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Abstract

Background and Aims: The tumor microenvironment (TME) exerts an important role

in carcinogenesis and progression. Several investigations have suggested that

immune cell infiltration (ICI) is of high prognostic importance for tumor progression

and patient survival in many tumors, particularly prostate cancer. The pattern of

immune infiltration of PCa, on the other hand, has not been thoroughly understood.

Methods: The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus

(GEO) datasets on PCa were obtained, and several datasets were merged into one

data set using the “ComBat” algorithm. The ICI profiles of PCa patients were then to

be uncovered by two computer techniques. The unsupervised clustering method

was utilized to identify three ICI patterns in tumor samples, and Principal

Component Analysis (PCA) was conducted to estimate the ICI score.

Results: Three different clusters of three ICIs were identified in 1341 PCa samples,

which also correlated with different clinical features/characteristics and biological

pathways. Patients with PCa are classified into high and low subtypes based on the

ICI scores extracted from immune‐associated signature genes. High ICI score

subtypes are associated with a worse prognosis, which may intrigue the activation of

cancer‐related and immune‐related pathways such as pathways involving Toll‐like

receptors, T‐cell receptors, JAK‐STAT, and natural killer cells. The ICI score was

linked to tumor mutation load and immune/cancer‐relevant signaling pathways,

which explain prostate cancer's poor prognosis.

Conclusion: The findings of this study not only advanced our knowledge of the

mechanism of immune response in the prostate tumor microenvironment but also

provided a novel biomarker, that is, the ICI score, for disease prognosis and guiding

precision immunotherapy.
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1 | INTRODUCTION

Prostate cancer remains one of the leading worldwide health

concerns in males. Each year, over 230,000 new instances of

prostate cancer are discovered in the US, and about 195,000 radical

prostatectomy procedures are carried out.1,2 According to the latest

data from the American Cancer Society (ACS), the relative survival

rates for prostate cancer patients at 5, 10, and 15 years are 99%,

98%, and 96% respectively The percentage of men without prostate

cancer in the overall population.3 These data indicate that the

extensive majority of new presentations are with locally advanced

diseases, representing significant healthcare and substantial eco-

nomic burdens. Up to 35% of men who have radical prostatectomy

will develop PSA recurrence within 10 years of surgery, which is

often brought on by micro‐metastatic disease after surgery, even

though early detection gives the chance for curative treatment.4–6

Recent advancements in the treatment of prostate cancer have

significant implications for both non‐metastatic and metastatic

settings. In patients with high‐risk, non‐metastatic prostate cancer,

the combination of abiraterone and prednisolone with androgen

deprivation therapy (ADT) is emerging as a new standard treatment.

