The CBF values
calculated by the weighted-ICAmethod (ICA-sw) were 41.1 ±
4.9 and 22.1 ± 2.3mL/100 g/min for cortical gray matter
(GM) and deep white matter (WM) regions, respectively.
The CBF values obtained from the manual ROIs were 53.6 ±
12.0 and 27.9 ± 5.9mL/100 g/min for the same two regions,
respectively. The CBF values and GM/WM ratios obtained
from both methods (ICA and manual ROI) were in good
agreement with those found in the literature [9].

4. Discussion

The partial volume effect is a common problem in the
segmentation of the AIF location. It is almost impossible
to select a region surrounding the arteries without partial
volume confounding. However, the data-driven method
provides a subjective approach to selecting the region of
interest with characteristic information that can be used
to avoid the partial volume effect. As the method used in
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Figure 2: The performance of signal segmentation for three ROIs after ICA. The spatial segmentation of ROIs was listed in (a)–(e) along
different CNRs. The area symbols for artery, surrounding tissue, and tissue are denoted as I, II, and III, respectively. The performance in
signal segmentation is summarized in (f). The solid line denotes the true rate of selected region located in the ROI and the dash line is the
false rate outside ROI.

this present study, ICA is a helpful tool and its applications
are emerging in decades [31, 32]. Kao et al. [27] employed
ICA aided by Bayesian estimation to segment the artery and
to refine tissue classification. Other methods, for example,
Murase et al. [18], utilized a fuzzy clustering method to
identify the voxels belonging to the tissue around the artery
after manually outlining the region. Even though the partial

volume information is unknown from a priori knowledge, the
relative fraction of the partial volume can be assessed by ICA
processing. For the performance as shown in our simulation
(in Figure 2), a good segmenting control was achieved in the
region around the artery by weighting IC values. Then, the
region possessing high source characteristics can be extracted
by fraction thresholding of the partial volume. In a similar
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Table 1: Comparisons of time-to-peak (TTP), arrival time (the first time point above the mean time response), FWHM, and peak high after
gamma fitting in 8 subjects as determined by manual ROI (Manu-roi) and ICA in artery (ICA-aw) and surrounding tissue (ICA-sw). Below
the table, there is statistic comparison with paired 𝑡-test for manual and weighted-ICA ROI. Significant difference between Manu-roi and
ICA-aw ROI is found in TTP, onset time, and peak high and that between Manu-roi and ICA-sw ROI is found in TTP, onset time, FWHM,
and peak. For ICA-aw and ICA-sw, there are significant differences in onset time, FWHM, and peak high.

TTP (sec) Onset time (sec) FWHM (sec) Peak high (#/mL)
Manu-roi ICA-aw ICA-sw Manu-roi ICA-aw ICA-sw Manu-roi ICA-aw ICA-sw Manu-roi ICA-aw ICA-sw

#1 (36 y, m) 26.70 25.89 26.07 21.12 19.64 21.89 7.650 7.305 5.775 546.6 1423 324.4
#2 (33 y, m) 29.36 27.66 27.98 20.94 20.55 21.68 9.615 8.295 7.365 528.4 1020 456.5
#3 (32 y, m) 28.20 27.20 27.27 21.09 20.01 22.67 9.450 9.375 7.005 421.6 1077 337.3
#4 (46 y, m) 26.58 27.81 27.50 21.42 20.97 22.37 6.495 7.830 6.885 401.4 960.2 305.9
#5 (35 y, f) 24.74 24.18 24.03 18.68 18.60 19.08 9.060 8.655 6.090 427.8 792.2 508.3
#6 (35 y, f) 22.69 22.16 21.71 18.24 17.48 17.67 6.960 7.515 5.865 438.0 671.2 463.1
#7 (38 y, f) 30.50 29.41 29.58 22.85 22.88 25.73 12.53 9.240 4.920 422.3 903.7 309.9
#8 (29 y, f) 27.25 26.42 26.37 20.15 19.00 22.37 11.12 9.855 4.380 361.2 1033 411.1
Mean 27.00 26.34a 26.31a 20.56 19.89a 21.68a,b 9.110 8.509 6.036a,b 443.4 985.0 389.6a,b

Stdc 2.487 2.281 2.456 1.503 1.642 2.427 2.060 0.931 1.036 62.78 222.6 79.98
aSignificantly (𝑃 < 0.05, paired 𝑡-test) higher than Manu-roi.
bSignificantly (𝑃 < 0.05, paired 𝑡-test) higher than ICA-aw.
cStandard deviation.

