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Abstract: Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2
(TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves
a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some
diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby
contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of
complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses.
In addition, TXNIP has gained significant attention due to its wide range of functions in energy
metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and
tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP
in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a
promising novel therapeutic target in the current review, not only in the aforementioned diseases
but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold
promise for preventing the growing incidence of complications in relevant diseases.

Keywords: thioredoxin; TXNIP; metabolic disorders; neurological disorders; TXNIP modulator

1. Introduction

Thioredoxin-interacting protein (TXNIP) was first identified in cancer cells as a vitamin
D3 target gene and later known as vitamin D3 upregulated protein 1 (VDUP1). Its activity
or expression is regulated at metabolically essential sites, such as liver cells, adipose tissues,
and skeletal muscle, while it is most abundantly expressed in the glomeruli of human
and rat kidneys [1]. TXNIP belongs to the α-arrestin protein family; these scaffolding
intermediary proteins play key roles in multiple signaling pathways. TXNIP interacts
directly with two cysteine (Cys) residues at the active catalytic site of reduced thioredoxin
(TXN), further blocking its potential for scavenging reactive oxygen species (ROS). The
interaction between reduced TXN and TXNIP through a disulfide linkage is essential for
their basic protein–protein interaction. TXNIP further modulates TXN’s protein structure
while reorganizing de novo disulfide bond synthesis on Cys, with unique residues at
positions 32 and 247, respectively [2,3].

Several antioxidants, such as thioredoxin, glutaredoxin, and glutathione, help to main-
tain the activity of the TXN-system via a cell-based redox (reduction/oxidation) mechanism,
which could face direct oxidative stress if ROS production is dysregulated [4]. The TXN
system is an important regulator for the maintenance of a cellular reduced environment
involving nicotinamide adenine dinucleotide phosphate (NADPH), TXN reductase, and
TXNIP. TXNIP interacts with TXN and activates it as a negative regulator, which directly
affects the redox balance [5]. TXNIP is involved in maintaining cell integrity by partici-
pating not only in proliferation, differentiation, autophagy, pyroptosis, inflammation, and
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apoptosis but also modulating gene expression, metabolism, and redox reactions [6–9]. Sev-
eral studies have revealed upregulation of TXNIP in diseases like type 2 diabetes mellitus
(T2DM) [8], type 1 diabetes mellitus (T1DM) [10], cardiovascular diseases [11], ischemic
stroke, and cataract [9] as well as neurodegenerative disorders such as Alzheimer’s disease
(AD), and Parkinson’s disease (PD) [12,13]. Conversely, other studies have emphasized
reduced TXNIP expression in tumor cells [14], mostly solid cancers [15,16]. Recent research
has indicated its regulation via mechanistic controls such as heat shock and hypoxic condi-
tions as well as biochemical controls, such as those mediated by H2O2, NO, insulin, and
glucose [17–21]. In the past decade, TXNIP has emerged as an essential metabolic regulator
of lipid and glucose metabolism [22]. In addition, it modulates the transcription of several
genes, each of which points to new mechanisms implicating TXNIP as a therapeutic target
in several disorders [23–26]. Lastly, regarding the aforementioned diseases, we would
briefly mention TXNIP participation in the pathogenesis of diabetic complications and
intensively studied neurodegenerative diseases as well as the emerging interest in the
development of new therapeutic approaches. This review is aimed at highlighting the roles
of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation.

2. Signaling Pathways Involving Thioredoxin-Interacting Protein (TXNIP)
2.1. The Inflammatory Pathway

TXNIP has been reported to play a vital part in diabetes during the immune response
by activating the inflammatory pathway via the NLRP3 (NOD-, LRR-, and pyrin domain–
containing protein 3) inflammasome. The physical association between TXNIP and NLRP3
is a part of the NLRP3 inflammasome multiprotein complex (consisting of an adaptor
protein, apoptosis-associated speck-like protein containing a caspase recruitment domain
(ASC), cardinal, and caspase 1) [27,28]. Recently, high glucose concentrations were found to
promote the activation of the NLRP3 inflammasome [29,30]. Another mechanism induces
TXNIP by endoplasmic-reticulum stress (ERS; once the capacity of the ER to fold proteins
reaches a saturated level); misfolded proteins induce the cell to consume reduced TXN to
obtain energy in the form of NADPH for modifying these proteins (for correction), thereby
causing cellular stress that triggers an inflammatory response. The upregulation of TXNIP
by ERS is mediated by inositol-requiring enzyme 1a (IRE1a) and protein kinase R-like
endoplasmic reticulum kinase (PERK) in β-cells [31]. IRE1a overexpression activates TXNIP
via reducing activity of microRNA-17 (miR-17), which is a TXNIP-destabilizing microRNA.
The transcriptional expression of TXNIP may be boosted by carbohydrate response element–
binding protein (ChREBP) nuclear translocation and activating transcription factor 5 (ATF5,
an ATF/cAMP response element) [32–34]. Meanwhile, it is suggested that in pancreatic
β-cells, forkhead box O1 (FOXO1) binds to the ChREBP/TXNIP promoter region and
acts as a TXNIP suppressor [35]. Elevated expression of IRE1a and PERK-eIF2a results
in transcription and overexpression of TXNIP, which ultimately activates the NLRP3
inflammasome. Nod-like receptors (NLRs) sense endogenous cell signals in the form
of stress, damage, or abnormal death, whereas exogenous signals are associated with
pathogens [36,37]. At present, all known NLRP3 activators are believed to induce ROS
production, while inhibitors of ROS also block the NLRP3 inflammasome [38]. Although
there are several ways to activate the NLRP3 inflammasome, upstream ROS activation by
multiple factors acts on the TXNIP–TXN key complex and dissociates it. The liberated
TXNIP, therefore, activates the NLRP3 inflammasome and ultimately caspase 1 to stimulate
the release and maturation of interleukin 1β (IL-1β) and IL-18. Further elucidation of this
phenomenon suggests maintenance of the macrophage and β-cell activation in an autocrine
and paracrine manner, thereby intensifying the inflammatory responses [30]. Pyroptosis
is another type of programmed cell death associated with inflammatory caspase 1 and
proinflammatory regulators that are common in necrosis and apoptosis [27], and is closely
linked to the activation of the inflammatory pathway. As observed in ERS involving the
TXNIP/NLRP3 cascade with elevation in the degradation of miR-200a induced pyroptosis
and leads to renal failure in a mouse model [31].
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2.2. A Metabolic Pathway