This therapeutic approach is supported by robust clinical evidence

indicating its efficacy in prolonging survival without progression of

the disease.7 In contrast, for patients with metastatic prostate cancer

initiating long‐term ADT, the concurrent use of enzalutamide and

abiraterone is not recommended. Studies have shown that while each

agent separately enhances the effectiveness of ADT, their combina-

tion does not yield additional benefits and may increase the risk of

adverse effects.7 Furthermore, the addition of abiraterone to ADT

has been demonstrated to maintain clinically significant improve-

ments in survival for a duration extending beyond 7 years,

highlighting its long‐term benefits in managing prostate cancer.7

Currently, molecular marker profiles have been established to

differentiate between aggressive and indolent forms of prostate

cancer (PCa). However, there remains a significant need to identify

new and improved predictive markers to increase the precision of

diagnostic predictions. Urinary liquid biopsies, which are noninvasive

and enriched with specific biomarkers, offer a promising avenue for

detection. Additionally, immune cell infiltrates in tumors, comprising

B‐lymphocytes, T‐lymphocytes, dendritic cells, macrophages, granu-

locytes, monocytes, and various polarized immune cells, have the

potential to influence cancer progression. Bone sialoprotein (BSP) is

associated with accelerated development of bone metastases,

whereas osteopontin (OPN) is useful for monitoring chemotherapy

responses in castration‐resistant prostate cancer (CRPC). Moreover,

certain microRNAs, such as miRNA‐375, linked to lymph node

involvement and metastasis, miRNA‐141, essential for epithelial‐to‐

mesenchymal transition, and miRNA‐21, associated with disease

pathogenesis and castration resistance, highlight the utility of these

biomarkers. Serum microRNAs from the miRNA‐200 and miRNA‐17

families have been shown to correlate with prostate‐specific antigen

(PSA) response and overall survival in CRPC patients treated with

docetaxel.8

Multiple works have demonstrated that immune cell infiltration

(ICI) is crucial to the prognosis of various solid tumors.9–11 The

immune system has an excellent ability to recognize and kill

potentially harmful cells (such as infected cells or cancer cells) that

enter the body. However, in most tumor patients in progress, the

antitumor immune response has never occurred or has been shut

down by cancer. One effective way to combat tumors is to activate

the patient's defense system through immunotherapy,12,13 but most

immunotherapies based on specific T cell receptors (TCRs) only

benefit subgroups of patients.14,15 Immune cell infiltration (ICI), one

of the leading players in the tumor microenvironment (TME),

participates in tumourigenic progression in multiple tumors; the

profiles of ICI‐involved genes can be leveraged to predict outcomes

of cancer patients and guide neoadjuvant immunotherapies.9–11

However, the ICI landscape in prostate cancer has yet been not

completely understood. In the present study, the ICI genes of 1341

patient samples from six public datasets were obtained to derive a

comprehensive outlook on immune response patterns in prostate

cancer.

2 | MATERIAL AND METHODS

2.1 | Data set

Six accessible databases (GSE54460,16 GSE107299,17

GSE116918,18 Taylor (GSE21034),19 DKFZ2018,20 our PCa

cohort,21 and TCGA‐prostate cancer) were included in the study.

Among the datasets, RNA‐sequence data (Fragments Per Kilo‐base

Million [FPKM] values) of PCa data set were sourced from theTCGA

website (https://portal.gdc.cancer.gov/), GSE54460, GSE107299,

GSE116918, Taylor's data were obtained from Gene Expression

Omnibus (GEO) using the R package GEOquery.22 The DFKZ2018

was obtained from cBioPortal (https://www.cbioportal.org/).23 The

meta‐GEO data were merged to eliminate the batch effect using the

“ComBat” algorithm (Figure S1A and B).24 GSE54460, GSE107299,

GSE116918, GSE21034, DKFZ2018, and TCGA‐prostate cancer

were considered as the training set, while our PCa cohort was

regarded as the testing set. Among these datasets, progression‐free

interval event (PFI) data for TCGA PCa and GSE70768, GSE116918,

and Taylor were available in these four datasets.

2.2 | Unsupervised clustering analysis using a
consensus algorithm

Using the “CIBERSORT” R package, LM22 immune cell sets, and

1,000 alignments, we estimated the relative infiltration fraction of

immune cells in PCa.25 To assess the immune and matrix composition

of each PC sample (immune and matrix scores), an estimated

approach was used.26 Using an unsupervised hierarchical method,

we grouped the PCa samples following each sample's ICI pattern.

The “Pam” approach using Euclidean and Ward linkage was utilized in
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this study, which was done using the “ConsensuClusterPlus” R

package.27

2.3 | Differentially expressed analysis among these
ICI subgroups

Based on the invasion of immune cells, patients are classified into ICI

clusters and genes linked to the ICI phenotype are identified. To

identify differentially expressed genes (DEGs) in ICI subtypes, we

carried out differentially expressed analysis using the criteria of a

P‐value of lower than 0.05 (after adjustment) and an absolute fold

change of beyond 0.5, which was achieved by using the “Limma” R

package.28

2.4 | Establishment of ICI score

The expression levels of DEGs were utilized in conjunction with

unsupervised clustering to categorize patients in the TCGA data set.

Additionally, gene features A and B were assigned to the DEGs that

were favorably and negatively linked with the gene cluster

characteristics,29 respectively. The dimension of gene signatures A

and B was then minimized using Boruta's technique, and PCA was

utilized to acquire PC I as a feature score. Ultimately, the ICI score for

each patient was determined using a method identical to that used to

calculate the Gene Expression Ranking Index.

∑ ∑ICI score = PCIA + PCIB

2.5 | Genomic alteration data

The mutation data of the TCGA‐PCa cohort were obtained from

the TCGA data set (https://www.cancer.gov/tga/). Tumor Muta-

tional Burden (TMB) was calculated based on the overall count of

mutations that result in amino acid changes in PCa. We used the

“oncoplot” function of the ComplexHeatmap package to compare

somatic changes in PCa driver genes with high and low ICI

scores.30 Twenty‐five of the most frequently mutated genes were

shown.

