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Abstract: Somatization, defined as the presence of multiple somatic symptoms, frequently occurs in
irritable bowel syndrome (IBS) and may constitute the clinical manifestation of a neurobiological
sensitization process. Brain imaging data was acquired with T1 weighted 3 tesla MRI, and gray matter
morphometry were analyzed using FreeSurfer. We investigated differences in networks of structural
covariance, based on graph analysis, between regional gray matter volumes in IBS-related brain
regions between IBS patients with high and low somatization levels, and compared them to healthy
controls (HCs). When comparing IBS low somatization (N = 31), IBS high somatization (N = 35),
and HCs (N = 31), we found: (1) higher centrality and neighbourhood connectivity of prefrontal
cortex subregions in IBS high somatization compared to healthy controls; (2) higher centrality of left
cerebellum in IBS low somatization compared to both IBS high somatization and healthy controls;
(3) higher centrality of the anterior insula in healthy controls compared to both IBS groups, and in
IBS low compared to IBS high somatization. The altered structural covariance of prefrontal cortex and
anterior insula in IBS high somatization implicates that prefrontal processes may be more important
than insular in the neurobiological sensitization process associated with IBS high somatization.

Keywords: irritable bowel syndrome; somatization; central sensitization; brain morphometry;
structural covariance; brain imaging
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1. Introduction

Irritable bowel syndrome (IBS) is a prevalent disorder of brain-gut-interactions [1]
characterized by chronic, recurrent abdominal pain and altered bowel habits [2], often
accompanied by comorbid psychiatric and other chronic pain disorders [3]. Somatization
has been used to refer to the presence of multiple ‘medically unexplained’ symptoms
(also known as ‘functional’ symptoms [4]), often assumed to be associated with psy-
chological distress [5]. High levels of somatization, as measured by the Patient Health
Questionnaire (PHQ)-12, are more prevalent in IBS patients compared to patients with
gastrointestinal complaints not fulfilling IBS criteria [6]. Somatization, defined and mea-
sured as the presence and severity of multiple somatic symptoms in IBS, is associated
with lower quality of life [7], visceral hypersensitivity [8], postprandial [9], and general
gastrointestinal [10] symptoms.

Neuroplasticity refers to structural changes that occur in the adult brain in response to
the external environment or internal milieu [11]. There is mounting evidence for structural
plasticity and reorganisation in human chronic pain in general [12,13] as well as in IBS
specifically [14–18]. Some of the neuroanatomical findings in IBS seem to be specific to
the disorder, whereas other differences appear in several chronic pain disorders, and are
hence not specific to IBS [19]. IBS is, like other functional somatic syndromes, hetero-
geneous, and the presence of co-morbid functional disorders and/or somatization may
reflect a hypothesized but incompletely understood central sensitization mechanism in this
subgroup [20,21].

Analyzing the brain networks with graph analysis is thought to capture neurobiologi-
cally important aspects of the organization of brain networks [22]. Abnormal connectivity
has been found in patients with neurological and psychiatric disorders compared to healthy
controls (HCs) by comparing structural or functional brain network properties, using
complex network analysis [23]. More specifically, various neurological and psychiatric
conditions have been associated with abnormal structural co-variance networks, including
Alzheimer’s disease, schizophrenia, epilepsy and autism [24]. Among the disorders of gut-
brain interaction, altered structural covariance of the striatum has been found in functional
dyspepsia patients compared to HCs [25]. Only two studies to date have been published
using graph analysis on structural brain MRI data in IBS [17,26]: one using binary graphs
of regional gray matter volume comparing IBS to HCs [17], and one using weighted graphs
of diffusion weighted imaging to study connectivity comparing patients with ulcerative
colitis, IBS and HCs [26].

The overall aim of this study was to identify a structural brain network associated
with somatization in IBS. We used graph analysis to map the differences in structural gray
matter covariance patterns between IBS patients with high and low somatization levels, as
well as compare these groups with HCs.

We hypothesized differences in networks of structural covariance between all three
groups, greater between IBS high somatization and HCs than between IBS low somatization
and HCs, indicative of greater central plastic changes in IBS high compared to low somati-
zation. Based on the previous study by Labus et al., [17], we expected differences between
IBS patients and HCs in local but not global graph measures. Based on a study comparing
chronic pelvic pain patients with widespread vs. localized symptoms (corresponding
to high versus low somatization in our study) [27], we hypothesized that differences in
networks of structural covariance between IBS patients with high and low somatization
would primarily be found in sensorimotor regions, cingulate cortex, inferior parietal cortex,
frontal regions and insula. These regions have shown alterations in structural or functional
imaging studies comparing IBS patients with healthy controls without consideration of
somatization level [17,19,28].
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2. Materials and Methods
2.1. Subjects

