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Neural stem cells (NSCs) have been shown as a potential source for replacing
degenerated neurons in neurodegenerative diseases. However, the therapeutic potential
of these cells is limited by the lack of effective methodologies for controlling their
differentiation. Inducing endogenous pools of NSCs by small molecule can be
considered as a potential approach of generating the desired cell types in large
numbers. Here, we reported the characterization of a small molecule (Methyl 3,4-
dihydroxybenzoate; MDHB) that selectively induces hippocampal NSCs to differentiate
into cholinergic motor neurons which expressed synapsin 1 (SYN1) and postsynaptic
density protein 95 (PSD-95). Studies on the mechanisms revealed that MDHB induced
the hippocampal NSCs differentiation into cholinergic motor neurons by inhibiting
AKT phosphorylation and activating autophosphorylation of GSK3β at tyrosine 216.
Furthermore, we found that MDHB enhanced β-catenin degradation and abolished its
entering into the nucleus. Collectively, this report provides the strong evidence that
MDHB promotes NSCs differentiation into cholinergic motor neurons by enhancing
gene Isl1 expression and inhibiting cell cycle progression. It may provide a basis for
pharmacological effects of MDHB directed on NSCs.

Keywords: methyl 3,4-dihydroxybenzoate, neural stem cells, differentiate, cholinergic neurons, GSK3β, cell cycle,
Isl1

INTRODUCTION

Neural stem cells (NSCs) have the ability of self-renewal and to differentiate into multiple
specialized neural cell types, such as neurons, astrocytes and oligodendrocytes, thus serving as
the common source of these fundamental components of the CNS (Gage, 2000). Consequently,
NSCs can furnish an unlimited source of cells for cell transplantation therapy to supplement
degenerating cells (Ager et al., 2015; Reidling et al., 2018). Facing this potential, some defects, such
as the uncontrollability of stem cell differentiation pathway and immune rejection for stem cell
therapy, can be surmounted. At present, NSCs have been proved to exist not only in the embryonic
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mammal nervous system, but also in the nervous system of
most adult mammals (Goncalves et al., 2016). In adulthood,
the main neurogenic niches are the sub-granular zone (SGZ) of
hippocampal dentate gyrus (DG) as well as the sub-ventricular
zone (SVZ), both of which continuously generate newborn
neurons with potential functions their contribution to behavior,
and their relevance to disease (Zhao et al., 2008).

Glycogen synthase kinase 3s are serine/threonine kinases
in receptor tyrosine kinase. Wnt/Frizzled signaling pathway is
originally confirmed as important regulatory enzymes in glucose
metabolism (Hur and Zhou, 2010; Mussmann et al., 2014).
There are two subtypes(GSK3α and GSK3β) encoded by different
genes, which are overall 85% homologous to each other, with
95% identity in the kinase domains. Kim et al. (2009) showed
that the phosphorylation levels of β-catenin, target of GSK3β,
are increased at later stages in development when stem cell
proliferation is declining and cholinergic neuronal differentiation
predominates (Ming and Song, 2009). Degradation of β-catenin
by activation of GSK3β will inhibit cell proliferation and increase
cell differentiation. These finding demonstrate that the activation
of GSK3β increases cell differentiation (Kuwabara et al., 2009).

Cholinergic neurons are located in extensive regions of the
CNS, which regulates complicated behaviors (Hangya et al.,
2015). The cholinergic neurotransmission system adjusts the
effects of several key factors that are strongly expressed in
all cholinergic neurons, termed cholinergic pathway genes
(Saunders et al., 2015). Understanding the gene regulatory
mechanisms that monitor the expression of cholinergic pathway
genes in different groups of cholinergic neurons will provide
crucial insights into the process of cholinergic fate specification in
CNS diseases (Cho et al., 2014). Previous studies found that seven
regulators controlled the identity of cholinergic neuron types.
Three LIM homeobox genes (lim-4/Lhx6/8, lim-11/Lhx1, and ceh-
14/Lhx3/4) and two Prox-type homeobox genes (unc3/EBF, unc-
42/Prd) control cholinergic identity of cholinergic neuron types,
including sensory neurons, interneurons and motor neurons in
Caenorhabditis elegans. Pitx-type homeobox gene (unc-30/Pitx)
control the identity of the PVP interneurons (in conjunction
with lin-11) and POU homeobox gene (unc-86/Brn3) controls
cholinergic identity of the URX, RIH and male-specific CEM
neurons (Duerr et al., 2008). lim-7 (Isl1), a specific cholinergic
identity in the spinal cord and forebrain in the C. elegans, has a
function as a cholinergic fate determinant in vertebrate CNS (Cho
et al., 2014; Zhang et al., 2018).