3 | RESULTS

3.1 | Landscape of immune cell infiltration in PCa

To begin, the relative fraction of immune cells in PCa tumor tissues

was quantified using the CIBERSORT and ESTIMATE methods on a

meta‐cohort of 1341 tumor samples in immune cells infiltration (ICI)

profiles (DKFZ2018, GSE21034, GSE54460, GSE107299,

GSE116918, and TCGA‐PCa cohort) (Table 1). Secondly, the

“ConsesusClusterPlus” package of R software was used to classify

PCa patients into three groups based on a random clustering analysis.

One thousand, three hundred forty‐one PCa patients were

unsupervised consensus clustered into 0 to 8 clusters. The change

in the cumulative distribution function curve area in proportion to its

initial value shows that starting from three clusters, the sample is

almost completely stably distributed (Figure S2A and B).

The CIBERSOFT program comprehensively compared the pro-

files of TME cell infiltration patterns across the three ICI clusters

(Figure 1A). Significant variations in PFI survival were observed

across three distinct ICI subtypes (log‐rank test, p = 0.039; Figure 1B),

but not for OS, DFI, and DSS (Figure 1C–E). To show the

predominance of immune cell contacts in TME, we also construct

correlation matrix heat maps (Figure 1F). We examined the immune

cell makeup of the tumor environment to further clarify the inherent

biological variations that result in various clinical presentations. ICI

cluster A is distinguished by extremely naïve B cells, T cells CD8, T

cells follicular helper, T cells regulatory (Tregs), active NK cells,

Monocytes, M0 macrophages, and resting Mast cells. T cells CD4

memory resting, M1 and M2 macrophages, Dendritic cells resting,

Stromal score, and immunological score were substantially greater in

patients in ICI group B. Plasma cell infiltration was increased in ICI

cluster C subjects (Figure 1G).

TABLE 1 Information of the six publicly available datasets.

Data set Country
Number of
samples Transcriptome platform

Number of rows
per platform Tissue

TCGA PCa USA 52N, 499 T Illumina HiSeq 60484 Fresh frozen

DKFZ2018 USA 118 T Illumina HiSeq. 2000 20871 Fresh frozen

Taylor(GSE21034) USA 29N, 150 T Affymetrix Human Exon 1.0 ST Array 45288 Fresh frozen

GSE54460 USA 107 T Illumina HiSeq. 2000 60656 FFPE

GSE107299 Canada 213 T Affymetrix Human Transcriptome
Array 2.0

23935 Fresh frozen

GSE116918 United Kingdom 248 T Almac Diagnostics Prostate Disease
Specific Array

21162 FFPE

Abbreviations: FFPE, Formalin‐fixed Parrafin embedded tissue blocks; GSE, Gene Expression Omnibus Series; N, paracancerous normal samples;
T, tumor samples.
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F IGURE 1 (See caption on next page).
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To identify statistically significant changes in immune cells and

PD1/PD‐L1/PD‐L2 expression levels among the three ICI sub-

types, the Kruskal‐Wallis test was used. PD1/PD‐L1 expression

was significantly elevated in ICI cluster A, while PD1/PD‐L1/PD‐

L2 expression was substantially reduced in ICI cluster C

(Figure 1H–J).

3.2 | Recognition of immune gene clusters

Differentially expressed analysis was used to find the transcriptome

variance across these subtypes using the limma package of the R

program, which shed light on the underlying biology of the various

immunophenotypes. The 1405 DEGs were identified (Table S1).

Next, the unsupervised clustering approach was performed to

investigate the 1405 DEGs, and two genomic clusters, gene clusters

A and B, were discovered in the TCGA PCa cohort. The 1273 genes

that were shown to have a favorable association with gene clusters

were given the designation of ICI gene feature A, whereas the 132

genes were given the designation of ICI gene feature B (Table S2).

Additionally, we employed the Boruta approach to reduce the size of

ICI gene signatures A and B to eliminate unnecessary or extraneous

genes. The 300 DEGs found in the two genomic clusters with the

highest abundances were shown in a heat map along with their

transcriptome profiles (Figure 2A).