Seventy-seven IBS patients were recruited at the gastroenterology outpatient clinic
specializing in functional GI disorders at Sahlgrenska University Hospital in Gothenburg,
Sweden, between 2011 and 2014. The IBS patients (18–65 years) came through self-referral
or were referred by other physicians, mostly primary care doctors. The IBS diagnosis was
based on clinical presentation, fulfilment of the Rome III criteria for IBS [29] and additional
investigations if considered necessary by the gastroenterologist (HT or MS). Exclusion
criteria included abnormal results on standard screening laboratory tests, severe psychiatric,
systemic or other GI diseases, history of drug or alcohol abuse, and the inability to reliably
respond to questionnaires in Swedish. The use of probiotics was not allowed during
the study period, as it was part of a larger study mapping different pathophysiological
mechanisms in IBS, including microbiota. HCs were recruited by local advertisement.
The same exclusion criteria as for IBS patients applied for HCs, as well as the presence of
IBS according to the Rome III criteria, or reporting more than one mild GI symptom on a
GI-symptom screening questionnaire. The study protocol was approved by the Regional
Ethical Review Board in Gothenburg (application number 731-09 approved 25 January 2010,
with an amendment T240-11 approved 3 March 2011) prior to the start of patient inclusion,
and all participants gave their informed consent to participate after verbal and written
information. The work in this article have been carried out in accordance with The Code of
Ethics of the World Medical Association (Declaration of Helsinki). This study population
has also been used to study resting state fMRI connectivity [30], and associations between
regional gray matter metrics with visceral sensitivity measures [31].

2.2. Questionnaires

PHQ-15 is a validated questionnaire to assess the severity of the 15 most common
somatic symptoms; nausea, abdominal pain, altered bowel habit, back pain, limb pain,
headaches, chest pain, dizziness, fainting spells, palpitations, breathlessness, menstrual
cramps, dyspareunia, insomnia, and lethargy [32]. The score ranges between 0 and 30 and
can be used as a continuous measure. Alternatively, cut-off scores of 5, 10, and 15 can be
used to define low, medium, and high levels of somatic symptom severity (i.e., somatiza-
tion) [32]. One of the questions is on menstrual pain and, hence, applies to women only.
We removed this question in order not to induce a systematic difference in somatization
levels between men and women, and denoted this reduced questionnaire PHQ-14.

The Hospital Anxiety and Depression scale (HADS) is a self-report questionnaire
consisting of 14 questions to assess emotional and cognitive aspects of depression and
anxiety [33]. We used the total score to denote level of psychological distress [34]. This
total HADS score was used solely to compare levels of psychological distress between the
three groups.

The IBS severity scoring system (IBS-SSS) is a validated questionnaire to assess IBS
symptom severity, consisting of 5 questions including pain severity, frequency of pain,
severity of abdominal distension, bowel habit dissatisfaction and how much IBS interferes
with life in general [35]. In this study, we used the IBS-SSS solely to characterize the patients
and compare between IBS patients with high and low levels of somatization.

2.3. Brain Imaging Acquisition

Brain images were acquired on a 3 Tesla Philips Achieva MR scanner using the
standard 8 channel head coil. A T1-weighted 3D TFE gradient echo high resolution
structural scan was acquired using a magnetization-prepared rapid acquisition gradient
echo (MP-RAGE) sequence, with TR = 7.0 ms, TE = 3.2 ms, flip angle = 9◦, inversion
recovery delay of 900 ms, shot interval of 2200 ms and a bandwidth of 241 Hx/pixel. The
acquired and reconstructed voxel size was 1 × 1 × 1 mm3, FOV 256 × 220 × 176 mm3 and
the slice orientation was transverse. No SENSE acceleration was used, however the SENSE-
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reference scan was used for homogeneity correction of the signal from the individual
coil elements.

2.4. Structural MRI Analysis

Data processing workflows were designed and implemented at the Laboratory of
Neuroimaging (LONI) Pipeline (http://pipeline.loni.usc.edu) as described in Labus et al.,
2014 [17]. After quality control, FreeSurfer [36,37] was used for regional parcellation accord-
ing to the Destrieux cortical atlas and FreeSurfer subcortical stream [38–40]. Quality control
was based on various indicators of scan quality, including the absence of severe noise and
artefacts, and correct segmentation of gray and white matter. Any scans demonstrating
pathologies or abnormalities that were deemed sufficiently harmful to structural measures
were omitted from further analyses. In total, the brains were parcellated and segmented
into two hemispheres with 74 cortical regions each, as well as 15 subcortical regions and
two hemispheres of the cerebellum, resulting in a total of 165 brain regions. For this study,
the only morphometric measurement used was gray matter volume.

2.5. Regions of Interest (ROIs)

Regions that have been consistently shown to be involved in IBS in functional and
structural brain imaging were selected as regions of interest (ROIs) [19,28]. As a refer-
ence, we used the meta-analysis of fMRI studies of rectal distension by Tillisch et al.,
(Tables 3 and 4 in [28]) as well as a more recent review of neuroimaging studies in IBS
(Table 1 in [19]). This resulted in a total of 18 ROIs: anterior cingulate cortex, midcingulate
cortex, amygdala, hippocampus, hypothalamus, anterior insula, middle insula, posterior
insula, prefrontal cortex, precentral gyrus, postcentral gyrus, supplementary motor area,
thalamus, putamen, cerebellum, midbrain, superior temporal gyrus and inferior parietal
lobule. Ninety of the 165 parcellated regions (see Supplementary Materials for details)
were determined to correspond to, or be part of, these ROIs.

2.6. Data Analysis
2.6.1. Node Definition

The 90 resulting (sub)regions (Supplementary Table S1), which do not overlap, were
used as nodes of the network, normalized based on the total gray matter volume (TGMV)
prior to analysis. The TGMV was chosen as it contains some information about brain size,
sex (female generally smaller) and age (older generally smaller). Therefore, we did not addi-
tionally control for sex and age to avoid overcorrecting as well as potential multicollinearity.