Table 2: rCBFs are calculated by the AIFs determined by the manual ROI (Manu-roi) and ICA-based ROI (weighted-ICA) method in gray
and white matter regions. The paired 𝑡-test is employed to test the difference between the manual and ICA-based method in the artery (GM

𝑎

and WM
𝑎
) and surrounding tissue (GM

𝑠
and WM

𝑠
) and between the artery and surrounding tissue in the ICA-based method in gray and

white matter regions.

rCBF (mL/100 g/min) Manu-roi ICA-aw ICA-sw
GM
𝑚

WM
𝑚

(G/W)
𝑚

GM
𝑎

WM
𝑎

(G/W)
𝑎

GM
𝑠

WM
𝑠

(G/W)
𝑠

#1 (36 y, m) 66.98 38.35 1.746 56.13 35.17 1.596 41.94 24.83 1.689
#2 (33 y, m) 54.22 28.22 1.921 54.25 30.78 1.762 40.83 21.98 1.857
#3 (32 y, m) 42.26 24.05 1.757 48.00 30.60 1.569 35.02 21.14 1.656
#4 (46 y, m) 45.79 29.57 1.549 40.33 30.16 1.337 38.70 24.55 1.576
#5 (35 y, f) 64.09 28.75 2.229 60.73 28.78 2.110 46.52 23.68 1.964
#6 (35 y, f) 49.08 21.95 2.236 48.09 22.13 2.173 46.75 21.17 2.208
#7 (38 y, f) 37.33 20.13 1.855 41.74 24.73 1.688 34.05 17.71 1.922
#8 (29 y, f) 69.27 32.20 2.151 66.52 34.73 1.915 45.10 21.55 2.093
Mean 53.63 27.90 1.931 51.97 29.64 1.769a 41.11a,b 22.08a,b 1.871a,b

Stdc 12.01 5.879 0.253 9.118 4.476 0.2839 4.935 2.309 0.221
GM = gray matter; WM = white matter; G/W = the ratio of gray matter and white matter.
aSignificantly (𝑃 < 0.05, paired 𝑡-test) higher than ROI

𝑚
in GM, WM, and G/W.

bSignificantly (𝑃 < 0.05, paired 𝑡-test) higher than 𝐴wic in GM, WM, and G/W.
cStandard deviation.

outcome also with respect to the clinical case in Figure 3,
the regions selected from different locations were capable
of determining a candidate AIF. The manual ROI method
was more prone to the partial volume effect than the ICA
when examining the surrounding tissue. It led to substantial
uncertainty and required professional training to select an
ROI for AIF determination.

As for ICA’s specificity, ICA utilizes the spatial inde-
pendence of constituent sources attributed to each voxel to
decompose signals. These constituent sources include vessel
components, tissue components, motion artificial compo-
nents, and noise components induced by the contrast agent.
For sources with more negentropy property (non-Gaussian),
the ICA generates component maps with higher discrimi-
nation of the source signal [26, 27]. From the component
maps, the source map of interest (i.e., vessel or tissue) is

ICA-aw

ICA-sw

Manu-roi

Figure 3: Regions selected by the manual ROI and ICA method
(blue: manual selection; red and green: artery and its surrounding
tissue selected by weighted-ICA).
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Figure 4: Continued.
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Figure 4: Different AIFs were determined for eight subjects in (a)–(h). (1)Theartery with weighted-ICA (solid dark gray line); (2) the average
with manual ROI (solid black line); and (3) the surrounding tissue with weighted-ICA (solid light gray line).This figure also shows the result.

selected. Furthermore, the area confounded with higher
partial volume effect can be removed by 𝑧-thresholding and
weighting processing for the map of interest. ICA provides
a good segmentation tool for locating the area of signal
specificity as demonstrated in the simulation experiment
and MRI perfusion data. Although ICA provides a better
signal decomposition for tissue characteristics, its resultant
constitution was normalized based on the hypothesis of
statistic independence.This essential hypothesis restricted its
application on the calculation of absolute partial volume in
each brain tissue.However, if the density of brain parenchyma
is involved in the treatment of disease, especially for the
assessment of medication, an absolute estimation of tissue
characteristics is worth further studies.