The two genomic clusters were compared using Kaplan‐Meier

survival analysis, and the difference in survival time's significance was

examined using the log‐rank test. According to our research,

individuals who have The gene cluster A were associated with a

better outcome, but those who possessed the gene cluster B had a

worse prognosis for PFI (log‐rank test, p < 0.001; Figure 2B). Gene

cluster A was observed in immune‐enriched GO terms, including

negative regulation of immune system processes, T cell activation,

leukocyte proliferation, and leukocyte cell‐cell adhesion, as shown in

Figure 2C and D and Table S3, Gene cluster B was enriched in cell

fate specification, neuronal cell body, neuronal cell body membrane,

cation channel activity, and neuropeptide hormone activity. Gene

cluster A had high fractions of plasmablasts, CD8 + T cells, T follicular

helper cells, Regulatory T cells (Tregs), Monocytes, and Monocyte‐

derived macrophages (M0 Macrophages). Gene cluster B was

enriched by resting memory CD4 + T cells, M1 macrophages, M2

macrophages, Resting dendritic cells, Resting mast cells, Stromal

score, and Immune score (Figure 2E). The immune score in gene

cluster B was significantly higher in four datasets, while Stromal

Signature and Tumor Purification were relatively higher in gene

cluster A.

We performed a Person correlation analysis between ICI

signature genes and PD1/PDL1/PD‐L2 expression levels and found

that the majority of these genes had a strong relationship with these

markers (Table S4). Immunocytes and PD1/PD‐L1/PD‐L2 expression

levels were compared across the two genetic groups using the

Kruskal‐Wallis test for statistical significance. Expression levels of

PD1/PD‐L1 were found to be substantially greater in gene cluster B,

whereas expression levels of PD1/PD‐L1/PD‐L2 were found to be

significantly lower in gene cluster A (Figure 2F,G,I). The greatest

concentration of immune cells and stromal cells was found in cluster

B of genes, whereas the greatest concentration of tumor cells was

found in cluster A of genes. In conclusion, Our categorization system

is scientific and fair since the immunological profile and prognosis

profile are consistent across gene clusters.

3.3 | Establishment of the ICI score

We utilized principal component analysis (PCA) to construct two total

scores to produce a quantitative indication of PCa patients’ ICI status:

(1) ICI score A for ICI signature gene A; (2) ICI score B for ICI

signature gene B. The ICI score A B was calculated separately for

each patient in this study and was used as the total of relevant

individual scores. Finally, the ICI score was developed as a predictive

marker score. Using the best critical values, patients in the meta‐

cohort were divided into two groups with high or low ICI scores.

Figure 3A depicts the patient distribution across the three gene

groups. After identifying the usefulness of ICI scores within theTCGA

cohort, we next analyzed the immunological activity and tolerance

conditions present within each group within the TCGA cohort.

CD274, CTLA4, HAVCR2, IDO1, LAG3, and PDCD1 were classified

as signatures associated with immunological checkpoints, whereas

CD8A, CXCL10, CXCL9, GZMA, GZMB, IFNG, PRF1, TBX2, and TNF

were classified as signatures associated with immune activation.

Except for LAG3 and PDCD1, the Wilcoxon test revealed that the

majority of immune checkpoint and immunological activity‐related

genes were substantially overexpressed in the high ICI group

(Figure 3B). Ribosomal and Oxidative Phosphorylation Pathway were

significantly detected by gene set enrichment analysis (GSEA) in the

low ICI score group, whereas the high ICI group was enhanced by the

Toll‐like receptor signaling pathway, B‐cell receptor signaling path-

way, Natural killer cell‐mediated cytotoxicity, JAK‐STAT signaling

F IGURE 1 The Landscape of Immunogenomic profiling in theTME of PCa. (A) Hierarchical clustering of tumor‐infiltrating immune cells in six
independent PCa cohorts. The row represents the tumor‐infiltrating immune cells, and the row represents the sample. (B–E) The Kaplan‐Meier
curve for PFI (B), OS (C), DFI (D), and DSS (E) in meta‐cohort with immune cell infiltration. The log‐rank test showed a P value less than 0.05.
(F) The proportion of immune cells infiltrating the tumor in the three ICI clusters. We also plotted the immune score and stromal score of the
three ICI clusters. The Kruskal‐Wallis test was used to compare the statistical difference between three ICI clusters. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001. (G) Cellular interaction of the tumor‐infiltrating immune cell types. (H and I, J) Differences in PD‐L1 (H) and PD1 (I),
PD‐L2 (J) expression between different ICI clusters (Kruskal‐Wallis test, p < 0.0001).
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F IGURE 2 (See caption on next page).
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pathway, and B‐cell receptor signaling pathway (Figure 3C and D;

Table S5).