Methyl 3,4-dihydroxybenzoate (MDHB, C8H8O4), with a
molecular weight of 168.15 (CAS), is a small molecular
compound extracted from the traditional herbs. Previous
researches have described that MDHB has the effect of
antioxidant (Cai et al., 2016). In addition, studies in our
laboratory have shown that MDHB could accelerate the neurite
outgrowth of primary cortical neurons in vitro by inducing brain-
derived neurotrophic factor (BDNF) expression (Zhang Z. et al.,
2015), protect the primary cortical neurons against Aβ(25-35)-
induced apoptosis by mitochondria pathway (Zhou et al., 2013),
as well as prolong the lifespan of C. elegans (Zhang et al., 2014).

In this study, we found that MDHB can specifically induce
neuronal differentiation in vitro and promote excitatory

cholinergic motor neuron differentiation. Additionally, MDHB
can increase the activity of tyrosine-phosphorylated GSK3β,
and then the activated GSK3β promotes phosphorylation
of β-catenin, resulting in the degradation of β-catenin.
Subsequently, cell cycle and Tacc3 gene controlled neuronal
differentiation can be inhibited. Isl1 gene controlled cholinergic
neuronal differentiation will be up-regulated. In summary,
we showed that the expression of neuronal differentiation
transforming acidic coiled-coil 3 (Tacc3) gene and cell cycle are
inhibited and cholinergic neuronal differentiation gene Isl1 are
up-regulated by MDHB.

MATERIALS AND METHODS

Animals and Ethics Statement
This study was carried out in accordance with the
recommendations of the Animal Research Committee of
the School of Medicine of Jinan University (Approval Number:
20170607002). The protocol was approved by the Animal
Research Committee of the School of Medicine of Jinan
University.

Isolation and in vitro Culture of NSCs
Rat NSCs were derived and cultured as described previously
by others (Rietze and Reynolds, 2006). Briefly, the hippocampi
of several postnatal rats were chopped, mechanical digested by
0.25% trypsin (Gibco) in a humidified 5% CO2 incubator at
37◦C for 10 min and triturated. The cell suspension was added
into an equal volume of DMEM/F12 (Gibco) supplemented
with 10%fetal bovine serum (Lonsera) and 0.1 mg/ml DNase
I (Sigma), afterward filtered through a 70 µm microfiltration
membrane and centrifuged for 5 min. The cells cultured in
DMEM/F12 containing 10 ng/mL basic fibroblast growth factor
(Proteintech), 20 ng/mL EGF (Proteintech), 1%penicillin and
streptomycin (Sigma) and 2% B27 (Gibco) without vitamin
A were seeded in 6 well plate in a humidified 5% CO2
incubator at 37◦C. Within 3–5 days, the cells grew into
free floating neurospheres which were then gathered by
centrifugation and passaged after mechanical, dissociation by
pipetting.

