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Abstract
Background: Computational modeling and analysis of metabolic networks has been successful in metabolic 
engineering of microbial strains for valuable biochemical production. Limitations of currently available computational 
methods for metabolic engineering are that they are often based on reaction deletions rather than gene deletions and 
do not consider the regulatory networks that control metabolism. Due to the presence of multi-functional enzymes 
and isozymes, computational designs based on reaction deletions can sometimes result in strategies that are 
genetically complicated or infeasible. Additionally, strains might not be able to grow initially due to regulatory 
restrictions. To overcome these limitations, we have developed a new approach (OptORF) for identifying metabolic 
engineering strategies based on gene deletion and overexpression.

Results: Here we propose an effective method to systematically integrate transcriptional regulatory networks and 
metabolic networks. This allows for the formulation of linear optimization problems that search for metabolic and/or 
regulatory perturbations that couple biomass and biochemical production, thus proposing adaptive evolutionary 
strain designs. Using genome-scale models of Escherichia coli, we have implemented the OptORF algorithm (which 
considers gene deletions and transcriptional regulation) and compared its metabolic engineering strategies for 
ethanol production to those found using OptKnock (which considers reaction deletions). Our results found that the 
reaction-based strategies often require more gene deletions to remove the identified reactions (2 more genes than 
reactions), and result in lethal growth phenotypes when transcriptional regulation is considered (162 out of 200 cases). 
Finally, we present metabolic engineering strategies for producing ethanol and higher alcohols (e.g. isobutanol) in E. 
coli using our OptORF approach. We have found common genetic modifications such as deletion of pgi and 
overexpression of edd, as well as chemical specific strategies for producing different alcohols.

Conclusions: By taking regulatory effects into account, OptORF can propose changes such as the overexpression of 
metabolic genes or deletion of transcriptional factors, in addition to the deletion of metabolic genes, that may lead to 
faster evolutionary trajectories. While biofuel production in E. coli is evaluated here, the developed OptORF approach is 
general and can be applied to optimize the production of different compounds in other biological systems.

Background
Metabolic engineering has emerged as an important field
aimed to improve cellular production of valuable bio-
chemicals and biofuels. Conventional approaches in met-
abolic engineering for identifying targets for
manipulation focus on metabolic branch points, where
undesired reactions are eliminated from competing

branches to enhance flux through desired reactions using
genetic modifications. However, these metabolic network
modifications will not only affect fluxes through local
metabolic pathways, but also have system-level effects on
metabolic behavior due to changes in carbon, energy, and
electron flow. Correspondingly, such conventional
approaches may fail to identify modifications in distant
pathways that can potentially improve cellular produc-
tion.

Computational models of metabolism have been suc-
cessful in predicting the consequences of gene deletions
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at a systems level [1-4]. In Escherichia coli, genome-scale
models of metabolic networks have been used to identify
metabolic engineering strategies such as gene deletions
or additions to maximize production of primary or sec-
ondary metabolites [5-7]. Some computational methods,
such as OptKnock [8], identify knockout strains that
would have improved biochemical production capabili-
ties after undergoing adaptive evolution. Knockout
mutants that force the coupling between biomass and
biochemical production allow one to use growth rate as a
selective pressure and find adaptively evolved strains with
improved growth rates and production capabilities. Such
methods have been used to generate lactate and succinate
producing strains [9,10]. A number of variations on Opt-
Knock have appeared recently which use alternative
search algorthims, add non-native pathways, and con-
sider deviations from wildtype flux levels [5,11,12].

Computational strain design methods evaluate the
effects of gene or reaction deletions to search for the
mutants with improved production capabilities. A gene
deletion is simulated by removing the reactions associ-
ated with the target gene from the metabolic networks;
however, most current methods are often based on reac-
tion deletions, and not gene deletions. However, genes
and reactions do not always have a one-to-one relation-
ship due to the presence of multi-functional enzymes,
enzyme subunits, orphan reactions, and isozymes. Thus,
knockout mutants based on reaction deletions can some-
times be genetically impossible or difficult to construct.
Also, existing methods do not take into consideration the
transcriptional regulatory networks that control metabo-
lism. As a result, predicted strains with high production
capabilities may not be able to grow initially or evolve to
the desired final state due to regulatory restrictions.

In this study, we present a new optimization approach,
OptORF, to identify metabolic engineering strategies
based on a minimal number of metabolic and transcrip-
tion factor gene deletions and metabolic gene overexpres-
sion, which couple biomass and biochemical production.
Here, gene to protein to reaction (GPR) associations are
modeled directly using a Boolean approach and reactions
are removed when the associated genes are deleted. Inter-
actions between the regulatory and metabolic networks
are also modeled using Boolean approaches by turning on
or off metabolic gene expression in response to transcrip-
tional factor (TF) status. These Boolean relationships can
be effectively formulated as linear constraints using
binary variables and matrices, which are more systematic
and/or computationally efficient than previously sug-
gested formulations for modeling GPR associations and
integrating metabolic and regulatory models [13-17].