TXNIP influences metabolic pathways as a key regulator of lipid and glucose metabolism,
including multiple actions via glucose uptake from peripheral tissues such as muscles and
adipose tissue as well as glucose production in the liver. Nonetheless, TXNIP expression
is reciprocally associated with glucose transporter 1 (Glut1) in prostate cancer, whereas
in diabetes, it also activates the negative-feedback loop to regulate glucose assimilation
in response to a rise in glucose concentration [12,14]. Studies have also suggested that
TXNIP can modulate the expression and position of Glut1 to prevent glucose uptake. Direct
transcription control is evident in HepG3 cells, where the loss of TXNIP is associated with
significantly elevated expression of Glut1 and high uptake of glucose. Further studies
have revealed that TXNIP acts directly on Glut1 in the plasma membrane and reduces
its protein amount by inducing endocytosis [39,40] (Figure 1). Theoretically, TXNIP may
increase mitochondrial oxygen consumption by hindering the function of hypoxia-induced
transcription factors (HIFs) or may induce peroxisome proliferator-activated receptors,
indeed TXNIP as a shuttling protein interact with HIF-1α and translocates it from nucleus
to cytosol for degradation [41]. HIF-1α inhibits the activity of pyruvate dehydrogenase
by hampering the tricarboxylic acid cycle (TCA) cycle, ultimately leading to a decrease
in ROS levels. Conversely, the mechanism through which TXNIP regulates the TCA cy-
cle remains elusive [42]. Furthermore, TXNIP regulates and activates phosphatase and
tensin homolog (PTEN) lipid phosphatase in a redox-dependent manner [43]. By contrast,
PTEN inhibits the AKT–PI3 kinase pathway that further downregulates glucose uptake
and metabolism [44]. The cost of TXNIP loss–related mitochondrial oxidative damage is
associated with increased release of NADP(H)/NADH and greater blockage of reductive
restimulation of PTEN, with enhanced activation of PI3K–AKT signaling and boosted
metabolism and glucose transport [43,45]. Broadly speaking TXNIP plays an important
role in metabolic regulation, partially independent of its ability to bind to TXN [8].

2.3. The Apoptotic Pathway

It is suggested that TXNIP is involved as a pro-apoptotic protein in β-cells, likewise
widely expressed in ischemic diseases [46]. It plays an inhibitory role in the activity of
the TXN system, which is pivotal for maintaining the optimally reduced cellular environ-
ment [47]. In the cytoplasm, TXNIP inhibits TXN action in a redox-dependent manner
by binding to TXN and relocalizing from binding of protein competitively or redox inde-
pendently, via an increase in TXNIP stability due to high glucose induction [4] (Figure 1).
The proapoptotic characteristics of TXNIP have been reported in several types of brain
injury and in in vitro microglial thrombin-associated models [48,49]. Supportive evidence
suggests that genetic knockdown of TXNIP exhibits positive effects on mitochondrial
functions and is associated with modulation of the mitochondrial death pathway via
glucotoxicity-induced apoptosis [2]. Notably, elevated TXNIP expression has been docu-
mented in apoptosis and accelerated early brain injury (EBI) following the subarachnoid
hemorrhage (SAH) [50]. In human macrophages, TXNIP mitochondrial translocation has
been demonstrated during increased ROS production and NLRP3 inflammasome activa-
tion [51,52]. These findings imply that TXNIP silencing acts as a therapeutic response
to other antioxidants such as quercetin and ascorbic acid and are significant in relation
to the development of treatments of diabetic retinopathy (DR). In mitochondria, it binds
to TXN2 and hinders the inhibitory association of TXN2 with ASK1; then, the liberated
ASK1 is phosphorylated, initiating cytochrome c release, and caspase-3 activation, conse-
quently leading to the activation of ASK1 and apoptotic-kinase pathways [2,53]. Recent
findings have shown that modulation of the mitochondrial apoptotic cascade might pro-
mote a pathology of the central auditory cortex (central presbycusis) [54]. A parallel study
demonstrated that in tempered prediabetic neuropathy in a dyslipidemia mouse model,
inhibition of TXNIP-facilitated apoptosis and inflammation can lead to neuronal loss in
the dorsal root ganglion [55]. In the nucleus, TXNIP induces β-cell apoptosis by increasing
the expression of proapoptotic miR-204 and miR-200. Moreover, TXNIP-related apoptosis
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studies in oncology are also underway [56]. Furthermore, microRNAs can decrease the
expression of relevant target genes, including musculoaponeurotic fibrosarcoma oncogene
homolog A (MafaA), which induces insulin reduction and damages β-cell function [57].
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3. The Role of TXNIP in Diseases
3.1. TXNIP in Diabetology