NSCs Differentiation
For NSCs differentiation, neurospheres (passage 2–3) were
dissociated into a NSC by stem cell digestive enzyme (Gibco)
and NSCs were seeded in 0.0125 mg/ml poly-D-lysine (PDL,
Sigma) and 10 ng/ml laminin (Sigma)-coated glass cover slips
at the density of 35,000 cells/cm2 directly in DMEM/F12
supplemented with 1%FBS (Gibco) and 1%penicillin and
streptomycin. When cells were completely adherent in the plate
after 2 h, DMEM/F12 containing 1%FBS was replaced by rat
NSCs differentiation medium (NeuroCult Differentiation Kit,
Catalog #05700). The cultures were then treated with MDHB
(0, 8, 16, and 32 µM) which was dissolved in DMSO (Sigma).
The culture treated with MDHB was changed every second
day.
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Immunofluorescence Staining
Treated cells were fixed with 4% paraformaldehyde (PFA) for
45 min at room temperature, washed with phosphate-buffered
saline (PBS, pH7.6) and blocked with super blocking solution
containing 0.5% goat serum, 1%fish serum, 0.5% donkey serum
and 0.5% bovine serum in 0.3% Triton X-100 PBS at room
temperature for 60 min. Subsequently cells were incubated with
primary antibodies at 4◦C for 16 h overnight. The primary
antibodies were mouse anti-Nestin (1:100, Millipore), mouse
anti-neuron-specific class III beta-tubulin (Tuj-1, 1:1000, Sigma),
mouse anti-microtubule-associated protein 2 (MAP2, 1:500,
Sigma), and rabbit anti-glial fibrillary acidic protein (GFAP,
1:1000, Abcam), rabbit anti-PSD95 (1:500, Abcam), Mouse
anti-CAMKII (1:500, Abcam), rabbit anti-Ki67 (1:500, Abcam),
mouse anti-ChAT (1:500, Sigma), mouse anti- VGluT1 (1:500,
Millipore), mouse anti-TPH (1:500, Millipore), rabbit anti-Gad67
(1:500, Sigma), rabbit anti-TH (Millipore), goat anti-Isl1 (1:500,
Abcam), chicken anti-MAP2 (1:2000, Sigma), rabbit anti-Tbr1
(1:500, Sigma), rabbit anti-Prox1(1:500, Abcam), rat anti-Ctip2
(1:500, Millipore), mouse anti-Cux1(1:500, Sigma), rabbit anti-
NeuN (1:1000, Abcam). The cells were washed three times
with 0.3% PBST and incubated with Alexa Fluor 488, CY3,
647-conjugated secondary antibody (1:1000, Earthox) at room
temperature for1h. To visualize nuclei, cells were counterstained
with 1 ng/ml 4′,6-diamidino-2-phenylindole (DAPI, 1 ng/ml,
Sigma) for 5 min. Finally, all images were captured with
a confocal microscope (Zeiss, LSM700) and then processed
via Image J software (NIH, Bethesda, MD, United States).
The number of Nestin, Tuj-1, MAP2, GFAP, Nestin, ChAT,
NeuN, Cux1, Ctip2, Tbr1 and Prox1 positive cells and cell
nuclei were counted in each of seven random fields per
well.

Western Blot Analysis
Cells differentiate for 5 days in differentiation medium in the
presence of MDHB and then collected. Cells were washed
with pre-cooling phosphate-buffered saline (pH7.6) added
with the lysis buffer, and then they were homogenized via
ultrasonication and centrifuged at 12000 g for 10 min at 4◦C.
The protein concentration in the supernatant was detected
by a BCA assay kit (Beyotime Institute of Biotechnology).
Then the supernatants were blended with loading buffer
in a ratio of 1:1 and boiled for 5 min at 100◦C, and then
subjected to SDS page (12% and 10% acrylamide gels,
120 V, 1.5 h). The separated proteins were transferred
to poly-vinyli dene fluoride (PVDF) membranes (100 V,
85 min) and blocked with 5% skimmed milk dissolved
in 0.05%TBST. After three times rinsing in 0.05%TBST,
the proteins were incubated with primary antibodies
overnight at 4◦C. The membrane was exposed to either
HRP- rabbit or mouse secondary antibody for 1 h at room
temperature. The fluorescent signal of the blots was collected by
ALLIANCE 4.7 apparatus and quantified with the Quantity
One software. The expressions of β-III-tubulin, GFAP,
AKT (CST), p-AKT (CST), GSK3β (CST), p-ser9-GSK3β

(CST), p-try-GSK3β (Thermofisher) andβ-catenin (CST) were

determined via calculating their density ratio to the GAPDH
band.

Cell Collection and mRNA Preparation
Cells were collected after differentiating for 5d in differentiation
medium in the presence of MDHB. Total RNA was isolated
using Trizol Reagent (Invitrogen), in combination with RNAase-
free DNAase to eliminate the potential DNA contamination
(TAKARA). The concentration and purity of RNA were
measured by Nanodrop 2000C Spectrophotometer.

Transcriptome Analysis of
MDHB-Induced Differentiation
The RNA-seq technique was used to analyze the gene
expression profiling in MDHB-induced NSCs differentiation
(SRA accession:PRJNA505930). The cDNA fragments were
purified using a QIAquick PCR extraction kit following the
manufacturer’s protocol. Next, the cDNA fragments were
enriched by PCR to construct the final cDNA, which was
sequenced by Illumina sequencing platform (IlluminaHiSeqTM

2500).

Gene Expression Validation by qRT-PCR
Reverse transcription was performed into cDNA using the
PrimeScript TMRT reagent Kit with gDNA Eraser following
the manufacturer’s protocol. Real-time PCR was performed with
a SYBR R© Premix Ex TaqTM II detection System. The primer
sequences are shown as follows (Table 1):

TABLE 1 | The primer sequences.