The integrated model of metabolism and regulation can
predict the steady-state metabolic flux distributions and
regulatory states simultaneously. Consequently, the

OptORF framework allows for the identification of opti-
mal metabolic gene knockouts as well as transcription
factor knockouts. In addition, overexpression of genes
that are unexpressed under a given condition can be
found in order to improve the production of a target bio-
chemical. Using genome-scale metabolic and regulatory
models of E. coli [18,19], we have identified metabolic
engineering strategies for ethanol production using Opt-
Knock (which considers reaction deletions) and com-
pared these strategies to those found using our new
approach OptORF (which considers gene deletions) with
and without transcriptional regulatory constraints. Our
analysis showed that the strategies based on reaction
deletions often require a larger number of gene deletions,
and also many of them result in lethal growth phenotypes
when transcriptional regulation is considered. In addi-
tion, we have identified metabolic engineering strategies
for overproduction of higher alcohols such as isobutanol
via non-fermentative pathways based on a recent study
[20]. While ethanol and higher alcohol production in E.
coli is evaluated here, the OptORF approach can be easily
applied to other biochemicals and microorganisms.

Methods
OptORF is a bi-level optimization problem which identi-
fies the optimal metabolic and regulatory gene deletions
as well as gene overexpressions that maximize biochemi-
cal production at the maximum cellular growth under
transcriptional regulatory constraints (Table 1). The
inner problem of OptORF, which is a linear programming
(LP) problem, maximizes growth under the given gene
deletions and regulatory states that are determined by the
constraints of the outer problem. OptORF is formulated
as a single level mixed integer linear program (MILP) by
replacing the inner maximization problem with its opti-
mality conditions as constraints. GPR associations and
transcriptional regulatory constraints are systematically
formulated using three dimensional arrays, which differ
from recently reported approaches [13,15,17].

An example of an integrated metabolic and transcrip-
tional regulatory network is shown in Figure 1. In this
network, a substrate (S) can be utilized to produce bio-
mass (B) via either intermediate metabolite I1 and/or I2.
Reaction R2 converts I1 into by-product P1 and 0.08 B,
whereas reaction R5 converts I2 into by-product P2 and
0.12 B. Reaction R1 is carried out by enzyme E1 which
consists of two subunits encoded by gene G1A and G1B.
Reaction R5 can be carried out by either enzyme E5 or
E6, which are encoded by genes G5 and G6 respectively.
Transcription factor TF1 is active when S is present, and
activates expression of G3 and G5, and represses G1A
expression (all other genes are considered to be expressed
under all conditions in the model).
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Since the cellular objective is maximizing biomass pro-
duction (B) from substrate (S), pathways involving R5
(producing P2) would be normally preferred to ones
involving R2 (producing P1). Given an engineering objec-
tive of producting P1, close inspection of the reaction
network indicates that removal of reactions R3 and R4 or
reaction R5 would couple maximum biomass production
to production of P1 instead of P2. OptORF will identify
genetic modification strategies involving gene deletions
that are associated with these reactions (G3 and G4, or
G5 and G6, respectively). However, G1A expression is
inhibited by TF1, and TF1 is active in the presence of S,
and thus reaction R1 cannot happen. Therefore, OptORF
will also identify the overexpression of G1A along with
the gene deletions mentioned above. An alternate strat-
egy to the overexpression of G1A would be the deletion of
TF1 which inhibits expression of G1A. In fact, when TF1
is deleted, the genes activated by TF1 (G3 and G5) would
be no longer expressed, which reduces the number of
genes that are needed to be deleted. Therefore, OptORF
will first identify double knockout strategies including the
TF1 deletion, and then find the alternate strategies with
the G1A overexpression (these strategies are shown in
Figure 1, see Additional file 1 for the implementation).

GPR association
Constraints for GPR associations are systematically for-
mulated using a three dimensional array (GPR(j, n, g)) and
binary variables for reaction (dj), enzyme (bn), and gene
(yg) status, where j, n, and g specify a reaction, enzyme,
and gene, respectively. Each reaction with a known GPR
association (j � JGPR) can be carried out by the associated
enzyme complex(es) (n � N(j)), and each enzyme complex
is associated to gene products (g � G(n)), where JGPR, N(j),
G(n) are defined as the following:

If any of the enzymes for reaction j are present (any bn(j)
= 1), the reaction can have a non-zero flux (dj = 1) where
dj indicates whether a reaction can or cannot occur. If all
the enzymes are not present (all bn(j) = 0), then the reac-
tion cannot occur (dj = 0). This reaction-enzyme logical
relationship can be formulated as the following:

If all of the associated genes for enzyme n are expressed
(all yg(n) = 1), then the enzyme is present (bn = 1). If any of
the subunits are not expressed (any yg(n) = 0), then the
enzyme is not present (bn = 0). This enzyme-gene logical
relationship can be formulated as the following:

Reactions without known GPR associations are not
constrained by these GPR rules.