Diabetes mellitus (DM) is a metabolic disorder regulated by a glucose-lowering hor-
mone known as insulin produced by pancreatic β-cells; the release of insulin is not ade-
quate, which results in DM [58,59]. The anomalous reaction of target tissues to insulin-
mediated effects, combined with glucose production-promoting hormone glucagon, may
enhance aberrant gluconeogenesis leading to hyperglycemic conditions, which predispose
to T2DM [60,61]. TXNIP is a prominent regulator of glucose homeostasis through regu-
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lating gluconeogenesis in the liver and is implicated in adaptation to acidosis with ATP
generation [62]. Although chronic hyperglycemic conditions promote several metabolic
vascular complications associated with high death rates in diabetic patients [63], they
may include an increase in the formation of advanced glycation end products (AGEs) and
ROS [64,65] (Figure 1). Diabetic models show that ROS are not the only factor that promotes
DM, but the overall activity of the antioxidant system may be disrupted in DM [66]. TXNIP
deletion appears to be pro-oxidant, and reported to lessen the ROS production in vascular
smooth muscle cells indirectly implying an increase in the antioxidant potential of TXN
in vitro [67]. Moreover, in mouse models of glucose-induced DM, glucose enhances TXNIP
expression, which can further induce excessive ROS production in the mitochondria and
cytosol. TXNIP is an endogenous inhibitor of the main antioxidant mechanism, i.e., the
TXN system, and hyperglycemic conditions have been shown to play a key role in vascular
diabetic complications. Upregulated TXNIP is observed in peripheral blood and cultured
cells from a diabetic mouse model as well as in pancreatic islets of DM patients [68]. Addi-
tionally, TXNIP is important for the promotion of angiogenesis because TXNIP activates
and regulates the main angiogenic cytokine known as vascular endothelial growth factor
(VEGF). TXNIP overexpression in diabetes regulates the activity of the key cytokine VEGF
in a glucose-sensitive manner, whereas a TXNIP knockdown by small interfering RNA
(siRNA) can overcome the diabetes-related pathologies of angiogenesis and arteriogenesis
and may help to recover an ischemic hindlimb [69]. Moreover, supporting action on islet
biology was concurrently revealed in another study through reversion of impaired endothe-
lial cell angiogenic function, generation of VEGF, and sensitivity to VEGF activities [26,64].
Recently, TXNIP-knockdown has shown improved anti-senescence and anti-inflammation
effects on H9c2 cardiomyocytes under doxorubicin-associated cardiomyopathy [70].

Vascular abnormalities in diabetic patients may be attributed to chronic inflammatory
responses caused by NLRP3 inflammasome activation. TXNIP also stimulates early apop-
totic signals by interacting with inflammation marker, vascular cell adhesion molecule 1
(VCAM-1) in human aortic endothelial cells (HAECs) induced by high-glucose or overex-
pression of ChREBP, a major transcriptional activator of TXNIP, and impairs nitric oxide
(NO) bioactivity; whereas, finally, exaggerated levels of NOs suppress NLRP3 inflamma-
some activity [64,65,71,72]. Moreover, pyroptosis which is also integrated to the NLRP3 in-
flammasome activation is associated with diabetes, hypertension, and hyperlipidemia [73].
ERS can control pyroptosis in an alliance of TXNIP with NLRP3 [29]. The literature
provides remarkable evidence of elevated ROS and TXNIP levels in diabetic-condition
induced NLRP3 inflammasome activation and successive release of caspase 1, IL-1β, and
IL-18 (Figure 1). Thus, ROS–TXNIP–NLRP3 inflammasome signaling has a mechanistic
link with vascular aberrations in diabetic conditions. The NLRP3 inflammasome directs
the obesity-associated danger signal, giving rise to obesity-induced inflammation and
insulin resistance. Nevertheless, inhibition of NLRP3 in a mouse model protects against
obesity-induced inflammasome activation in the fat-associated pits and liver, and improves
insulin signaling [74]. Remarkably, NLRP3 and TXNIP knockout mice show improved
glucose tolerance and insulin sensitivity in a T2DM model [29]. Nonetheless, diabetes
complications include several complex pathologies, such as nephropathy, retinopathy, neu-
ropathy, ischemic heart disease, peripheral vascular disease, and cerebrovascular disease
(macrovascular) (Figure 2).

