

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(3-Ethylphenyl)-4,6-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile

Mansour S. Al-Said,^a Mostafa M. Ghorab,^a Hazem A. Ghabbour,^b Suhana Arshad^c and Hoong-Kun Fun^c*‡

^aMedicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, PO Box 2457, Rivadh 11451, Saudi Arabia. ^bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 2 May 2012; accepted 3 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.161; data-to-parameter ratio = 15.5.

In the title compound, $C_{16}H_{16}N_2O$, the essentially planar 1,2dihydropyridine ring [maximum deviation = 0.021(1) Å] makes a dihedral angle of $85.33 (8)^\circ$ with the benzene ring. In the crystal, molecules are linked into a chain along the baxis via C-H···O interactions.

Related literature

For the biological activities and applications of 2-pyridone derivatives, see: Abadi et al. (2009); Cheney et al. (2007); Aqui & Vonderheide (2008); Ambrosini et al. (1997); Murata et al. (2001); Ghorab et al. (2009, 2010); Al-Said et al. (2010). For related structures, see: Lynch & McClenaghan (2002); Elgemeie & Jones (2004).

CN C

Experimental

Crystal data $C_{16}H_{16}N_2O$

 $M_r = 252.31$

‡ Thomson Reuters ResearcherID: A-3561-2009.

 $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Monoclinic, $P2_1/c$ a = 8.3834 (3) Å b = 7.1852 (2) Å c = 23.5264 (8) Å $\beta = 93.203$ (3)° V = 1414.93 (8) Å ³	Z = 4 Cu K\alpha radiation $\mu = 0.59 \text{ mm}^{-1}$ $T = 296 \text{ K}$ $0.93 \times 0.46 \times 0.07 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{min} = 0.609, T_{max} = 0.960$	9742 measured reflections 2638 independent reflections 1938 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.047$ wR(F ²) = 0.161 S = 1.09	170 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$

Table 1

2638 reflections

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C4-H4A\cdotsO1^{i}$	0.93	2.32	3.2105 (18)	161
a				

Symmetry code: (i) x, y + 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors are grateful for the sponsorship of the Research Center, College of Pharmacy and the Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia. HKF and SA thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the award of Academic Staff Training Scheme (ASTS).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5134).

References

- Abadi, A. H., Ibrahim, T. M., Abouzid, K. M., Lehmann, J., Tinsley, H. N., Gary, B. D. & Piazza, G. A. (2009). Bioorg. Med. Chem. 17, 5974-5982.
- Al-Said, M. S., Ghorab, M. M., Alqasoumi, S. I., El-Hossary, E. M. & Noaman, E. (2010). Eur. J. Med. Chem. 45, 3011-3018.
- Ambrosini, G., Adida, C. & Altieri, D. C. (1997). Nat. Med. 3, 917-921.
- Aqui, N. A. & Vonderheide, R. H. (2008). Cancer Biol. Ther. 7, 1888-1889.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cheney, I. W., Yan, S., Appleby, T., Walker, H., Vo, T., Yao, N., Hamatake, R., Hong, Z. & Wu, J. Z. (2007). Bioorg. Med. Chem. Lett. 17, 1679-1683.
- Elgemeie, G. H. & Jones, P. G. (2004). Acta Cryst. E60, o2107-o2109.
- Ghorab, M. M., Ragab, F. A., Alqasoumi, S. I., Alafeefy, A. M. & Aboulmagd, S. A. (2010). Eur. J. Med. Chem. 45, 171-178.
- Ghorab, M. M., Ragab, F. A. & Hamed, M. M. (2009). Eur. J. Med. Chem. 44, 4211-4217.
- Lynch, D. E. & McClenaghan, I. (2002). Acta Cryst. E58, 0680-0681.
- Murata, T., Sugatani, T., Shimizu, K., Manganiello, V. & Tagawa, T. (2001). Anticancer Drugs, 12, 79-83.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o1679 [doi:10.1107/S1600536812019927]