2.6.2. Groups

We compared three groups: HCs, IBS patients with low somatization (IBS low somati-
zation) and IBS patients with high somatization (IBS high somatization), with the latter
groups defined by a mean split of the PHQ-14 score. The mean PHQ-14 in the full IBS co-
hort was 12.9, corresponding to a moderate level of somatization according to the PHQ-15
cut-off levels [32]. The mean was used instead of the median, as seven subjects had the
median value of PHQ-14 (median = 13), and would have been randomly assigned to one of
both groups when using a median split.

2.6.3. Networks of Structural Covariance

In each region (node), we constructed a vector in which each element represents the
(TGMV corrected) gray matter volume of a subject. The structural covariance between two
nodes was defined as Fisher r-to-Z transformed Pearson correlation coefficient between the
two corresponding vectors. Structural covariance was obtained for all pairs of nodes for
the three different groups (IBS high somatization, IBS low somatization and HCs).

To assess whether there were significant differences in structural covariance between
any pair of regions between the groups, we performed a non-parametric test based on
permutation labelling (5000 randomizations) of group membership.

http://pipeline.loni.usc.edu
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2.6.4. Graph Analysis

To create the weights of the graph (i.e., the connection strength), the Z-matrix of the
structural covariance network was used and first transformed into a new matrix which
only contained the positive Z values and setting all negative Z values to 0. This new matrix
was transformed to weights using [41]:

w = [2(normcd f (Z)− 0.5)]4 (1)

in which normcdf is the standard normal cumulative distribution function. Note that the
weights are values between 0 and 1.

For each group we obtained a weighted graph in this way. From this graph, we
calculated global graph measures (characteristic path length, clustering coefficient, global
efficiency and betweenness centrality) as well as local graph measures (node strength,
average shortest path length, nodal clustering coefficient, local efficiency and nodal be-
tweenness centrality). These graph measures were calculated using the brain connectiv-
ity toolbox (https://sites.google.com/site/bctnet/) (for weighted graphs) except for the
(nodal) clustering coefficient and local efficiency, which were calculated using the method
described in Wang et al. [41]. The Matlab code used can be accessed through Github
(https://github.com/labgas/proj-IBS-somatization). More information about the local
graph measures and their interpretation can be found in Box 1.

We also calculated the normalized graph measures defined as the ratio of the graph mea-
sure of the network and the mean of the same graph measures obtained in 1000 equivalent
random networks. These equivalent random networks are networks with the same number
of nodes and the same weight distribution but in which the weights are randomly assigned
to the connections.

The hub scores were calculated as the sum of the dummy values for four criteria (each
set at 1 or 0 depending on whether or not the criterion is fulfilled, with a maximum hub
score of 4) [42–45]. These criteria are whether the node belongs to the top 20% of nodes:

1. showing the highest strength,
2. showing the lowest path length,
3. showing the lowest local cluster coefficient,
4. showing the highest betweenness centrality.

When a node had a hub score of two or more, it was considered a hub [42].
The modularity structure was determined using the algorithm of Newman [46,47], as

implemented in the Brain Connectivity Toolbox, to determine the community structure of
the network.

Global and local graph measures were compared between groups using a non-
parametric test based on permutation labelling of group membership (5000 realizations).
A similar test was used to assess whether the hub score of a node was different between
groups. In this analysis, we limited the analysis to nodes which were considered a hub in
either of the two IBS groups.

The significantly different covariance were visualized with the BrainNet Viewer (Xia
et al., 2013, http://www.nitrc.org/projects/bnv/) [48].

https://sites.google.com/site/bctnet/
https://github.com/labgas/proj-IBS-somatization
http://www.nitrc.org/projects/bnv/
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Box 1. Local graph measures.

Node strength is defined as the sum of weights of all links connected to a specific node [23]. A change in a node with high node
strength would strongly affect many other nodes [49].

Paths are sequences of linked nodes. Path length in a weighted network is the total sum of individual link length, where link
lengths are inversely related to link weights [23]. In anatomical networks, paths represent potential routes of information flow, and
shorter paths imply stronger potential integration [23].

The local clustering coefficient is a measure of neighborhood connectivity [50], or segregation; the fraction of a node’s neighbors
that are neighbors with each other [51]. High clustering is associated with robustness of a network, i.e., resilience against random
network damage [52]. Local clustering coefficient and local efficiency are closely related [53].

The efficiency of a network measures how well information propagates over the network [54]. Local efficiency is the averaged
efficiency of all first-order neighborhoods [55]. The local efficiency of a node is related to the amount of shortest paths that only
contains neighbors of the examined node [51]. Local efficiency measures how fault tolerant the system is at a local level, how efficient
the communication between neighbors would be if one of the nodes were removed [56].

Centrality regards the relative importance of a node or edge within the overall network architecture, one frequently used metric
of centrality is Betweenness centrality [57]. Betweenness centrality is defined as the fraction of shortest paths in the network that
pass through a given node [23]. Betweenness centrality represent how strongly a given node can influence information flow in the
network, an estimate of how a change in a given node would affect the rest of the network [49].