3.1.1. Diabetic Nephropathy (DN)

Diabetic nephropathy is the most common cause of renal disease and is one of the
microvascular complications of DM. Patients show associated symptoms such as protein-
uria, abnormal blood hemodynamics, glomerulosclerosis, and thickening of the glomerular
basement membrane, which is further protected by podocytes and endothelial cells [75,76].
Accumulating evidence suggests that inflammation is a major factor in the pathogenesis
of DN [77–79]. The primary mechanism of inflammation control is mediated by the up-
regulation of ROS, which is in turn controlled by the activation of the nuclear factor-κB
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(NF-κB) pathway and mitogen-activated protein kinase (MAPK) pathway. In addition,
ROS act on the TXNIP–TXN complex, thereby causing it to dissociate, and the dissociated
TXNIP functions as a ligand that binds and further activates the NLRP3 inflammasome
canonically [80]. The importance of the mitochondrial ROS–NLRP3 inflammasome me-
diated pathway in DN has been inferred from a knockout mouse model [81]. Recently,
in vitro and in vivo studies of glucose-induced TXNIP’s effects on podocyte apoptosis
in a DN mouse model suggested that TXNIP deficiency may reduce podocyte apoptosis
by inhibiting mammalian target of rapamycin (mTOR) or MAPK signaling cascades [82].
TXNIP deficiency is characterized by attenuated renal injury in diabetic mice, which means
that TXNIP could act as a therapeutic target in DN [82,83].
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3.1.2. Diabetic Retinopathy (DR)

In diabetic conditions, high-glucose–induced overexpression of TXNIP leads to early
apoptosis of neurons, glial activation, and epithelial retinal pigment injury [84]. Recent
in vivo studies showed that in retinal microvascular endothelial cells, inhibition of the ROS-
induced TXNIP/NLRP3 cascade by vitamin D3 exerts protective effects against anomalies
of retinal structure [85]. Therefore, inhibition of ROS-induced TXNIP production in diabetic
mouse models can alleviate the apoptosis of retinal cells just as in DN [82,84].

3.1.3. Diabetic Neuropathy

A serious complication of DM, unfortunately poorly studied to date, is characterized
by inflammation and associated with sensation loss in peripheral parts of the body or
numbness in extremities, such as feet, and is closely associated with TXNIP [86]. The litera-
ture supports the idea that TXNIP/NLRP3-mediated signaling leads to IL-1β and IL-18
activation, resulting in canonical inflammation and worsening of diabetic pathogenesis. In
contrast, inhibition of this cascade reduces the apoptosis of neurons and delays neuropathic
symptoms in prediabetic patients [29]. Recently, it was demonstrated that NF-κB is a
crucial regulator of histone deacetylase 2 (HDAC2) and is involved in neuropathic pain
through downstream activation of the TXNIP/NLRP3 inflammasome [87,88]. Furthermore,
overexpression of miR-23a in spinal glial cells and miR-183 in microglia has been proposed
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to relieve neuropathic pain in peripheral body parts [86,89]. Thus, TXNIP might affect
diabetic neuropathy by amalgamating inflammation and oxidative stress.

3.2. TXNIP in Neurology

Neurological disorders such as dementia, AD, PD, SAH, and stroke are the most
serious diseases of the modern era. Although there are distinct clinical insights into these
pathologies, extensive literature suggests that oxidative stress, mitochondrial damage,
inflammation, and dysregulated calcium control contribute to the above diseases [12,13,48,90–92].
TXNIP is known to link cellular redox events, mitochondrial redox events, and ERS regu-
lation to pathological inflammation and apoptosis in brain diseases. It also acts as a key
mediator in neurodegenerative diseases such as AD and PD [93,94] (Figure 2).

3.2.1. Ischemic/Reperfusion Injury

Ischemic stroke injury is characterized by a blockage in the blood supply to the brain,
thereby resulting in sustained deprivation of oxygen supply and leading to brain cell death
and damage [95]. TXNIP is overexpressed in ischemic-stroke–induced blood–brain barrier
dysfunction and myocardial ischemia/reperfusion injuries [91,96]. TXNIP causes a redox
imbalance and leads to inflammasome activation, whereas TXNIP inhibition is an endoge-
nous inhibitor of the thioredoxin system, which helps to reverse ischemic injuries [48].
It has been shown that hypoxic conditions in the ischemic pancreatic cancerous tissue
affect the promoter of TXNIP and, thus, its transcriptional upregulation, which is equally
influenced by HIF-1α [97,98]. Additionally, TXNIP regulates mitochondrial bioenergetics
via HIF-1α (an essential regulator of ischemia) modulation in hindering, and peroxisome
proliferator-activated receptor 1α (PPAR-1α), as upregulating mitochondrial oxygen con-
sumption [99–101]. Nevertheless, the shuttling of cytosolic TXNIP and re-recruitment
to mitochondria activates ASK-1, leading to cell death [102]. In the hippocampus, ERS-
induced TXNIP/NLRP3-inflammasome activation leads to ischemic neurotoxicity [103].
Moreover, a knockout of TXNIP and pharmacological inhibition of TXNIP are reported to
protect against brain infarction and neurological diseases in mouse models [104]. So far,
the idea to inhibit TXNIP has been elaborated in terms of brain hemorrhage or ischemic
stroke, where this protein could serve as a therapeutic target.