Patients with high ICI scores had considerably lower PFI rates

than those with low ICI scores in the merging data, according to

the Kaplan‐Meier plotter (log‐rank test, p < 0.05; Figure 3E),

GSE116918 (log‐rank test, p < 0.05; Figure 3F), GSE107299 (log‐

rank test, p < 0.05; Figure 3G), DKF2018 (log‐rank test, p < 0.05;

Figure 3H), Taylor data set (log‐rank test, p < 0.05; Figure 3I), but

not in the TCGA PCa data set (Figure 3J). The findings of the

Univariate and Multivariate Cox Regression Analysis also suggest

that the ICI score was an independent predictive predictor for PFI

(Figure S3A,B).

3.4 | Relationship between ICI scores and somatic
mutations

Tumor mutation burden (TMB) is an independent biomarker of ICI

response, except for PD‐L1 expression.14,31 TMB is linked to

immunotherapy response in a variety of tumor types and treatment

methods, including Checkpoint blockade immunotherapy and cellular

therapy.31,32 TMB is a measurement of mutations in a tumor and is an

important genomic marker that is closely linked to Immunomodula-

tory therapy and survival prognosis.33,34 Given the clinical signifi-

cance of TMB, we intended to investigate the inherent link between

TMB and ICI scores to determine the genetic imprint of each ICI

subgroup. Figure 4A shows that patients with a high ICI score had a

TMB that was much higher than patients with a low ICI score

(p < 0.05). Meanwhile, correlation analysis revealed an obvious and

inverse link between ICI scores and TMB (R = −0.17, p = 0.00017;

Figure 4B). As depicted in Figure 4C,D, we discovered that patients

with low TMB had superior PFI compared to those with high TMB

(p < 0.05). Overall, these findings suggest that the ICI score was

linked to TMB and an effective measure of potential predictive

factors of immunotherapy response.

Additionally, somatic variations in PCa driver genes were

analyzed using the maftools to compare the frequency of

occurrence across low and high ICI categories.30 The top 25

mutated genes with the greatest frequency of change were shown

(Figure 4E, Table 2). Out of these genes, SPOP, TP53, TTN,

KMT2D, FOXA1, MUC16, KMT2C, SYNE1, and ATM exhibited

significant differences between the low ICI subgroup and the high

ICI subgroup. These discoveries can potentially offer novel

understandings regarding the immune checkpoint inhibitor com-

position in cancer and the genetic mutations involved in immune

checkpoint blockade therapy.

3.5 | The established ICI scores in predicting the
effectiveness of clinical features

The link between clinical features and established ICI scores was

evaluated. High ICI scores were linked with high PSA/Gleason

scores. Stratified survival analysis suggests that ICI scores were

linked to survival. Both high ICI and high Gleason scores were

linked to significantly different rates of patient survival depending

on the ICI score subtype (p < 0.05, Figure 5A–D). Among these

patients with a Gleason score of more than 7 (N = 241), high ICI

scores were related to worse survival, similar results were

produced among the patients with a Gleason score of less than 7

(N = 567). Similar results were detected between the established

ICI model and the PSA level (Figure 5E–H). Among these patients

with PSA of more than 10 ng/l (N = 253), high ICI scores were

related to worse survival and similar results were produced among

the patients with PSA of less than 10 ng/l (N = 555). Based on

Figure 5I,J, it was discovered that a higher ICI score is linked with a

positive response to treatment in the meta‐cohort (CR/PR:

N = 163; PD/SD: N = 30). Meanwhile, Survival analysis by strata

showed that the status of primary therapy outcome success

correlated with PFI. Among these patients with Partial/Complete

response, high ICI scores were related to worse survival

(Figure 5K), and similar results were produced among the patients

with Stable/Progressive Disease (Figure 5L).

3.6 | Validation of constructed ICI scores in our
PCa cohort

Our study21 was deemed eligible for inclusion in the testing set.

Patients with a high ICI score had aTMB that was significantly greater

than those with a low ICI score (Figure 6A). meanwhile, High ICI

scores were linked with high PSA(High PSA: N = 20; Low PSA:

N = 44)/Gleason scores (High Gleason: N = 40; Low Gleason: N = 24)/

TNM stage (Figure 6B–D). These findings were lined with the

abovementioned results. Due to the lack of survival time in the

validated cohort, survival analysis was not conducted.