1-(3-Ethylphenyl)-4,6-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile

Mansour S. Al-Said, Mostafa M. Ghorab, Hazem A. Ghabbour, Suhana Arshad and Hoong-Kun Fun

Comment

It was reported that compounds containing the 2-pyridone moiety was proven to possess several biological properties, especially anticancer activity (Abadi *et al.*, 2009; Cheney *et al.*, 2007; Aqui & Vonderheide, 2008; Ambrosini *et al.*, 1997; Murata *et al.*, 2001). Compounds containing heteroaromatic rings frequently play an important role as scaffolds of bioactive substances. It is well known that pyridone and its derivatives are among the most popular *N*-heteroaromatic compounds integrated into the structures of many pharmaceutical compounds and their structural units occur in various molecules exhibiting diverse biological activities (Abadi *et al.*, 2009). Based on the above information and as a continuation of our previous work on anticancer agents (Ghorab *et al.*, 2009; Al-Said *et al.*, 2010; Ghorab *et al.*, 2010), we report the synthesis of a novel 2-pyridone derivative which is expected to exhibit anticancer activity.

In the title compound (Fig. 1), the 1,2-dihydropyridine ring (N1/C1–C5) is essentially planar with a maximum deviation of 0.021 (1) Å at atom N1 and almost perpendicular with the benzene ring (C6–C11) with a dihedral angle of 85.33 (8)°. Bond lengths and angles are within the normal ranges and are comparable to those in the related structures (Lynch & McClenaghan, 2002; Elgemeie & Jones, 2004). The crystal structure is shown in Fig. 2. The molecules are linked into a one-dimensional chain along the *b*-axis *via* C4—H4A…O1 interactions (Table 1).

Experimental

A mixture of 2-cyano-*N*-(3-ethylphenyl)acetamide (1.88 g, 0.01 mol) and acetylacetone (1.00 g, 0.01 mol) in absolute ethanol (50 ml) containing piperidine (0.5 ml) were refluxed for 5 h. The reaction mixture was triturated with ethanol and the solid obtained was recrystallized from ethanol to give the title compound. A single-crystal suitable for an X-ray structural analysis was obtained by slow evaporation from an ethanol solution at room temperature.

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl groups. The same U^{ij} parameter was used for atoms pair C2/C14.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A crystal packing diagram of the title compound viewed along the c axis. For the sake of clarity, H atoms not involved in the intermolecular interactions (dashed lines) have been omitted.

1-(3-Ethylphenyl)-4,6-dimethyl-2-oxo-1,2-dihydropyridine-3-carbonitrile

Crystal data

C₁₆H₁₆N₂O $M_r = 252.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.3834 (3) Å b = 7.1852 (2) Å c = 23.5264 (8) Å $\beta = 93.203$ (3)° V = 1414.93 (8) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.609, T_{\max} = 0.960$

Refinement

Refinement on F^2 Hydrogen site location: inferred from neighbouring sites Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ H-atom parameters constrained $wR(F^2) = 0.161$ $w = 1/[\sigma^2(F_o^2) + (0.0972P)^2 + 0.0312P]$ S = 1.09where $P = (F_0^2 + 2F_c^2)/3$ 2638 reflections $(\Delta/\sigma)_{\rm max} < 0.001$ 170 parameters $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ 0 restraints $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL, Primary atom site location: structure-invariant $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Secondary atom site location: difference Fourier Extinction coefficient: 0.0026 (7) map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 536

 $\theta = 3.8 - 62.6^{\circ}$

 $\mu = 0.59 \text{ mm}^{-1}$

Plate, colorless

 $0.93 \times 0.46 \times 0.07$ mm

9742 measured reflections 2638 independent reflections

 $\theta_{\text{max}} = 69.8^{\circ}, \ \theta_{\text{min}} = 3.8^{\circ}$ $h = -10 \rightarrow 10$