A hub is a node with a central position in the overall organization of the network [57]. There are no single measure for defining
network hubs, instead it is often preferable to detect hubs by aggregating rankings across different measures, most of which express
aspects of node centrality [57].

Modules are subgroup of nodes within a network that have stronger connections within the module, and weaker connections to
nodes outside of their module [57]. Modules are also called clusters, communities [50], modular structure or community structure [23].
The nodes in a module should have maximally possible within-module connections and minimally possible between-modules
connections, and represents a measure of functional segregation [23].

2.6.5. Statistical Analysis

Age, PHQ-14 and TGMV were compared between the three groups using one-way
analyses of variance (ANOVA), and the proportion of men/women with a chi-square test on
a 2 × 3 contingency table, both with Bonferroni corrected post hoc comparisons of the 3 pair-
wise between-group differences (Student’s t-tests and chi-square test on 2 × 2 contingency
tables), in SPSS v24. Significance level for the descriptive statistics was set to p < 0.05
(multiple testing corrected for the post-hoc tests).

For the structural covariance and graph analyses we report significance as raw
p-values < 0.001, while also indicating FDR-corrected p-values < 0.05 [58]. As this is,
to the best of our knowledge, the first study of gray matter covariance in IBS according
to somatization level, we found it suitable to exploratory report the uncorrected results
(which should be regarded as hypothesis generating), as well as the more robust findings
surviving FDR-correction.

3. Results
3.1. Population

We included 113 subjects, 77 IBS patients (n = 22/55; M/F) and 36 HCs (n = 14/22;
M/F). Of these, 16 were excluded (11 IBS patients, 5 HCs) due to pathologies found on
MRI scan (n = 2), another GI disease discovered during the study (n = 6), drop-outs (n = 3),
use of probiotics (n = 2), missing values on the PHQ-15 (n = 1) and healthy subjects with
exclusion criteria (n = 2). No subjects were excluded due to poor image quality.

The analyzed population consisted of 66 IBS patients (31 low somatization (n = 13/18;
M/F) and 35 high somatization (n = 5/30; M/F)) and 31 HCs (n = 11/20; M/F). The
distribution of PHQ-14 in the IBS cohort can be seen in Figure 1.
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Figure 1. Histogram of the PHQ-14 results in the IBS cohort.

There were no differences in age or TGMV between any of the groups. Sex distribution
was different between IBS high somatization and IBS low somatization, with significantly
more women in the high somatization group. The IBS high somatization group also had
a higher proportion of women than the healthy control group, but this difference was
not statistically significant. The IBS high somatization group had significantly higher
IBS symptom severity measured by IBS-SSS than the low somatization group. The level
of psychological distress measured by total HADS score was higher in both IBS groups
compared to HCs, and numerically but not significantly higher in the IBS high vs. low
somatization group (Table 1).

Table 1. Descriptive statistics.

Healthy Controls IBS Low Somatization IBS High Somatization p-Value Omnibus Test

Number of participants 31 31 35

Age (years) 31.5 ± 9.4 34.1 ± 11.6 31.9 ± 8.1 0.52

Sex (M/F; %F) 11/20, 65% 13/18, 58% § 5/30, 86% § 0.036

PHQ-14 2.8 ± 2.0 9.4 ± 2.0 *# 15.9 ± 2.7 *# <0.00001

Total gray matter
volume (mm3) 653,853 ± 64,706 672,120 ± 64,783 638,851 ± 63,168 0.12

IBS-SSS 22.7 ± 26 245 ± 98 *# 320 ± 89 *# <0.00001

HADS total score 4.61 ± 3.2 13.5 ± 8.0 * 15.9 ± 7.3 * <0.00001

Results presented as mean ± sd. § = significant difference between IBS low and IBS high somatization at corrected p < 0.05. * = significantly
different compared to healthy controls at corrected p < 0.05. # = significant difference between IBS low and IBS high somatization at
corrected p < 0.05. F: females, HADS: Hospital Anxiety and Depression scale, IBS-SSS: IBS severity scoring system, M: males, N: number.
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3.2. Structural Covariance Network
3.2.1. IBS High Somatization vs. IBS Low Somatization

IBS high somatization compared to IBS low somatization had increased structural
covariance within parts of the right prefrontal cortex: between the frontal pole and the
ventrolateral PFC, and between orbitofrontal cortex and inferior frontal sulcus. IBS low
somatization compared to IBS high somatization had increased structural covariance
between inferior parietal lobe and middle insula, inferior parietal lobe and middle frontal
sulcus of the PFC, and between the frontal pole and superior temporal sulcus (Table 2,
Figure 2a). All differences were significant at the uncorrected p < 0.001 level, but not at the
FDR-corrected p < 0.05 significance level.

Table 2. Comparison of structural covariance between IBS patients with high and low somatization.