Gene Primer sequence

Cdkn1a-Forward 5-GGGATGCATCTATCTTGTGATATG-3

Cdkn1a-Reverse 5-GCGAAGTCAAAGTTCCACCG-3

Cdc20-Forward 5-TGGAGAAAGTGGCTGGGTTC-3

Cdc20-Reverse 5-ATGCGAATGTGTCGGTCACT-3

Tacc3-Forward 5-GTCTGGCTCCGGAAATCCAA-3

Tacc3-Reverse 5-CACCATAGGCTCGGCAGGAA-3

Actin-Forward 5-CACCCGCGAGTACAACCTTC-3

Actin-Reverse 5-CCCATACCCACCATCACACC-3

Isl1-Forward 5-GACATGATGGTGGTTTACAGGC-3

Isl1-Reverse 5-GCTGTTGGGTGTATCTGGGAG-3

Lhx8-Forward 5-CAGTTCGCTCAGGACAACAA-3

Lhx8-Reverse 5-AGCCATTTCTTCCAACATGG-3

Lhx3-Forward 5-AGAGCGCCTACAACACTTCG-3

Lhx3-Reverse 5-GGCCAGCGTCTTTCTTCAGT-3

Statistical Analysis
The data are expressed as mean ± SEM. Statistical
analyses were performed by using a Test or ANOVA
followed by Boferonni’s test, using the Prism software
(GraphPad, San Diego, CA, United States). A value of
P < 0.05 was considered as significantly different from the
control.
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RESULTS

Neural Stem Cells, Culture and
Identification
To extract primary hippocampal NSCs, neurospheres were
passaged in vitro (Reynolds and Rietze, 2005). Experimental
materials were prepared from the second or the third generation
of NSCs. The third generation of NSCs (Figure 1B) were most
suspended neurospheres. Nestin and DAPI were used to stain
single neural stem cell (Figure 1C) from digested neurospheres
by immunofluorescence (Figure 1A). Analysis showed that the
purity of the primary cells were most NSCs (Figure 1D), and
DCX (neurons marker) and GFAP (astrocytes marker) were
immunonegative of primary NSCs (Figures 1E,F).

MDHB Promotes the Differentiation of
NSCs Into Neurons
To determine the effects of different concentrations of MDHB on
neuronal differentiation of NSCs, neurospheres were dissociated
into a single NSC, which was treated in the presence of the
following concentrations: 0 µM MDHB, 8 µM MDHB, 16 µM

MDHB, 32 µMMDHB. After 5 days, we observed that the cell
bodies of different concentrations of MDHB groups had neuronal
morphological features (Figures 2A–D). The expressions of Tuj1
(immature neuron) and GFAP (astrocyte) were detected by
western blot (Figures 2E,J,K). The results revealed that MDHB
increased the expression of Tuj1 and inhibited the expression
of GFAP in the differentiation of NSCs. Neuronal marker Tuj1
and astrocyte marker GFAP were used to identify cells (Ray
et al., 2018) (Figures 2F–I). The DMSO group had more GFAP
positive cells, while MDHB treated group (8, 16, and 32 µM)
had more Tuj1 positive cells. Above results indicated that MDHB
enhanced the differentiation of NSCs into neurons (Figure 2J)
and inhibited NSCs differentiation into astrocytes (Figure 2K).

MDHB-Induced Immature Neurons Form
Mature Neurons
Next, we examined whether immature neurons in MDHB-
induced differentiation can form mature neurons. After 9 days
using different doses of MDHB presenting on NSCs, cells
were stained with MAP2 and NeuN marker which are specific
markers of mature neurons (Figures 3A–F). The result showed

FIGURE 1 | The morphological and purity identification of primary neurospheres and neural stem cells. (A) Nestin and DAPI fluorescent staining of primary
neurospheres composed of neural stem cells; (B) The morphological status of primary neurospheres in vitro; (C) Nestin and DAPI fluorescent staining of scattered
primary NSCs; (D) The purity statistics of primary NSCs; (E) DCX and DAPI staining of scattered primary NSCs; (F) GFAP and DAPI staining of scattered primary
NSCs.
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FIGURE 2 | MDHB promotes NSCs differentiation into neurons. (A) The solvent control group (DMSO); (B–D) Low dose (8 µM MDHB), middle dose (16 µM MDHB),
and high dose (32 µM MDHB) groups. (E) Western blot analysis for Tuj1 (immature neuron) and GFAP (astrocyte) on differentiation of NSCs. (F–I) After 5 days of
NSCs differentiation induced by MDHB, new cells were fluorescently stained, the cells with neuronal marker Tuj1 were dyed red; with glial marker GFAP dyed green;
and all cell nuclei with nuclear marker DAPI were dyed blue. (J,K) Quantification of protein blots is shown, GAPDH serves as protein loading control. (L) The
statistical results of neurons differentiated by MDHB-induced NSCs. (M) The statistical results of astrocytes differentiated by MDHB-induced NSCs (∗P < 0.05,
∗∗∗P < 0.001, compared with DMSO group, n = 3).

that MAP2 positive cells were significantly increased in a
MDHB dose-dependent way, and NeuN positive cells were
also promoted by MDHB-induced NSCs differentiation. Thus,
MDHB can promote NSCs differentiation into mature neurons
(Figures 3G,H).