1938 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.032$

 $k = -6 \rightarrow 8$

 $l = -28 \rightarrow 28$

 $D_{\rm x} = 1.184 {\rm Mg m^{-3}}$

Cu Ka radiation, $\lambda = 1.54178$ Å

Cell parameters from 1728 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.51182 (17)	-0.19353 (15)	0.40553 (6)	0.0771 (4)	
N1	0.43401 (15)	0.09675 (17)	0.37682 (6)	0.0565 (4)	
N2	0.8174 (2)	-0.1541 (2)	0.51433 (8)	0.0818 (5)	

C1	0.52879 (18)	-0.0253 (2)	0.41097 (7)	0.0567 (4)
C2	0.64093 (18)	0.0642 (2)	0.45059 (7)	0.0596 (3)
C3	0.65232 (18)	0.2536 (2)	0.45604 (7)	0.0574 (4)
C4	0.54774 (19)	0.3644 (2)	0.42144 (8)	0.0614 (4)
H4A	0.5523	0.4932	0.4250	0.074*
C5	0.44005 (19)	0.2869 (2)	0.38292 (7)	0.0580 (4)
C6	0.32547 (19)	0.0076 (2)	0.33530 (7)	0.0599 (4)
C7	0.1715 (2)	-0.0320 (2)	0.34863 (8)	0.0687 (5)
H7A	0.1361	0.0037	0.3838	0.082*
C8	0.0682 (2)	-0.1252 (3)	0.30994 (9)	0.0756 (5)
C9	0.1242 (3)	-0.1759 (3)	0.25855 (9)	0.0826 (6)
H9A	0.0571	-0.2395	0.2324	0.099*
C11	0.3787 (2)	-0.0421 (3)	0.28313 (8)	0.0763 (5)
H11A	0.4822	-0.0133	0.2739	0.092*
C12	-0.0998 (3)	-0.1725 (4)	0.32586 (12)	0.1040 (8)
H12A	-0.1475	-0.0635	0.3423	0.125*
H12B	-0.1637	-0.2053	0.2917	0.125*
C13	-0.1029 (3)	-0.3299 (4)	0.36728 (13)	0.1134 (9)
H13A	-0.2115	-0.3566	0.3754	0.170*
H13B	-0.0437	-0.2960	0.4018	0.170*
H13C	-0.0556	-0.4381	0.3512	0.170*
C14	0.73956 (19)	-0.0576 (2)	0.48568 (7)	0.0596 (3)
C15	0.7695 (2)	0.3428 (2)	0.49802 (9)	0.0739 (5)
H15A	0.8759	0.3053	0.4901	0.111*
H15B	0.7470	0.3047	0.5358	0.111*
H15C	0.7607	0.4757	0.4950	0.111*
C16	0.3267 (2)	0.4026 (3)	0.34699 (9)	0.0788 (6)
H16A	0.3524	0.5319	0.3524	0.118*
H16B	0.2196	0.3803	0.3578	0.118*
H16C	0.3350	0.3703	0.3077	0.118*
C10	0.2776 (3)	-0.1347 (3)	0.24493 (9)	0.0876 (6)
H10A	0.3129	-0.1697	0.2097	0.105*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0885 (9)	0.0349 (6)	0.1054 (10)	-0.0021 (5)	-0.0179 (7)	-0.0017 (5)
N1	0.0590 (7)	0.0398 (7)	0.0703 (8)	-0.0013 (5)	0.0004 (6)	0.0012 (5)
N2	0.0869 (11)	0.0633 (10)	0.0934 (12)	0.0139 (8)	-0.0113 (9)	0.0020 (7)
C1	0.0609 (8)	0.0358 (8)	0.0735 (10)	0.0006 (6)	0.0040 (7)	0.0010 (6)
C2	0.0608 (6)	0.0431 (6)	0.0747 (7)	0.0014 (5)	0.0019 (5)	-0.0009 (5)
C3	0.0564 (8)	0.0408 (8)	0.0754 (10)	-0.0031 (6)	0.0078 (7)	-0.0021 (6)
C4	0.0657 (9)	0.0343 (7)	0.0842 (11)	-0.0015 (6)	0.0040 (8)	-0.0001 (7)
C5	0.0611 (9)	0.0393 (8)	0.0740 (10)	0.0006 (6)	0.0066 (7)	0.0047 (6)
C6	0.0643 (9)	0.0441 (8)	0.0708 (10)	0.0003 (7)	-0.0015 (7)	0.0005 (6)
C7	0.0668 (9)	0.0638 (11)	0.0751 (11)	-0.0024 (8)	0.0006 (8)	-0.0010 (8)
C8	0.0698 (10)	0.0683 (11)	0.0872 (13)	-0.0069 (9)	-0.0094 (9)	0.0029 (9)
C9	0.0881 (14)	0.0756 (13)	0.0816 (13)	-0.0042 (9)	-0.0162 (11)	-0.0080 (9)
C11	0.0761 (11)	0.0758 (13)	0.0772 (12)	-0.0043 (9)	0.0074 (9)	-0.0066 (9)
C12	0.0726 (13)	0.117 (2)	0.120 (2)	-0.0191 (12)	-0.0096 (12)	-0.0005 (15)