Except for the processor of data analysis, the signal we
acquired can represent that the meaningful perfusion signal
is not acquired easily because generally the signal is caused
due to the tissue susceptibility and hemodynamic response.
Therefore, according to the theoretical derivation ofDSC-MR
perfusion application, AIF derived from the region within
the artery may not be a good choice because the relaxivities
of arterial and tissue water differ. Previous studies assumed
the same relaxivities for blood and tissue, which resulted
in the overestimation of CBF in a nonlinear relation with
the concentration in blood [30, 34]. Kiselev et al. suggested
that the relaxivity of tissue should consider the contribution
of both the static dephasing regime (SDR) and diffusional
narrowing regime (DNR) effects [34–36]. The relaxation
effect of Gd-DTPA in brain tissue was found to be several-
fold larger than that in bulk blood [36]. Consequently, using
AIF obtained from blood signals would introduce significant
errors in quantifying CBF in brain tissue, unless the relaxivity
of tissue could be independently measured. Besides the
location at which the AIF needed to be determined, several
properties of AIF were also in addition assessed for the

comparison of CBF calculated among tissue in our present
work. In Table 1, the manual ROI method was found to
produce AIFs with different TTP, arrival time, FWHM, and
peak height.These feature indexes revealed some biophysical
properties of the contrast agent-affected compartments in
the artery, surrounding tissue, and the region between them.
Thewithin-subject variation wasmainly caused by the partial
volume of tissue and blood. In addition, for the manual ROI
method, the uncertainty of ROI selection (i.e., operating at
different time sessions or by different operators) could lead to
more variable results.This circumstance should be avoided in
the application of study and clinical practice.

In addition, a notion worth considering in the decon-
volution process was that both the various shapes of the
AIF and the thresholding in SVD processing could result
in different CBF values. This effect was demonstrated by
computer simulation using AIFs with various heights and
areas (see Figure 5). In conclusion, using the nonideal AIFs
will induce a large error in CBF estimation (Table 3). Next to
the calculation of CBF, in this study, we also considered the
averaged-AIF as the reference base. Although the comparison
of averaged-AIF and weighted-AIF showed no significant
difference to each other, it provided cross-checking of the
intracorrelation evaluation (not shown averaged result). The
top 50 voxels with highest 𝑧-value were highly consistent with
each other and provided a partial volume free in the region.

In conclusion, quantitative CBF measurement involves a
complex combination between tissue physiology, hemody-
namic physics, data acquisition technique, and data analysis
[37]. In the present work, we focused on the exploration of
data mining, especially for the avoidance of partial volume
effect. The benefits of this work were contributed for a more
precise calculation of CBF: (1) ICA provides a semiautomatic
tool for selecting the component of interest; (2) ICA decom-
poses the signal by reducing the partial volume effect; (3)
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Figure 5: Various AIFs (𝐴–𝐸) are employed to test the decon-
volution calculation for flow in dilution theory. “𝐴” (red line)
is the ideal AIF defined in the paper [38] and the ideal flow is
80mL/100 g⋅min. The thresholding value is the cut-off value in
adaptive SVD calculation [33]. 𝐵–𝐸 curves are the nonideal AIFs
simulated.

Table 3: Estimated flow obtained from calculation of Figure 5.

Estimated flow Area under curve Thresholding (%)
𝐴 76.40 262.43 13.64
𝐵 38.20 524.86 27.27
𝐶 84.73 523.18 25.82
𝐷 42.36 1046.36 51.64
𝐸 168.91 262.43 12.95
Note: the signal-to-noise ratio is 27.7 for 𝐴.

the determination of AIF in the tissue around the artery is
necessary for CBF quantification.
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