MDHB Promotes the Differentiation of
NSCs Into Cholinergic Neurons
Here, we investigated neuronal subtypes based on
neurotransmitters they contain. We first found that the

majority of MDHB-induced neurons were immunopositive
for cholinergic neurons marker ChAT (Figure 4A) and motor
neurons marker Isl1 (Figure 4F). A small fraction of the
converted neurons was immunopositive for glutamatergic
neurons marker VGluT1 (Figure 4E). On the other hand, the
MDHB-induced neurons were immunonegative for GABAergic
neurons marker GAD67 (Figure 4B), dopaminergic neurons
marker TH (Figure 4C), and serotonergic (5-HT) neurons
marker TPH (Figure 4D). The quantitative analyses of the
neuronal subtypes were shown in Figure 4F (n = 3 batches).
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FIGURE 3 | MDHB-induced immature neurons form mature neurons. (A–F) After 9 days of NSCs differentiation induced by MDHB, the new cells were fluorescently
stained, the cells with MAP2 and NeuN were dyed red and the cell nuclei with DAPI was dyed blue; (G,H) the statistical results of mature neurons differentiated by
MDHB-induced NSCs (∗∗∗P < 0.001, compared with DMSO group, n = 3).

These results suggested that the cholinergic motor neurons were
the major subtype of MDHB-induced neurons.

To characterize the neuronal properties after small molecule-
induced differentiation, we examined neuronal markers
expressed from anterior to posterior nervous system. We
found that the MDHB-induced neurons were- immunonegative
for superficial layer neuronal marker Cux1 (Figure 4J), but
positive for deep layer neuronal markers Ctip2 (Figure 4I). The
MDHB-induced neurons were also immunonegative for cortical
neuronal marker Tbr1 (Figure 4H), as well as hippocampal
neuronal marker Prox1 (Figure 4G). Figures 4K,L showed the
quantitative results. Therefore, our MDHB-induced neurons
were mainly hippocampal neurons (Figures 4K,L).

The Expression of Synaptic Proteins in
MDHB-Induced Neurons
We next investigated whether MDHB-induced neurons have
synapse formation. Synapsin I exists in the nerve terminal
of axons, mainly in the membranes of synaptic vesicles. The
encoded protein acts as a substrate for several different protein
kinases, and phosphorylation can play a role in the regulation
of proteins in the nerve terminal. PSD-95 is a member of
the membrane-associated guanylate kinase (MAGUK) family,
and it plays an important role in synaptic plasticity and
the stabilization of synaptic changes (Perche et al., 2018;

Whalley, 2018). Calcium/calmodulin-dependent protein kinase
II (CaMKII)-the main protein of the postsynaptic density-
is a Ca2+/calmodulin-activated dodecameric enzyme (Lisman
et al., 2002). The expression of synaptic proteins in neurons
was identified by cellular immunofluorescence. The Figure
showed that Synapsin I (SYN1) (Figures 5E,F) and postsynaptic
density protein 95 (PSD-95) (Figures 5A–D) significantly
expressed. It indicated that these neurons could form neural
network.