supplementary materials

C13	0.0886 (15)	0.143 (3)	0.1091 (19)	-0.0278 (15)	0.0121 (14)	-0.0044 (16)	
C14	0.0608 (6)	0.0431 (6)	0.0747 (7)	0.0014 (5)	0.0019 (5)	-0.0009(5)	
C15	0.0712 (11)	0.0527 (10)	0.0963 (14)	-0.0067 (8)	-0.0075 (9)	-0.0088(8)	
C16	0.0884 (12)	0.0489 (10)	0.0970 (13)	0.0083 (8)	-0.0137 (10)	0.0082 (8)	
C10	0.1033 (16)	0.0863 (14)	0.0730(12)	0.0018 (12)	0.0032 (11)	-0.0142(10)	

Geometric parameters (Å, °)

01—C1	1.2233 (18)	C8—C12	1.516 (3)
N1—C5	1.374 (2)	C9—C10	1.375 (3)
N1—C1	1.4050 (19)	С9—Н9А	0.9300
N1-C6	1.447 (2)	C11—C10	1.373 (3)
N2-C14	1.145 (2)	C11—H11A	0.9300
C1—C2	1.438 (2)	C12—C13	1.494 (4)
С2—С3	1.369 (2)	C12—H12A	0.9700
C2—C14	1.434 (2)	C12—H12B	0.9700
C3—C4	1.409 (2)	C13—H13A	0.9600
C3—C15	1.498 (2)	C13—H13B	0.9600
C4—C5	1.362 (2)	C13—H13C	0.9600
C4—H4A	0.9300	C15—H15A	0.9600
C5—C16	1.490 (2)	C15—H15B	0.9600
С6—С7	1.375 (2)	C15—H15C	0.9600
C6—C11	1.377 (3)	C16—H16A	0.9600
С7—С8	1.393 (3)	C16—H16B	0.9600
C7—H7A	0.9300	C16—H16C	0.9600
С8—С9	1.371 (3)	C10—H10A	0.9300
C5—N1—C1	122.98 (13)	C10-C11-H11A	120.3
C5—N1—C6	121.91 (13)	C6—C11—H11A	120.3
C1—N1—C6	115.10 (12)	C13—C12—C8	112.4 (2)
01—C1—N1	119.87 (14)	C13—C12—H12A	109.1
O1—C1—C2	125.29 (14)	C8—C12—H12A	109.1
N1—C1—C2	114.83 (13)	C13—C12—H12B	109.1
C3—C2—C14	121.17 (14)	C8—C12—H12B	109.1
C3—C2—C1	123.00 (14)	H12A—C12—H12B	107.9
C14—C2—C1	115.82 (13)	C12—C13—H13A	109.5
C2—C3—C4	117.99 (14)	C12—C13—H13B	109.5
C2—C3—C15	121.81 (15)	H13A—C13—H13B	109.5
C4—C3—C15	120.19 (14)	C12—C13—H13C	109.5
C5—C4—C3	121.42 (14)	H13A—C13—H13C	109.5
C5—C4—H4A	119.3	H13B—C13—H13C	109.5
C3—C4—H4A	119.3	N2-C14-C2	179.11 (19)
C4—C5—N1	119.66 (14)	C3—C15—H15A	109.5
C4—C5—C16	121.84 (15)	C3—C15—H15B	109.5
N1-C5-C16	118.50 (15)	H15A—C15—H15B	109.5
C7—C6—C11	120.32 (16)	C3—C15—H15C	109.5
C7—C6—N1	120.05 (16)	H15A—C15—H15C	109.5
C11—C6—N1	119.60 (15)	H15B—C15—H15C	109.5
С6—С7—С8	120.54 (18)	C5—C16—H16A	109.5
С6—С7—Н7А	119.7	C5-C16-H16B	109.5