IBS High Somatization > IBS Low Somatization

Node Name 1 ROI Node Name 2 ROI Z-Score IBS Low Z-Score IBS High p-Value

R_TrFPoG_S PFC (frontal pole) R_InfFGOrp PFC (vlPFC) −0.42 0.39 0.0002

R_InfFS PFC R_LORs PFC (OFC) −0.42 0.44 0.0006

IBS High Somatization < IBS Low Somatization

Node Name 1 ROI Node Name 2 ROI Z-Score IBS Low Z-Score IBS High p-Value

L_AngG Inferior parietal L_MFS PFC 0.47 −0.35 0.0004

L_AngG Inferior parietal R_SupCirInS mINS 0.41 −0.37 0.0002

L_SupTS Superior temporal R_FMarG_S PFC (frontal pole) 0.002 −0.75 0.0006

Differences based on Fisher r-to-z-transformed bivariate Pearson correlations; significance levels based on permutation labeling with
5000 randomizations. AngG: angular gyrus, FMarG_S: fronto-marginal gyrus (of Wernicke) and sulcus, InfFGOrp: orbital part of the
inferior frontal gyrus, InfFS: inferior frontal sulcus, L: left, LORs: lateral orbital sulcus, MFS: middle frontal sulcus, mINS: middle
insula, OFC: orbitofrontal cortex, PFC: prefrontal cortex, R: right, SupTS: superior temporal sulcus (parallel sulcus), TrFPoG_S: transverse
frontopolar gyri and sulcus, vl: venterolateral.

3.2.2. IBS High and Low Somatization vs. Healthy Controls

Several differences between the two IBS groups and HCs were found at the significance
level of uncorrected p < 0.001 level, but not at the FDR-corrected p < 0.05 significance level.
See Supplementary Materials for details (Supplementary Tables S2–S5), and Figure 2b,c.
Noteworthy were the increased covariance in IBS high somatization compared to HCs
between right frontal pole of the PFC with right orbitofrontal cortex and right inferior
parietal cortex respectively, as well as between right inferior parietal and right venterolateral
PFC. IBS low somatization had increased covariance between several anterior parts of the
prefrontal cortex and thalamus, hippocampus, precentral gyrus (primary somatosensory
cortex) and superior temporal gyrus, respectively, compared to HCs.

3.2.3. Graph Analysis

At the global network level, there were no significant differences between the groups.

3.2.4. Local Graph Measures IBS High Somatization vs. IBS Low Somatization

At the local level, IBS high somatization compared to IBS low somatization had
increased clustering coefficients (reflecting neighborhood connectivity) in the left horizontal
ramus of the anterior segment of the lateral sulcus of the prefrontal cortex (clustering
coefficient 0.39 vs. 0.22, p = 0.0008, not significant after FDR-correction).

3.2.5. Hubs and Hub Scores IBS High Somatization vs. IBS Low Somatization

In IBS high somatization, several prefrontal cortex subregions were found to be hubs,
which act as important nodes for the overall network configuration. More specifically,
15 of the 22 hubs were located in the prefrontal cortex, and all regions with the maximum
hub score were located in the prefrontal cortex (Figure 3a, Supplementary Table S6).
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Figure 2. Differences in covariance between groups, significant at p < 0.001. (a) Differences in
covariance between IBS high and low somatization. Covariance greater in IBS high somatization
compared to IBS low somatization are shown with red lines, and covariance greater in IBS low
somatization compared to IBS high somatization are shown with blue lines. (b) Differences in
covariance between healthy controls and IBS low somatization. Covariance greater in healthy
controls compared to IBS low somatization are shown with red lines, and covariance greater in
IBS low somatization compared to healthy controls are shown with blue lines. (c) Differences in
covariance between healthy controls and IBS high somatization. Covariance greater in healthy
controls compared to IBS high somatization are shown with red lines, and covariance greater in IBS
high somatization compared to healthy controls are shown with blue lines.
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somatization: left and right triangular part of the inferior frontal gyrus, right superior frontal gyrus and right orbital gyri.
(b) Regions with maximal hub scores in IBS low somatization. Axial view of the brain, with the left of the figure being
the right of the brain, showing regions with the maximum hub score in IBS low somatization: right triangular part of the
inferior frontal gyrus and left short insular gyri.

In IBS low somatization, a mix of regions served as hubs (including parts of anterior
and middle insula, prefrontal cortex, putamen and anterior cingulate gyrus) with 11 out of
19 belonging to the prefrontal cortex. The two regions with the maximal hub score were
seen in anterior insula and prefrontal cortex (Figure 3b, and Supplementary Table S6).

The most robust group differences were lower hub scores in IBS high somatization
compared to IBS low somatization in left cerebellum and left anterior insula (Table 3), both
p < 0.05 FDR-corrected.

Table 3. Differences in graph measures between IBS high and low somatization.

Graph Measure Node No. Node Name Region IBS Low IBS High p-Value

Clustering coefficient

Clustering coefficient; 32 L_ALSHorp PFC 0.22 0.39 0.0008

Hub score

Hub score 1 L_CeB Cerebellum 2 1 0.0002 *

Hub score 22 L_ShoInG aINS 4 0 0.0002 *

All graph measures are at the local/nodal level. Asterisk in the p-value column indicates that this group difference is significant at the FDR-
corrected p < 0.05 level. aINS: Anterior insula, ALSHorp: Horizontal ramus of the anterior segment of the lateral sulcus, CeB: Cerebellum,
IBS High: IBS high somatization group, IBS Low: IBS low somatization group, L: Left, R: Right, ShoInG: Short insular gyri.