3.2.2. TXNIP in Subarachnoid Hemorrhage (SAH)

SAH is a cerebrovascular neurological fatal disorder that reduces brain perfusion and
causes bleeding in the space between the brain and the adjacent membrane (subarachnoid
space); the major cause of SAH morbidity is early brain injury (EBI) [102]. Elevated levels
of TXNIP mRNA expression are observed in the patients’ brain samples. Furthermore, a
rabbit SAH model has been devised, which features elevated TXNIP levels and decreased
TXN reductase expression [105]. Concurrent studies have shown that the inhibition of
TXNIP via siRNA suppresses apoptosis and alleviates EBI [102]. Recent studies have
suggested that ERS induced via PERK and after downstream development of SAH, can
initiate EBI by influencing apoptosis [50]. Further research revealed that TXNIP links
ERS with neuronal apoptosis, which in turn intensifies EBI [102]. TXNIP interconnects
oxidative stress and neuroinflammation to SAH and EBI; as supporting evidence, apelin-
13/apelin receptor (APJ) was recently used to reduce EBI via suppressing ERS-associated
TXNIP/NLRP3 inflammasome activation and AMP-dependent-protein kinase (AMPK)-
dependent oxidative stress following SAH in rats [106]. Furthermore, the white matter
injury occurring at the early stage of SAH has not been addressed well so far. Recently,
the damage caused by the SAH peroxisome in mouse models was found to escalate white
matter injury to SAH, and was partially mediated by TXNIP and glycerone-phosphate
acyl-transferase pathways [107].
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3.2.3. Alzheimer’s Disease (AD)

The involvement of TXNIP in AD is mostly associated with inflammation; accu-
mulated data indicate overexpression of TXNIP in the brain via amyloid-β (Aβ) expo-
sure [108,109], and also TXNIP remained an exclusive marker in microglia, neurons, astro-
cytes, and endothelial cells [110]. The prevalent idea proposes that TXNIP is an essential
mediator of NLRP3 inflammasome activation and the eventual formation of activated
caspase 1 [93]. Preventing the interaction of TXNIP with NLRP3 will, therefore, have posi-
tive effects by reversing or restraining AD pathology [94,111]. Another idea that supports
the TXNIP link to AD is glucose control and metabolism associated with neurodegenera-
tion [93]. Although insulin-like metabolic deformities associated with Aβ functions are
vague, however, a hypothesized term diabetes type-3 has been suggested recently, for inte-
grated cerebral diabetes, categorizing insulin resistance as independent and overlapping in
a few onsets of diabetes with ultimate lack of neuronal response to insulin-related signaling
and a decrease in glucose metabolism [112]. Coequal clinical studies confirm that T2DM
positive data remained significantly associated with the neuropathology of AD in the
presence of ApoE ε4-allele carrier-patients [113]. Epidemiological data validation confirms
that insulin-resistant patients are prone to AD-associated dementia and that antidiabetic
medication was effective in reducing or reversing risk factors in AD [114]. Recent studies
suggest that T2DM (neurovascular-disorder) has not shown any significant correlation
with associated biomarkers in mild cognitive disorders in AD, and PD (neurodegenerative-
disorders) pathologies [115], although the common biomarkers they tested for reference
disorders do not include TXNIP which can be studied in this context. Conversely, it is also
suggested that both diseases significantly correlate at early onsets of AD-symptoms [115].
At present, it is an emerging concern since anti-diabetic Food and Drug Administration
approved insulin-sensitive drugs are showing positive effects on dementia risk factors via
blocking TXNIP expression downstream associated with inflammatory signaling [116–118].

3.2.4. Parkinson’s Disease (PD)

PD is the second most common neurodegenerative disease among the elderly and
includes motor symptoms such as tremors, postural instability, and bradykinesia [119]. PD
is characterized by the accretion of filamentous aggregates, with alpha-synuclein (α-syn) as
primary precursors, as well as dopaminergic-neuron loss [120,121]. The prevailing theory
suggests that the loss of dopaminergic neurons is associated with apoptosis, autophagy,
and necrosis [122,123]. Recent data uncovered pyroptosis with a release of proinflam-
matory cytokines including IL-1β, IL-18, and nuclear protein high mobility group box
1 [124,125]. As pyroptosis is implemented by six conserved domain pore-forming pro-
teins; among them, GSDMD (a gasdermin) is likely cleaved by caspases 11, 4, and 5 in
humans [119,126]. It is claimed that pyroptosis is primarily associated with the activation of
NLRP3, which is further on upstream is integrated with TXNIP. It has also been confirmed
that FOXO1 is upregulated in PD targeted by mi-RNA 135b in MPP+ treated SHSY5y and
PC12 cell-lines, whereas the FOXO1–TXNIP–TXN activation cascade interactions have
already been confirmed from the perspective of TXNIP regulation [127–129]. Additionally,
the majority of data highlight the participation of microRNAs and other mediators in PD
pathology [130,131]. Recently, downregulation of miR-135b was shown to have a protec-
tive effect against PD pathology via promoting FOXO1 upregulation, TXNIP-mediated
NLRP3 inflammasome activation, and pyroptosis [130]. TLR4 (Toll-like receptor 4) has
an explicit connection to NLRP3 in the presence of myeloid differentiation of primary
response protein 88 (MyD88) [132,133]. Many studies have reported improvement in PD
symptoms after prevention of NLRP3-dependent pyroptosis. Indirect control inhibits
the TLR4–MyD88–NF-κB signaling cascade, thereby reducing the production of NLRP3,
pro-IL-1β, and pro-IL-18. The direct approach involves suppression of the TXNIP–NLRP3–
caspase 1 signaling cascade [133]. These studies suggest that inhibition of pyroptosis or
administration of TXNIP may be a novel therapeutic strategy against PD through direct or
indirect NLRP3 activation.
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4. TXNIP Is a Potential Therapeutic Target