Effect of MDHB on AKT, GSK3β and
β-catenin
To understand the molecular mechanisms of MDHB-induced
differentiation of NSCs into cholinergic neurons (Figures 6A,B).
Western blot results revealed that the phosphorylation level
of AKT protein was down-regulated in the MDHB group
(Figure 6C), and the total AKT protein expression was
unchanged (Figure 6D), MDHB activated phosphorylation of
GSK3β at tyrosine 216 (Y216) (Figure 6F). The phosphorylation
level of serine at position 9 was unchanged (Figure 6G)
and the transcription factor β-catenin was down-regulated
(Figure 6E). As shown above, the mechanism of MDHB
promoted differentiation of NSCs into cholinergic neurons may
perform by increasing. The activity of GSK3β (Figure 6H) and
inhibiting the activity of PI3K.
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FIGURE 4 | The types analysis of MDHB-induced neurons. (A) The cholinergic neurons with ChAT and MAP2 were respectively dyed red and green; (B) the
GABAergic neurons with MAP2 and Gad67 were respectively dyed red and green; (C) the dopaminergic neurons with MAP2 and TH were respectively dyed red and
green; (D) the serotonergic (5-HT) neurons with TPH and MAP2 were respectively dyed red and green; (E) the glutamatergic neurons with Vglut1 and MAP2 were
respectively dyed red and green; (F) MDHB-induced neurons were also immunopositive for motor neuron marker Isl1; (G,H) Immunostaining with neuron markers
revealed that MDHB-induced neurons were negative for general cortical neuron marker Tbr1, but positive for hippocampal neuron marker Prox1 (G); (I,J)
Immunostaining with neuron markers revealed that MDHB-induced neurons were negative for superficial layer marker Cux1 (J), but positive for deep layer marker
Ctip2 (I). (K,L) The statistical results showed that MDHB promoted NSCs differentiation into hippocampal cholinergic neurons.

MDHB Inhibits Cell Cycle and Increases
the Expression of Cholinergic Neuronal
Gene Isl1
The transcription factor β-catenin was down-regulated, which
is critical for the control of NSCs’ cell cycle in multiple regions

of the developing CNS. We further performed immunostaining
to examine the cell cycle protein expression changes during
induced NSCs differentiation process. MDHB was utilized
to treat NSCs in 24, 48, and 72 h for differentiation. The
data showed that the expression of Ki67 in MDHB group
was less in 24, 48, and 72 h (Figures 7A–G). Compared
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FIGURE 5 | The expression of synaptic protein in MDHB –induced neurons. (A–D) MDHB –induced neurons has the expression of postsynaptic dense protein
(PSD95); (E–G) MDHB –induced neurons has the expression of Synapsin I (SYN1).

with the DMSO group, the expression of Tacc3 in neuronal
differentiation and Cdc20 in cell cycle were decreased, and
the expression of Cdkn1a in cell cycle and Isl1 in cholinergic
pathway was up-regulated. Lhx3 and Lhx8 had not change. Our
data indicated that MDHB induced NSCs differentiation by
regulating cell cycle-related gene and cholinergic neuron-related
gene.

DISCUSSION

Since the neuronal differentiation of NSCs is an intricate
process, it is not surprising that many substances have been
involved in the regulation action (Gauthier-Fisher et al., 2009;
Ming and Song, 2009; Akizu et al., 2010; Luo et al., 2010;
Park et al., 2016; Vasconcelos et al., 2016). However, little is
known about the small molecules in NSCs. The small molecules
controlling the direction of NSCs differentiation would be a
critical advance in neurodegeneration and CNS repair. Here,
we described a novel small molecule -named MDHB that
modulates cholinergic neuronal differentiation of NSCs. We
found that MDHB promotes the differentiation of NSCs into
neurons and inhibits NSCs differentiation into astrocytes. The
major subtypes of MDHB-induced neurons are cholinergic
neurons.

NSCs refer to a type of cell population that exists in CNS and
has the latent energy to differentiate into neurons, astrocytes,
and oligodendrocytes, and they can proliferate to replenish
lost brain cells (Mosher et al., 2012; Aharonowiz et al., 2018).
Mouse NSCs were successfully isolated and established in 1992.
Subsequently, NSC lines of human and other organisms were
successively established(Kim et al., 2008; Chicheportiche et al.,
2018). We performed Nestin and DAPI fluorescent staining
of NSCs, which is widely used as a specific marker of NSCs

(Crook and Tomaskovic-Crook, 2017; Jin et al., 2017). The results
demonstrated that the high purity of NSCs in the cultured
primary cells.

These results indicated that MDHB (8, 16, and 32 µM)
promotes NSCs differentiation into immature neurons and
overrides NSCs differentiation into astrocytes. In this study, the
effect of MDHB on the differentiation of NSCs was observed.
The whole cell exhibited obviously neuronal morphological
characteristics. Tuj1 is a neuron-specific marker which has been
widely used for the identification of immature neurons, GFAP is
an astrocytes marker which is generally used for identification
of glial cells(Park et al., 2017). These results indicated that
MDHB (8, 16, and 32 µM) promotes differentiation of NSCs
into immature neurons while inhibiting their differentiation
into astrocytes (Figure 2). MAP2 is the skeleton protein of
neurons and plays a vital role in the stability and function
in maintaining microtubules. It widely distributes in mature
neuronal dendrites and is used as a marker to measure the
growth of neuronal processes (Gumy et al., 2017). NeuN is also
a mature neuronal marker in the neuronal nucleus. Through
mature neuronal immunofluorescence staining, we found that
the expressions of MAP2 and NeuN in MDHB groups are
significantly higher than the DMSO group in a dose-dependent
manner. It indicated that MDHB can promote not only NSCs
differentiation into immature neurons, but the development into
mature neurons.