3.2.6. Local Graph Measures IBS High and Low Somatization vs. Healthy Controls

Local efficiency in IBS low somatization was higher in left precentral gyrus compared to
HCs (high random fault tolerance), p < 0.05 FDR-corrected. Normalized betweenness centrality
was higher in IBS low somatization compared to HCs in the left cerebellum, indicative of
increased centrality of left cerebellum in the network in IBS low somatization (Table 4),
p < 0.05 FDR-corrected. IBS high somatization had increased normalized path length of right
orbitofrontal cortex of the PFC compared to healthy controls at the uncorrected significance
level of p < 0.001, not significant after FDR-correction.

Table 4. Differences in graph measures between IBS high or low somatization on the one hand and healthy controls on
the other.

Graph Measure Node No. Node Name Region HCs IBS High IBS Low p-Value

Path length + normalized

Path length (normalized) 88 R_SbOrS PFC (OFC) 1.05 3.12 0.0006

Clustering coefficient normalized

Clustering coefficient
(normalized) 16 L_InfFGOpp PFC 1.47 2.99 0.0002 *

Local efficiency

Local efficiency 27 L_PRCG Precentral gyrus
(M1) 6 × 10−6 1.1 × 10−4 0.0004 *

Betweenness centrality normalized

Betweenness centrality
(normalized) 1 L_CeB Cerebellum 0.000 3.59 0.0002 *
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Table 4. Cont.

Graph Measure Node No. Node Name Region HCs IBS High IBS Low p-Value

Hub score

Hub score 18 L_InfFGTrip PFC 0 4 0.0002 *

Hub score 22 L_ShoInG aINS 4 0 0.0002 *

Hub score 63 R_OrG PFC (lOFC) 0 4 0.0002 *

Hub score 1 L_CeB Cerebellum 1 2 0.0002 *

Hub score 38 L_SupCirInS mINS 4 0 0.0002 *

Hub score 62 R_ShoInG aINS 4 0 0.0002 *

All graph measures are at the local/nodal level. Asterisk in the p-value column indicates that this group difference is significant at the
FDR-corrected p < 0.05 level. aINS: anterior insula, CeB: cerebellum, IBS High: IBS high somatization, IBS low: IBS low somatization,
InfFGOpp: opercular part of the inferior frontal gyrus, InfFGTrip: triangular part of the inferior frontal gyrus, L: left, M1: primary
motorcortex, mINS: middle insula, OFC: orbitofrontal cortex, OrG: Orbital gyri, PFC: prefrontal cortex, PRCG: precentral gyrus, R: right,
SbOrS: suborbital sulcus (sulcus rostrales, supraorbital sulcus), ShoInG: short insular gyri, SupCirInS: superior segment of the circular
sulcus of the insula.

3.2.7. Hubs and Hub Scores in Healthy Controls vs. IBS High Somatization and IBS
Low Somatization

In HCs, only seven out of 18 hubs were located in the prefrontal cortex, whereas five
were located in the insula, including all regions with a maximal hub score (Figure 4 and
Supplementary Table S6). In comparison with HCs, IBS high somatization had robustly
higher hub scores for parts of prefrontal cortex, and a lower hub score for left anterior
insula, both p < 0.05 FDR-corrected. IBS low somatization had compared to HCs lower hub
scores in parts of insula, and a higher hub score in left cerebellum ( Table 4), all p < 0.05
FDR-corrected.
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Figure 4. Regions with maximal hub scores in healthy controls: Axial view of the brain, with the left
of the figure being the right of the brain, showing regions with the maximum hub score in HCs: left
and right short insular gyri and left superior segment of the circular sulcus of the insula.

3.3. Modular Structure

The modular structure relates to functional segregation and revealed that the 90 brain
regions were arranged in eight modules in HCs and IBS low somatization, and nine
modules in IBS high somatization (Supplementary Table S7). Of note, both in HCs and
IBS low somatization, bilateral amygdala and hippocampus were clustered in the same
module. In IBS high somatization, on the contrary, the amygdala clustered with the anterior
cingulate cortex, and the hippocampus clustered with the thalamus and parts of bilateral
anterior and left mid-posterior insula. There was a distinct cerebellar module in all three
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groups, but in the IBS low somatization group this was a pure cerebellar module, whilst in
IBS high somatization the cerebellum clustered with left transverse frontopolar gyri and
sulcus of the prefrontal cortex, and in HCs it clustered with right supramarginal gyrus of
the inferior parietal lobe.

4. Discussion

This study shows differences in local gray matter structural covariance, defined as
correlations between (TGMV corrected) gray matter volumes of regions previously shown
to be important to IBS, between IBS with high and low level of somatization, as well as
between HCs and both IBS groups.

The most robust findings were: (1) higher centrality and neighbourhood connectivity
of prefrontal cortex subregions in IBS high somatization compared to HCs, reflected by
higher hub scores and higher clustering coefficient, (2) higher centrality of left cerebellum
in IBS low somatization compared to both IBS high somatization and HCs, reflected by
higher hub scores and betweenness centrality, and (3) higher centrality of anterior insula
in HCs compared to both IBS groups, and in IBS low somatization compared to IBS high
somatization, reflected by higher hub scores.