TXNIP has attracted considerable attention regarding drug development owing to its
multiple functions and involvement in metabolic disorders, inflammation, neurodegenera-
tive disorders as well as cancer. Overexpression of TXNIP can be caused by various signals,
such as nutritional stimuli, glucose, amino acids, and insulin, suggesting the significance
of TXNIP in the regulation of metabolic and neurodegenerative diseases [8,134–136]. By
contrast, TXNIP being a participant of apoptosis inducer and metabolic re-programmer
works as a tumor suppressor; therefore, downregulation of TXNIP contributes to cancer
progression [14,15,137,138], although such anticancer functions of TXNIP are associated
to apoptotic pathways [56,139]. Thus, TXNIP agonist might help in anticancer treatments,
raising yet another debate. In particular, accumulated data provided strong evidence that
TXNIP inhibition is a potential therapeutic approach for metabolic disorders and associ-
ated diseases [12,140]. On a cellular level under oxidative-stress the metabolic functions
of TXNIP are regulated partially independent of TXN1 [141]. So far, there is no specific
inhibitor for TXNIP in clinical trials. Efforts are needed to develop novel TXNIP specific
inhibitors to de-intensify the pro-oxidant activities of TXNIP. Although, several in vitro
and in vivo studies are underway that either antagonize TXNIP directly or block it through
extracellular and intracellular signaling by means of inhibitors, such as small-molecule
inhibitors, phytochemicals, and peptides (Table 1).

Several small-molecule drugs have been reported, most of which are being used
or under clinical investigation for metabolic and neurological disorders. Verapamil and
diltiazem, a nondihydropyridine calcium channel blocker, are used to treat hypertension
and angina. It has been observed that verapamil and diltiazem suppress the expression
of TXNIP and reverse the β-cell loss in diabetic mice via attenuating TXNIP’s proapop-
totic effects [46,142,145]. Verapamil is in a phase II clinical trial for T1DM, where it is
intended to reduce TXNIP expression, increase insulin production, and enhance β-cell
mass. Furthermore, the efficacy of verapamil was confirmed in a study in which verapamil
administration in diabetic subjects resulted in significantly lower level of fasting serum
glucose than in the subjects without verapamil treatment [144]. Surprisingly, although
verapamil shows promising effects in T1DM and at the late stage of T2DM, it does not
show any effect in the early stage of T2DM. This may be the reason why verapamil does
not reduce TXNIP expression in the liver, muscle, and adipose tissues and, therefore, does
not affect the insulin sensitivity of these tissues [144,171].

Other drugs, such as allopurinol and quercetin, have been found to prevent the over-
expression of TXNIP in the rat liver and activation of the NLRP3 inflammasome, and
upregulation of sterol-regulatory element–binding protein 1c (SREBP-1c), SREBP-2, liver X
receptor α (LXRα), fatty acid synthase, and ROS while downregulating PPARα [146]. More-
over, several other small-molecule drugs, for example, telmisartan [172], bakuchiol [173],
vorinostat (SAHA) [147], trichostatin A (TSA) [149,174], imatinib [150], taurine [151], and
troglitazone [153] can inhibit the expression of TXNIP. Thielen L.A. et al. recently identified
a small-molecule inhibitor, SRI-37330, that effectively suppresses TXNIP expression in
rats, mice, and human pancreatic islets. In addition, treatment with SRI-37330 reduces
glucagon secretion and hepatic glucose production and reverses streptozotocin-induced
diabetes [154]. Nonetheless, further studies are warranted to determine the therapeutic
window for clinical trials.
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Table 1. Therapeutic modulators of TXNIP. COPD: chronic obstructive pulmonary disease; CTCL: cutaneous T-cell
lymphoma; DN: diabetic nephropathy; DR: diabetic retinopathy; HSCs: hematopoietic stem cells; T1DM: type 1 diabetes
mellitus; T2DM: type 2 diabetes mellitus.

Type Compound
Name Target Diseases and

Therapeutic Effects Status Reference/
Clinicaltrials.gov

Small-molecule
drug

Verapamil Calcium
channel/TXNIP

T1DM Phase II [142–144]
NCT02372253

Diabetic cardiomyopathy In vivo [145]

Diltiazem Calcium
channel/TXNIP Diabetes In vivo [142]

Allopurinol NLRP3/TXNIP/
ROS/PPARα Inflammation, diabetes In vivo [146]

Vorinostat TXNIP tumors In vivo [147]

Trichostatin A HDAC/TXNIP DR In vivo [148,149]

Imatinib ABL-IRE1α/TXNIP Diabetes In vivo [150]

Taurine Calcium
channels/TXNIP T1DM, T2DM Phase I/II [151]

NCT01226537

Metformin TXNIP T2DM In vivo [152]

Troglitazone Trx2/Ask1 Cell injury [153]

SRI-37330 TXNIP Diabetes, obesity Preclinical [154]