F IGURE 2 Hierarchical clustering of prostate cancer (PCa) yields two stable subtypes in meta‐cohort. (A) Unsupervised clustering of
common DEGs between the three ICI clustering groups was performed to classify patients into two groups: gene clusters A and B. (B)
Kaplan‐Meier curves for the two genomes between PCa patients. The log‐rank test showed statistical significance (p < 0.05). (C and D) Gene
ontology (GO) enrichment analysis of two ICI‐related signature genes: ICI signature gene A (C) and B (D). The x‐axis indicates the number of
genes in each GO term. (E) The proportion of tumor‐infiltrating immune cells in the two gene clusters. We also plotted the immune and stromal
scores of the two ICI clusters. Statistical differences between the three ICI clusters were compared by the Kruskal‐Wallis test. *p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001. (F–H) The difference in PD‐L1 (F) and PD1 (G), PD‐L2 (H) expression among different ICI gene clusters
(Kruskal‐Wallis test, p < 0.0001). (F and G, I) Differences in PD‐L1 (G) and PD1 (H), PD‐L2 (I) expression between two gene clusters
(Kruskal‐Wallis test, p < 0.0001).
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4 | DISCUSSION

The TME exerts an essential role in the onset and advancement of

cancer. In the complex tumor microenvironment, immune cells such

as B‐lymphocytes, T‐lymphocytes, dendritic cells, macrophages, and

others can potentially control cancer development through diverse

immune responses. However, the presence of immunosuppressive

cells like myeloid‐derived suppressor cells (MDSCs), regulatory T cells

(Tregs), and tumor‐associated macrophages (TAMs) significantly

impedes this process. These cells release reactive oxygen species

and other inhibitors that suppress the activity of natural killer (NK)

cells, which are crucial for targeting and eliminating cancer cells.

Additionally, an increased presence of fibroblasts in the tumor

environment secretes high levels of metalloproteinases, aiding cancer

progression by facilitating the shedding of ligands necessary for NK

cell targeting of cancer cells. Fibroblasts also directly inhibit NK cell

function by preventing the upregulation of cytokine‐induced activat-

ing receptors on NK cells.35 The TME is crucial for Cancer initiation

and advancement.36,37 The subcategories of memory T cells consist

of CD4+ and CD8+ memory T cells, CD8+ memory T cells can

eliminate cancerous cells via the secondary identification of tumor‐

associated antigens. The expansion of T cells is stimulated by CD4+

memory T cells, which in turn hinder the proliferation of tumor

cells.38 Growing bodies of research indicate that the activation of

CD4 memoryT cells is linked to favorable outcomes, as demonstrated

in various malignancies including pancreatic adenocarcinoma, pros-

tate cancer, cervical cancer, and non‐small cell lung cancer.39,40 A

major hurdle for effective cancer immunotherapy is an immuno-

suppressive tumor microenvironment. Cancer immunotherapy has

significantly shifted the paradigm of cancer treatment. Focusing on

genetic aberrations, CDK12‐specific focal tandem duplications can

alter the expression levels of oncogenic drivers such as CCND1 and

F IGURE 3 Establishment of ICI score model. (A) Alluvial diagram of ICI gene cluster distribution in groups with different ICI clusters, ICI
scores, and survival outcomes. (B) Immune‐checkpoint‐relevant genes (IDO1, CD274, HAVCR2, PDCD1, CTLA4, and LAG3) and immune‐
activation‐relevant genes (CD8A, CXCL10, CXCL9, GZM A, GZMB, PRF1, IFNG, TBX2, and TNF) expressed in high and low ICI score subgroups.
(C) Enrichment plots showing DNA replication, Nucleotide excision repair, Proteasome, RNA degradation, and Spliceosome pathway in the low
ICI score subgroup. (D) Enrichment plots showing B cell receptor signaling pathway, JAK stat signaling pathway, Natural killer cell‐mediated
cytotoxicity, T cell receptor signaling pathway, and Toll‐like receptor signaling pathway in the high ICI score subgroup. (E–J) Kaplan‐Meier curves
of PFI for high and low ICI score groups in the meta cohort(E), DKFZ 2018 cohort (F), Taylor cohort (G), GSE107299 (H), GSE116918 (I), and
TCGA PCa cohort (J). Log‐rank test, p < 0.05 was defined as statistically significant.

F IGURE 4 Correlation between ICI scores and Somatic mutation. (A) The difference of TMB between high and low ICI score groups
(Wilcoxon test, p = 0.0071). (B) Scatter plots describe the positive correlation between the ICI scores and the mutation load in the meta‐cohort.
The Spearman correlation between ICI score and mutation load was exhibited (p = 0.00017). (C, D) The Kaplan‐Meier curve of the high TMB
group and the lowTMB group in the meta cohort (Log‐rank test, p = 0.0043). (E) The oncoPrint was constructed using high ICI scores on the left
and low ICI scores on the right. Individual patients are represented in each column.