4.1. The Novelty of Using Graph Analysis Comparing IBS Subgroups Based on Somatization Level

To the best of our knowledge, there are only two other studies using graph analysis to
study structural gray matter covariance in IBS [17,26]. The present study used weighted
graphs, with improved methodology [41] compared to the first study which used binary
graphs [17]. The other previous study used weighted graphs [26]. The results of weighted
graphs retain more information about the network properties as binary graphs only defines
a connection as present or absent depending on the chosen threshold(s), whereas weighted
graphs bear information about the connection strength between the nodes. However,
this is the first study investigating differences in regional gray matter volume covariance
between IBS high somatization, IBS low somatization and HCs. Somatization seems
to be an important pathophysiological mechanism in IBS. Somatization is, for instance,
associated with several measures of increased rectal pain sensitivity in IBS [8]. Including
somatization as an important variable of the central nervous system structural covariance
network deepens the knowledge on what mechanisms might be involved in the altered
brain network organization in IBS.

In line with the study by Labus et al. [17], the overall network organization was intact,
reflected by a lack of global differences, whereas there were differences in local graph
measures, which quantify the amount of influence (or centrality) of single nodes [51].

The biological attribute of the structural covariance of regional gray matter patterns
is not clear, but is thought to be under influence of a complex mixture of developmental,
genetic and environmental factors [24]. Evidence supports that structural covariance
patterns may arise from genetic influences, mutual trophic reinforcement, experience-
related plasticity [59], or could reflect the degree of developmental coordination across
the brain [51]. There seem to be substantial but incomplete overlap between structural
covariance and white matter connections, as well as functional connectivity [24]. Brain
areas that are highly correlated in size are often part of systems that are known to subserve
particular behavioural or cognitive functions [24].

If the altered covariance pattern seen in this study is the cause or the consequence of
(or possibly a combination of both) experiencing multiple somatic symptoms in IBS remains
to be answered. However, we consider the altered covariance pattern a neurobiological
substrate involved in the central sensitization process in IBS.

4.2. Involvement of the Prefrontal Cortex and Insula

Higher covariance in different prefrontal regions was found in IBS low somatization
compared to HCs, and in IBS high somatization compared to IBS low somatization. Further,
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more hubs in the prefrontal cortex were found in IBS high somatization compared to HCs,
as well as a higher hub score in the right orbitofrontal gyrus of the PFC.

This integrative role of hub regions is believed to underlie complex cognitive processes,
such as language and abstract thought [60]. A hub region is thought to improve brain
function by interacting with many other regions to integrate the associated information [61].
Modelling studies indicate that disruption of hubs is likely to have a particularly deleterious
impact on brain network function [60].

The prefrontal cortex constitutes a large portion of the frontal lobe, which is important
for performing executive functions [62,63]. The prefrontal cortex is a functionally heteroge-
neous region, with different subregions having specific characteristics and functions. For
example, the orbitofrontal cortex links sensory representations of stimuli to outcomes [64].

Parts of the insula, on the other hand, had higher hub scores in HCs compared to
IBS low somatization, and left anterior insula had higher hub scores in both IBS low
somatization and HCs compared to IBS high somatization. The role of the insula in visceral
sensory processing is well known, with the posterior insular cortex being the primary
projection area for visceral afferent information [65]. The anterior insula is implicated
in the integration of autonomic and visceral information into emotional, cognitive, and
motivational functions [66], as well as for the integration of interoception [66].

In this study, the insula was shown to have a less central role in the covariation network
of IBS patients, whereas PFC subregions are more strongly involved in the covariance
network in IBS compared to HCs, depending on the level of somatization.

Based on the known functions of the PFC and insula, this might indicate that cognitive-
executive aspects are more important than the integration of interoceptive information in
IBS, particularly in IBS high somatization. Although highly speculative since it was not
tested directly, the results indicates that the evaluation of multiple somatic symptoms is
more central to the central sensitization process than increased sensory input seen in IBS
with high somatization.

4.3. The Importance of the Cerebellum in IBS Low Somatization

The left cerebellum had a more central role in IBS low somatization than both IBS high
somatization and HCs. The cerebellum does not only have role in motor functions, but also
cognitive functions [67], emotions, social cognition, autonomic functions, perception and
pain [68]. Behaviors associated with cerebellar dysfunction have been described as either
excessive or reduced responses to the external or internal environment [69]. A role for the
cerebellum in disorders of brain-gut-interactions is frequently implicated, but less often
discussed in detail. A longitudinal study investigating the prognosis of patients with high
frequency migraines using gray matter volumes and structural connectivity found that
gray matter volume and structural connectivity of the cerebellum was associated with the
headache prognosis two years after the MRI scan [70]. The cerebellum may hypothetically
be important for the responsiveness to and persistence of GI symptoms in IBS, but not the
more generalized central sensitization process associated with IBS high somatization.

4.4. Study Results in Relation to Previous Studies

There are some published studies using graph analysis to study structural covariance
in chronic pain disorders. However, the methodology differs in many different ways,
rendering direct comparison difficult, and the reasons for disparities between studies
are plentiful.