Phytochemicals

Quercetin NLRP3, TXNIP, ROS,
and PPARα T1DM Preclinical [146]

Fisetin TXNIP/MAPKs,
TLR4/NF-kB, and ROS

Inflammation, antioxidant,
anticancer actions In vivo [155–157]

Luteolin TXNIP/NLRP3
inflammasome antioxidant, inflammation In vitro [158]

Salidroside TXNIP/NLRP3
T2DM, nephropathy,
neuroinflammation,

antioxidant
In vivo [159,160]

Cepharanthine TXNIP/NLRP3 anti-inflammatory, DN In vivo [161,162]

Piperine TXNIP/NLRP3 anti-inflammatory, DN In vivo [162,163]

Apocynin NLRP3/TXNIP
Antioxidant,

anti-inflammatory,
heart problems

In vitro [164]

Puerarin NLRP3/TXNIP
Antioxidant,

anti-inflammatory,
heart problems

In vitro [164]

Curcumin TXNIP diabetic vascular
inflammation In vivo [165]

Ginsenoside
(compound K) TXNIP/NLRP3 antidiabetic,

anti-inflammatory actions In vitro [166,167]

Peptides

CB3 p38MAPK/JNK/NF-κB Neurological diseases,
diabetes, inflammation In vivo [168,169]

CB4 p38MAPK/JNK/NF-κB
Neurological diseases,
diabetes, inflammation In vivo [168,169]

TN13 TXNIP-p38 Affects aging of HSCs In vivo [170]

Phytochemicals play a major role in the curative effects of plant-derived products on
different diseases, including cancers, autoimmune diseases, and neurological and metabolic
disorders. Fisetin and luteolin are natural flavonoids found in vegetables and fruits such
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as apples, grapes, strawberries, onions, and persimmon. Several in vivo studies have
revealed that fisetin treatment of mice downregulates proinflammatory cytokines and
ROS production and inactivates TXNIP/MAPK and TLR4/NF-kB signaling [155]. Thus,
fisetin exerts beneficial effects on the antioxidant system and diabetes-related diseases
as well exhibits anticancer activities and anti-inflammatory properties [156,157]. Treat-
ment with luteolin protects podocytes from high-glucose induced apoptosis in the mouse
podocyte cell 5 (MCP-5) cell line and blocks TXNIP and NLRP3 inflammasome [175]. Simi-
larly, salidroside suppresses cell proliferation, high-glucose induced oxidative stress, and
extracellular-matrix accumulation in rat glomerular mesangial cells (HBZY-1) by inhibiting
the TXNIP/NLRP3 signal [159]. Alkaloids such as cepharanthine and piperine are widely
used as antineoplastic, antiallergic, and anti-inflammatory agents and are known to ame-
liorate diabetic neuropathy [161,162], whereas piperine stimulates digestive enzymes and
lowers lipid peroxidation [163].

Other phytochemicals have also shown promising effects against different diseases
either in vitro or in preclinical models. Among them, metformin [152], apocynin [176],
curcumin [177], and ginsenoside (compound K) [167] exert significant beneficial effects on
the antioxidant system, inflammation, cancer, DM, and on many other disorders.

Peptides also contribute to inhibiting TXNIP and are useful for the prevention of sev-
eral disorders (neurological and metabolic disorders). Thioredoxin-mimetic (TxM) peptides,
Ac-Cys-Pro-Cys-amide (CB3), and Ac-Cys-Gly-Pro-Cys-amide (CB4), prevent ROS-related
damage by inhibiting p38, MAPK, and c-Jun NH2-terminal kinase (JNK) and by preventing
NF-κB nuclear translocation [168,169]. CB3-treated male leptin-receptor-deficient Zucker
diabetic fatty (ZDF) rats show lower inflammation and decreased TXNIP/TBP-2 expres-
sion. By contrast, the AMPK pathway is activated, which results in the inhibition of the
mTOR-p70S6K pathway. Furthermore, CB3 and CB4 induce apoptosis and reduce caspase
3 cleavage and PARP dissociation in human neuroblastoma SH-SY5Y cells. It has been
suggested that these peptides may have a potential to prevent neurological disorders and
DM [169]. Another peptide, TN13, derived from the TXNIP-p38 interaction motif, inhibits
the TXNIP–p38 interaction and significantly revives aged hematopoietic stem cells (HSCs).
This finding indicates that the interaction between TXNIP and p38 activates the regulatory
mechanism of HSC aging and is a possible therapeutic target for the reactivation of aging
HSCs [170].

In recent years, researchers have recognized the role of microRNAs as essential media-
tors in the control of gene expression via post-transcriptional regulation. Here, we discuss
some microRNAs that are potentially relevant for regulating TXNIP and inflammatory
diseases (Table 2). MiR-20a negatively regulates the NLRP3 inflammatory response in
rheumatoid arthritis fibroblast-like synoviocytes. The overexpression of miR-20a reduces
TXNIP expression and downregulates the NLRP3 inflammasome and subsequent secretion
of cytokine IL-1β, caspase 1, and matrix metalloproteinase 1 (MMP-1) [178]. Furthermore,
the expression of miR-23a is decreased in the blood plasma of patients with central ner-
vous system (CNS) diseases (e.g., ischemic stroke or multiple sclerosis), it also regulates
neuropathic pain [179,180]. Besides, downregulation of miR-23a increases chemokine CXC
receptor 4 (CXCR4) expression in a neuropathic pain model [89].