YIN ET AL. | 9 of 15



TABLE 2 Relationship between ICI score and somatic variation.

Gene H‐wild H‐mutation L‐wild L‐mutation p value

FOXA1 337(97.12%) 10(2.88%) 114(90.48%) 12(9.52%) 0.005346

NELL1 347(100%) 0(0%) 122(96.83%) 4(3.17%) 0.005689

CDH12 347(100%) 0(0%) 122(96.83%) 4(3.17%) 0.005689

OR6K2 347(100%) 0(0%) 122(96.83%) 4(3.17%) 0.005689

GAD2 347(100%) 0(0%) 122(96.83%) 4(3.17%) 0.005689

APOB 346(99.71%) 1(0.29%) 121(96.03%) 5(3.97%) 0.007

PCDH15 345(99.42%) 2(0.58%) 121(96.03%) 5(3.97%) 0.023206

NWD1 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

NXN 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

PCDHGA8 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

C19orf47 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

VARS 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

ARHGEF5 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

SNX17 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

LRRC4C 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

ZNF106 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

EGF 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

PTPRN 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

CNTNAP1 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

ZNF326 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

RFC3 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

EXT1 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

SPTBN4 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

ATG2A 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

SMCHD1 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

USP12 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

CLASP1 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

KIN 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

NID1 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

ZNF746 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

CENPJ 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

ZMYM4 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

ARID5B 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

NOX3 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

CHRNA10 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

XPNPEP2 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

FHOD1 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

CYP4Z1 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853

SLC6A5 347(100%) 0(0%) 123(97.62%) 3(2.38%) 0.025853
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TABLE 2 (Continued)

Gene H‐wild H‐mutation L‐wild L‐mutation p value

ACACA 346(99.71%) 1(0.29%) 122(96.83%) 4(3.17%) 0.027454

TIAM2 346(99.71%) 1(0.29%) 122(96.83%) 4(3.17%) 0.027454

THSD7B 346(99.71%) 1(0.29%) 122(96.83%) 4(3.17%) 0.027454

VPS13B 346(99.71%) 1(0.29%) 122(96.83%) 4(3.17%) 0.027454

PLAA 346(99.71%) 1(0.29%) 122(96.83%) 4(3.17%) 0.027454

SCN5A 346(99.71%) 1(0.29%) 122(96.83%) 4(3.17%) 0.027454

GPR158 346(99.71%) 1(0.29%) 122(96.83%) 4(3.17%) 0.027454

PTPRC 346(99.71%) 1(0.29%) 122(96.83%) 4(3.17%) 0.027454

USH2A 342(98.56%) 5(1.44%) 119(94.44%) 7(5.56%) 0.028886

Note: The p values of different ICI subtypes were tested by the chi‐square test.

F IGURE 5 The ICI Scores correlated with clinical features. (A and B, C, D) ICI scores in groups with different Gleason (A, B)/PSA scores
(C, D). Wilcox on test, p < 0.0001. (E–H) Stratified survival analysis showed that ICI scores were associated with survival. Kaplan‐Meier
curves for patients with high and low ICI scores and different Gleason (E, F)/PSA scores (G, H) in the meta cohort. Log‐rank test, P < 0.05.
(I, J) ICI scores in groups with a different clinical response status. (K, L) Kaplan‐Meier curves for patients with high and low ICI scores in the
TCGA PCa cohort.
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CDK4. This alteration suggests a potential vulnerability of CDK12‐

mutated tumors to CDK4/6 inhibitors. Additionally, the presence of

CDK12 aberrations, alongside mismatch repair deficiency, can serve

as a biomarker for predicting treatment responses. This under-

standing underpins ongoing clinical trials exploring the combined use

of immune checkpoint blockade and CDK4/6 inhibition as a

promising therapeutic strategy for cancer.41 Cancer immunotherapy

has demonstrated lasting clinical benefits in patients with cancer.42,43

Several studies reported that immunosuppressive therapy is most

effective in eradicating tumor‐causing growth and can improve the

quality of life of patients with recurring or metastatic PCa.44–46

However, immunotherapy is now a part of the armamentarium for

prostate cancer, but there remains room for improvement.44 One

major drawback of immunosuppressive treatment is that it has only

been tried out on a limited number of people.47

Although several studies have demonstrated that TME was

involved in the occurrence of head and neck squamous cell

carcinoma,48 hepatocellular carcinoma,49 and ovarian cancer39 using

public datasets, these studies failed to validate these results in

another data set. In this study, we established a method to quantify

the full tumor immune environment in PCa and validated the findings

in another data set. Our findings suggest that the ICI score is a

reliable predictor and prognostic biomarker for assessing response to

immunosuppressive treatment.