There are some consistent findings between the current study and the previous ones
in IBS. In this study, the left triangular part of the inferior frontal gyrus (PFC) was a hub in
both IBS high and low somatization but not in HCs, and showed a robust difference in hub
scores in IBS high somatization compared to HCs. This is in line with the inferior frontal
gyrus being a hub in IBS but not in HC in the previous study by Labus et al. [17]. In the
study by Turkiewicz et al. [26], the right medial orbital sulcus (PFC) had higher centrality
in IBS than in patients with ulcerative colitis. Increased centrality in IBS compared to this
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disease control group supports the notion that this alteration might be specific for IBS. An
IBS-specific increased centrality of this region is coherent with our study where the right
medial orbital sulcus had higher hub scores in IBS high somatization compared to healthy
controls and increased covariance with right superior frontal gyrus in IBS low somatization
compared to healthy controls. These studies collectively support the central role of PFC
subregions in IBS structural covariance networks, compared to disease and non-disease
control groups.

Contrary to the study by Labus et al. [17], we did not find the thalamus to be a hub
in either IBS groups, but it had increased covariance in the IBS low somatization group
compared to HCs with part of the inferior parietal lobe and the medial orbital sulcus of
the PFC. They also found the left insular gyrus to be a specific hub in IBS, whereas we
found several parts of the insula as having higher hub scores in HCs compared to both
IBS groups.

Altered covariance in prefrontal and insular regions in IBS with high and low somati-
zation in our study is in line with the study comparing chronic pelvic pain patients with
widespread versus localized symptoms [27].

On the other hand, a study using structural covariance network analysis comparing
fibromyalgia patients to HCs found more dense connections in the cerebellum of fibromyal-
gia patients, while healthy controls exhibited more dense frontal lobe connections [71]. The
seemingly opposite results between that study and ours are surprising since fibromyalgia is
a condition with widespread pain, hence a prototypical central sensitization syndrome [72].
However, the methodology used in the study by Kim et al. [71] differed substantially from
ours. For instance, they used voxel based morphometry, a different anatomical parcella-
tion scheme and used binary graph analysis. Of note is that the node degree differences
between fibromyalgia patients and HCs in the prefrontal cortex were at the significance
level between p < 0.01–<0.04 (uncorrected), whereas the structural covariance connections
had significance levels more similar to our (p < 0.001).

4.5. Clinical Relevance and Implications

IBS is defined by the presence of abdominal pain and disturbed bowel habits, but for a
large group of patients with disorders of brain-gut-interactions the non-GI-symptoms nega-
tively influence daily life more than the GI symptoms per se [7]. The majority of the excess
in health care costs results from medical care not directly related to lower GI problems [73].
Somatic symptom severity, measured with PHQ-15, shows strong associations with im-
paired functional status, general health perceptions, increased bodily pain, disability days,
symptom-related difficulty and increased consultations with physicians [32]. Further, our
group has previously demonstrated that presence of extra-intestinal symptoms may help
to define distinct subgroups of IBS patients with relevance for healthcare utilization [74,75].
These facts justify the relevance of investigating somatization in IBS. A firm diagnosis and
information is the first line of treatment in IBS [76]. Identifying a “somatization network”
provides a neurobiological basis for the classification of IBS (at least when associated
with multiple somatic symptoms) as a “central sensitivity syndrome”, as suggested by
Yunus [21,72]. This “somatization network” in IBS would include higher centrality of the
PFC and lower centrality of the insula. This neurobiological basis would give patients an
explanatory model aiding the understanding why they experience symptoms from the
gastrointestinal tract, as well as suffer from extra-intestinal symptoms.

4.6. Limitations

A limitation of this study is the relatively small sample size. However, it is the first
study linking networks of structural covariance measures to somatization in IBS. Our data
is from a single site, using volume as gray matter measurement and has a sample size over
30 participants per group, as recommended in a comparability and reliability study on
human brain structural covariance analysis [77].
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Most of the results were significant at the uncorrected p < 0.001 significance level, but
only few at the FDR-corrected significant level. We decided to report all results significant at
uncorrected p < 0.001 since the combination of results at this significance level gives a more
complete picture, and these results might serve as hypotheses generating for future studies.

The reported differences in covariance patterns between IBS high and low somatiza-
tion are unlikely fully explained by psychological distress, as the (small) difference in HADS
score between both groups was non-significant. However, the differences seen in both IBS
groups compared to HCs could possibly partially be explained by psychological distress.

The relative contribution of general symptom severity versus specific GI symptom
severity is hard to disentangle, since somatization level and IBS symptom severity often
are associated [78], also in our data (r = 0.43 between IBS-SSS and PHQ-14 scores, p < 0.05).
The difference between both somatization groups could potentially be influenced by
difference in IBS symptom severity, not only the overall somatic symptom burden (i.e.,
somatization). However, the PHQ-14 scores without the 3 GI questions were significantly
different between the IBS low and high somatization group (mean = 5.0 ± 1.9 vs. 10.5 ± 2.6,
p < 0.0001), showing that the extra-intestinal somatic symptoms differed between the two
groups when GI symptoms were not taken into account.

The used cohort includes both sexes but with more females than males as IBS is
more common in women. Sex-dependent differences in brain imaging studies of IBS
are repeatedly reported [19], and including both sexes in the same cohort is a possible
limitation which may interfere with the results. On the other hand, a mixed sex sample is
more representative of the general IBS population.

The cross-sectional design of this study limits the possible interpretations regarding
causality.

5. Conclusions

Somatization level in IBS is related to differences in local gray matter covariance
mainly in regions of the prefrontal cortex, insula and cerebellum. This study implicates
that prefrontal processes may be more important than insular in the neurobiological
sensitization process associated with IBS high somatization.
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