Neurons have a wide variety of classifications, which include
basis on the structure of neurons, the function of neurons
and neurotransmitters releasing (Zeng and Sanes, 2017). At
present, according to the neurotransmitters, they are classified
into the following categories: cholinergic neurons, dopaminergic
neurons, GABAergic neurons, serotonergic (5-HT) neurons,
glutamatergic neurons and so on (Dvoryanchikov et al., 2017).
Neurons released different neurotransmitters have distinct
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FIGURE 6 | The effect of MDHB on AKT, GSK3β and β-catenin. MDHB inhibited phosphorylation of AKT in the differentiation of neural stem cells, activated
phosphorylation of GSK3β at tyrosine 216 (Y216), and downregulated transcription factor β-catenin. (A,B) Western blot analyses of proteins extracted from
MDHB-treated neural stem cell in differentiation, (C–H) quantification of protein blots is shown, GAPDH serves as protein loading control. Each point represents the
mean relative protein level of each group (∗P < 0.05, compared with DMSO group, ∗∗P < 0.01, compared with DMSO group, n = 4).

functions in the CNS (Haim and Rowitch, 2017; Zhou et al.,
2017). According to the localization that they place in brain,
they can be classified into superficial layer neurons, deep layer

neurons and so on (Zeng and Sanes, 2017). Previous research
showed that the main hippocampal neurons were Glutamatergic
and GABAergic (Lei et al., 2016). Although the cholinergic
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FIGURE 7 | MDHB promotes the differentiation of NSCs into cholinergic neurons by inhibiting cell cycle and increasing cholinergic pathway gene Isl1. (A) The effect
of DMSO on differentiation of NSCs for 24 h; (B) the effect of MDHB on differentiation of NSCs for 24 h; (C) the effect of DMSO on differentiation of NSCs for 48 h;
(D) The effect of MDHB on differentiation of NSCs for 48 h; (E) the effect of DMSO on differentiation of NSCs for 72 h; (F) The effect of MDHB on differentiation of
NSCs for 72 h; (G) the statistical results of Ki67 staining for different time point. (H) The relative expression levels of Tacc3 gene; (I) the relative expression levels of
Cdc20 gene; (J) the relative expression levels of Cdkn1a gene; (K) the relative expression levels of Isl1 gene; (L) the relative expression levels of Lhx3 gene; (M) the
relative expression levels of Lhx8 gene (∗P < 0.05, compared with DMSO group; ∗∗P < 0.01, compared with DMSO group; ∗∗∗P < 0.001 compared with DMSO
group, green = ki67, blue = DAPI).

neuron is not the main type in the hippocampus, they still play
a major function in the hippocampus. Our results demonstrated
that ChAT was the marker of cholinergic neurons, while Prox1

and Ctip2 were the markers of hippocampal and deep layer
neurons respectively (Zhang L. et al., 2015). Recent study
showed that single cholinergic neuron can extend into multiple
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areas. Most target areas of individual cholinergic neuron are
interconnected, such as the olfactory bulb connecting to the
piriform and entorhinal cortex, while the subregions of the
hippocampal complex connecting with the striatum, isocortex,
and hypothalamus (Li et al., 2018). Interestingly, our research
has demonstrated that most of MDHB-induced neurons were
cholinergic neurons. But this also prompt that it is precisely
because MDHB can differentiate NSCs into cholinergic neurons,
thus acting as a therapeutic effect for memory disorder. In the
near future, we will need to further verify the function of this
part of cholinergic neurons. Due to the potential limitations
of our experimental conditions, we were unable to identify the
exact type of the differentiated cells using multiple experimental
methods, which could not totally exclude the possibility of
other cell types. So it is worthy of further research in this
direction. A semiautonomous circuit of striatal GABAergic
interneurons is responsible for transmitting behaviorally relevant
cholinergic signals to spiny projection neurons (Faust et al.,
2016). Cholinergic neuron play a major role in motor and
learning functions of the striatum. At recent studies, the
cholinergic neurons have also been a main focus of research
in aging and neural degradation, specifically as it relates to
Alzheimer’s Disease (Tabet, 2006). Through the observation
and analysis of the staining of presynaptic membrane protein
SYN1 and PSD95, the results showed that the differentiated
neurons expressed SYN1 and PSD95 (Figure 5), suggesting
the possibility of synapse formation and the potential to form
neural networks. The experiments revealed that MDHB can
promote NSCs differentiation into hippocampal cholinergic
neurons, and the differentiated neurons may form a neural
network.