More and more pieces of evidence demonstrated that Immune

suppression is facilitated by immune cell malfunction in PCa‐TME,

which is related to tumor survival and progression. In this work, we

looked at ICIs from a meta‐analysis of 1341 PCa samples and divided

them into three immunological subgroups. Our findings support

earlier research suggesting CD4+ helper T cells, dendritic cells,

F IGURE 6 Validation of ICI scores in our PCa cohort. (A) The box plot exhibited the distribution of TNM between high and low ICI groups.
(B–D) ICI scores in groups with different PSA (B), Gleason (C), and TNM stage (D).
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plasma cells, M1 polarized macrophages, M2 polarized macrophages,

and a higher immunological score is connected with patient

prognosis.50,51 In the work, ICI cluster C has a higher abundance of

macrophage M2 and a better prognosis, which is controversial in

previous studies.52,53 We speculated the reason is that the

CIBERSORT method itself is developed based on microarray data,

and sequencing data may not always be appropriate. Multiple

research works have identified prostate cancer as an immunogenic

disorder, thereby emphasizing the prudent considerations of immune

cell function in the tumor‐associated microenvironment during tumor

progression.54,55 Currently, the precise contribution of immune cells

in the tumor microenvironment toward the pathogenesis of cancer,

particularly in the context of prostate cancer, remains incompletely

understood. While immunosuppressive therapy has shown effective-

ness in managing malignancies such as melanoma, its application in

prostate cancer has not yet demonstrated similar significant

therapeutic potential. In this context, it is pertinent to note that

patients with melanoma of unknown primary (MUP) often experience

better outcomes compared to those with stage‐matched known

primary melanoma (MKP). This difference is likely attributable to the

higher immunogenicity observed in MUP, which may induce an

immunologically mediated regression of the primary tumor site. Such

observations highlight the varying responses to immunotherapy

across different types of malignancies and underscore the need for

further research in this area.56 Immunosuppressive therapy is

effective in less than 20% of prostate cancer patients when

compared with other tumors displaying lower levels of immune

dysfunction.57 This suggests that the immune phenotype in tumors is

also not an absolute predictor of immunotherapeutic response. We

speculate that these molecular changes during tumor formation may

disturb cell‐to‐cell communication among immune cells that are

filtering, thereby causing an imbalance in immune tolerance and

activity.

In this study, we postulated that developing personalized

treatment strategies for individual patients could be facilitated by

the concurrent analysis of the ICI subgroup and immune‐related

gene expression patterns. Our primary focus is on identifying the

molecular features of PCa‐TME that modulate the immune

response. To achieve this, we first identified immune‐related

genes utilizing the recently proposed ICI gene cluster. Among

these gene clusters, our analysis revealed that ICI gene cluster B

exhibited elevated scores in terms of immune response‐related

parameters such as immune scores, matrix scores, as well as other

cell types involved in the immune response. These results suggest

the presence of an immune‐cold phenotype. On the contrary, ICI

gene cluster A exhibited a lower immune score and a greater

abundance of inflammatory cells. Besides, we observed that high

matrix scores were linked to a higher infiltration of TAM and

increased resting/activated DCs in ICI gene cluster B, suggesting

an antibody‐based immune response in this cluster. Moreover, ICI

gene cluster A exhibited a more advantageous immune‐activated

phenotype with the highest concentration of CD8 + T cells,

activated follicular helper T cells, regulatory T cells (Tregs), and

antibody‐secreting plasma cells. A tumor‐suppressive immune

response was linked to a favorable outlook and increased ICI

scores in ICI gene cluster B. In contrast, we posited that patients

within ICI gene cluster A might reap the benefits of immuno-

therapy, given the immune‐activated phenotype observed within

this cluster, while a lack of immune activity within this cluster was

correlated with a worse prognosis.

To summarize, we have thoroughly investigated the ICI profile of

PCa to obtain a comprehensive understanding of its impact on

regulating antitumor immune responses. Our analysis revealed that

differences in ICI patterns were linked to tumor heterogeneity and

therapeutic complexities, underscoring the clinical significance of the

systematic appraisal of tumor ICI patterns. Moreover, this can aid in

identifying optimal candidates for targeted immunotherapeutic

interventions.
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