In addition, several other microRNAs have modulatory functions in the pathogenesis
of some diseases. For instance, miR-377 overexpression promotes oxidative stress and
increases the production of fibronectin in diabetic neuropathy [181,182]. Under stress
conditions (ERS), the levels of miR-17-5p decrease, leading to inflammasome activation
and causing retinal inflammation [183,184]. In contrast, miR-148a inhibits the expression
of TXNIP and prevents the activation of the NLRP3 inflammasome [129]. MiR-33 in-
creases ROS production and regulates the activity of the NLRP3 inflammasome in chronic
inflammatory diseases [185].

Major efforts are needed to develop drugs that can specifically inhibit TXNIP and are
highly effective in overcoming neurological and metabolic abnormalities.
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Table 2. The miRNAs that regulate TXNIP. ALD: alcoholic liver disease; RA FLS: rheumatoid arthritis fibroblast-like
synoviocytes.

miRNAs Molecular Target Type of Disease Molecular Mechanisms Reference

miR-20a TXNIP RA FLS Downregulation of TXNIP expression;
Downregulation of NLRP3, ASC and caspase-1 [178]

miR-23a CXCR4 Neuropathic pain,
multiple sclerosis

Inhibition of CXCR4; Downregulation of the
TXNIP/NLRP3
inflammasome

[89,179,180]

miR-377 Not defined DN, kidney podocyte
injury

Increased fibronectin production in diabetic
nephropathy; Activation of the p38

MAPK/TXNIP pathway; Upregulation of the
NLRP3 inflammasome

[181,182]

miR-17-5p TXNIP Retinal inflammation,
hypoxia-ischemia

Instability of TXNIP mRNA;
Downregulation of the NLRP3 inflammasome [183,184]

miR-148a TXNIP ALD Reduction of pyroptosis; Downregulation of the
NLRP3 inflammasome [129]

5. Future Prospects

This review summarizes the direct effects and potential mechanisms of action of
TXNIP in several metabolic and neurodegenerative disorders. TXNIP targeting has pro-
vided considerable and unique therapeutic opportunities concerning T1DM, T2DM, and
the prevention of their long-term complications by improving insulin secretion and sensitiv-
ity along with β-cell function and integrity. Other comorbidities of diabetic complications,
such as multiple sclerosis, β-cell mass expansion in aged mice, and glucagon action in hep-
atocytes, are noteworthy. These health problems should be monitored via assays of TXNIP
inhibitors in vitro to gain insights into relevant functional alterations. In addition, pre-
clinical and clinical evidence is crucial for understanding the relevance of TXNIP-specific
inhibitors for the development of new promising agents to prevent DM-associated health
problems. A prospective study involving a large number of patients is needed to decipher
the clinical impact of vitamin D3 on DR in association with TXNIP inhibition. Inhibition
of TXNIP in DM pharmacotherapy may not be effective in people with a complete lack of
TXNIP. This protein works together with inflammation and oxidative stress to manifest
DN and diabetic neuropathy; although the underlying mechanisms are yet to be revealed,
the available data on AD should be stratified by the distinct ages of the affected brains.

6. Conclusions

These data collectively reveal that TXNIP inhibition may be beneficial, if applicable to
diabetic patients, as well as in brain-associated diseases such as acute brain injury, ischemic
stroke, trauma, and PD. The consequences of the complete loss of this protein are elusive as
most of the effects of TXNIP actions are seen through animal studies at the cellular level in
several diseases only. Nonetheless, TXNIP also induces apoptosis in brain cells; therefore,
persistent depletion might be harmful. Thus, designing a partial agonist and testing it at
the molecular level may be more appropriate in this context.
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Abbreviations

α-syn Alpha-synuclein
AD Alzheimer’s disease
AMPK AMP-dependent-protein kinase
ASK-1 Apoptosis signal-regulating kinase-1
Aβ Amyloid-β
CXCR4 Chemokine CXC receptor 4
DM Diabetes mellitus
DN Diabetic nephropathy
DR Diabetic retinopathy
EBI Early brain injury
ERS Endoplasmic-reticulum-stress
FOXO1 Forkhead Box O1
Glut1 Glucose transporter 1
GSDMD Gasdermin
HDAC2 Histone deacetylase 2
HIFs Hypoxia-induced transcription factors
MAPK Mitogen-activated protein kinase
MMP-1 Matrix metalloproteinase-1
mTOR Mammalian target of rapamycin
NLRP3 NOD-, LRR- and pyrin domain-containing protein 3
NO Nitric oxide
PD Parkinson’s disease
PERK PKR-like ER-resistant kinase
PPAR-1α Peroxisome proliferator-activated receptors-1α
PTEN Phosphatase and tensin homolog
ROS Reactive oxygen species
SAH Subarachnoid hemorrhage
T1DM Type 1 diabetes mellitus
T2DM Type 2 diabetes mellitus
TCA Tricarboxylic acid cycle
TXN Thioredoxin
TxM Thioredoxin mimetic
TXNIP Thioredoxin-interacting protein
VCAM-1 Vascular cell adhesion molecule-1
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