Previous research showed that Wnt pathway promotes
neuronal differentiation (Hirabayashi et al., 2004). In the
classical WNT pathway, inhibition of GSK3βleads to the
accumulation of β-catenin, which enters the cell nucleus,
causing transcription of the TCF4 gene (Hirabayashi et al.,
2004). GSK3β is also regulated by the PI3K/AKT signaling
pathway. Activated by AKT (Jiang et al., 2016), inhibits GSK3β

activity, In contrast, inactivating AKT, activates GSK3β activity.
PI3K/AKT signaling pathway regulate NSCs differentiation
into motor neurons in adult. In this study, we found
that MDHB regulates the fate of NSCs by regulating cell
cycle, possibly inhibiting AKT phosphorylation and activating
GSK3β activity, which lead to β-catenin degradation and
abolishment of entering the nucleus. Subsequently, it will
regulate cell cycle-related gene expression and cholinergic signal
pathway. Recent studies have found that transforming coiled
coil acid repeat protein 3 (TACC3) can regulate ARNT2
transcription factor to determine neural cell fate (Wurdak
et al., 2010). Knocking out the TACC3 gene can promote
the differentiation of NSCs into neurons (Xie et al., 2007).
Cell division cyclin 20 is a basic regulator of cell division,
and it have an important function to activate late-promotion
complex (APC/C), which is a large 11-13 subunit complex
that initiates staining (Paul et al., 2017; Omrani et al., 2018).
The body separates and enters later stages, it also targets
the destruction of S and M phase (S/M) cyclins, inactivates

FIGURE 8 | The signal transduction pathway in MDHB-induced cholinergic
neurons differentiation.

S/M cyclin-dependent kinases (Cdks) and quits cells from
mitosis (Lee et al., 2018). The LIM homeodomain transcription
factor Islet1 (Isl1) is expressed in multiple organs and plays
essential roles during embryogenesis. Isl1 is required for the
survival and specification of motor neurons, Isl1 orchestrates
the process to generate cholinergic neurons in the spinal cord
and forebrain. In this experiment, the expressions of Cdc20
and TACC3 are decreased and the expressions of Cdkn1a and
Isl1gene are up-regulated after NSCs was exposed to MDHB
(Figure 7).

In this study, we showed that MDHB may induce NSCs
to differentiate into cholinergic neurons by regulating cell
cycle-associated proteins and cholinergic signal pathway
(Supplementary Figure S1). Ki67 is a nuclear protein associated
with cellular proliferation (Calzolari et al., 2015). The results
were consistent with the transcriptome levels. Western blot was
used to detect the proteins which included the phosphorylation
of AKT and total AKT in the PI3K pathway at the fifth day
of NSCs differentiation. We found that MDHB inhibited
the phosphorylation of AKT, but the total amount of AKT
was not affected. Subsequently, the classical WNT pathway
protein was verified, and the data that MDHB regulates
phosphorylation of GSK3β at tyrosine 216 (Y216), but does
not cause phosphorylation of GSK3β at serine 9 (S9). MDHB
activates GSK3β and cause β-catenin degradation which leads
to the inability to enter the nucleus and initiate the expression
of cholinergic-related genes and cell cycle-related genes. At the
transcriptome level, it was also found that the expressions of
Cdc20 and Tacc3 were decreased and Cdkn1a and cholinergic
genes was upregulated. The qPCR assay of Isl1, Cdc20, Tacc3,
and Cdkn1a revealed that Cdc20 and Tacc3 were down-regulated,
Isl1 expression was also increased by immunofluorescence. In
this process, β-catenin may control the expression of the Isl1 and
Tacc3. In summary, MDHB may promote NSCs differentiation
into cholinergic neurons by inhibiting the proteins in the PI3K
signaling pathway and activating the proteins in GSK3β signaling
pathway to regulate the expression of cholinergic gene (Figure 8).
The differentiation-inducing agents such as MDHB may lead
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to new therapeutics that act by enhancing the contribution of
newborn neurons to neurodegeneration and CNS repair.
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