С8—С7—Н7А	119.7	H16A—C16—H16B	109.5
C9—C8—C7	118.25 (18)	C5—C16—H16C	109.5
C9—C8—C12	121.81 (19)	H16A—C16—H16C	109.5
C7—C8—C12	119.9 (2)	H16B—C16—H16C	109.5
C8—C9—C10	121.29 (19)	C11—C10—C9	120.2 (2)
С8—С9—Н9А	119.4	C11—C10—H10A	119.9
С10—С9—Н9А	119.4	C9—C10—H10A	119.9
C10-C11-C6	119.37 (18)		
C5—N1—C1—O1	176.08 (15)	C1—N1—C5—C16	-176.04 (16)
C6—N1—C1—O1	-2.4 (2)	C6—N1—C5—C16	2.3 (2)
C5—N1—C1—C2	-3.9 (2)	C5—N1—C6—C7	-85.9 (2)
C6—N1—C1—C2	177.62 (13)	C1—N1—C6—C7	92.63 (18)
O1—C1—C2—C3	-178.23 (16)	C5—N1—C6—C11	96.09 (19)
N1—C1—C2—C3	1.7 (2)	C1—N1—C6—C11	-85.41 (19)
O1—C1—C2—C14	0.4 (3)	C11—C6—C7—C8	0.9 (3)
N1-C1-C2-C14	-179.68 (14)	N1—C6—C7—C8	-177.12 (16)
C14—C2—C3—C4	-177.87 (15)	C6—C7—C8—C9	0.0 (3)
C1—C2—C3—C4	0.6 (2)	C6—C7—C8—C12	178.37 (19)
C14—C2—C3—C15	1.0 (3)	C7—C8—C9—C10	-0.7 (3)
C1—C2—C3—C15	179.52 (16)	C12—C8—C9—C10	-179.0 (2)
C2—C3—C4—C5	-1.1 (2)	C7—C6—C11—C10	-1.2 (3)
C15—C3—C4—C5	179.98 (16)	N1-C6-C11-C10	176.86 (17)
C3—C4—C5—N1	-0.9 (2)	C9—C8—C12—C13	104.2 (3)
C3—C4—C5—C16	178.71 (16)	C7—C8—C12—C13	-74.1 (3)
C1—N1—C5—C4	3.6 (2)	C6-C11-C10-C9	0.5 (3)
<u>C6—N1—C5—C4</u>	-178.01 (15)	C8—C9—C10—C11	0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H····A	D····A	D—H…A
C4—H4A····O1 ⁱ	0.93	2.32	3.2105 (18)	161

Symmetry code: (i) x, y+1, z.