Transcriptional regulation
Transcriptional regulation of metabolic genes are also
formulated as linear constraints using a three dimen-
sional array (TR(g, m, r)) and binary variables for gene
expression/transcription factor (TF) activity (yg), condi-

J j J n g GPR j n g jGPR = ={ ( , ) ( , , ) 1∈ ∃| s.t. ; reaction has known GPR asssociations

s.t. enzyme  is a

}

( ) { ( , , ) 1N j n N g GPR j n g for j n= =∈ ∃| ; sssociated with reaction 

s.t.
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}
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Table 1: OptORF formulation

maximize biochemical production

subject to

maximize cellular growth

subject to steady-state mass balance

enzyme capacity

thermodynamics

reaction deletions

GPR associations

transcriptional regulations

gene deletions and overexpressions

limited number of gene deletions

limited number of gene overexpressions
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tion (am), and effector status (xr), where m specifies a
condition for gene expression/TF activity and r affects
these conditions (m). Effectors (r) can be TFs, flux values,
and environmental conditions. The sets that are used in
the formulation are defined as follows:

Each metabolic gene, g � GMET, is transcribed if the con-
ditions for its expression, m(g), are satisfied. If any of the
conditions for gene g expression is satisfied (any am(g) = 1),

the corresponding gene is expressed (yg = 1). If none of
the conditions for expression are satisfied (all am(g) = 0),
then the gene is not expressed (yg = 0). Similarly, each
transcription factor, g � GTF, is active (yg = 1) if any of the
conditions for its activity is satisfied. If none of the condi-
tions for activity are satisfied, then the transcription fac-
tor is inactive (yg = 0). Then, the binary variables for TF
activity (yg) are used to constrain the binary variables for
TF effectors (xg) which determine the conditions for met-
abolic gene expressions or other TF activities.

G g G gMET = { ∈ | is a metabolic gene with known transcriptional regulatiion

is a transcription factor gene

s.t.

}

{ }

( ) {

G g G g

M g m M r
TF =

=
∈
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|

| TTR g m r for g m g

R m r R gAct

( , , ) 1 ; }

( ) {

=

=

is a condition for gene

s.t.∈ ∃| TTR g m r for m r m

R m r RRep

( , , ) 1 ; }

( ) {

=

=

is an activator for condition

∈ | ∃∃ −g TR g m r for m r ms.t. is a repressor for condition( , , ) 1 ; }=

y a g G G m M gg m MET TF≥ ∀ ∈ ∪ ∈, ( ) (5)

Figure 1 Application of OptORF to an example metabolic and regulatory network. (A) In this example network, substrate S is utilized to produce 
biomass B and by-products P1 or P2. Here, the engineering objective is the production of P1 and the cellular objective is the production of B. Since 
reaction R5 produces more B than reaction R2, P2 is the preferred by-product and P1 production is uncoupled to biomass production (no P1 is pro-
duced when biomass is maximized). (B) Reactions in the network and their GPR associations. (C) Transcriptional regulation of the metabolic genes and 
transcription factor in the network. (D) Metabolic engineering strategies for the production of P1 identified by OptORF, where P1 is now produced 
when biomass production is maximized in the altered networks. (E) A schematic view of the OptORF solutions. The metabolic flux distributions for 
wildtype and mutants are shown to describe how the optimal flux profiles (where production of biomass, B, is maximized) in the integrated network 
changes by the metabolic and/or regulatory perturbations presented in (D).
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Each condition for gene expression or transcription fac-

tor activity, m, has its associated effectors, r(m). If all the

associated activators are active (all  = 1) and repres-

sors are inactive (all  = 0), then the condition for

gene expression or transcription factor activity is satisfied

(am = 1). If any of the activators are inactive (any  =

0) or repressors are active (any  = 1), the condition

for gene expression or transcription factor activity is not

satisfied (am = 0).

Each effector, r, can be a transcription factor (TF), pos-
itive metabolic flux (PF), negative metabolic flux (NF), or
other environmental stimuli (ES). Intracellular and extra-
cellular stimuli are reflected by the positive or negative
metabolic flux indicators by constraints, where intracel-
lular stimuli are dependent on the flux values (vj) of inter-
nal reactions and extracellular stimuli are dependent on
the flux values of exchange reactions (secretion or
uptake). A threshold value (ε = 10-3) is used to determine
whether the flux is positive (vPF ≥ ε) or negative (vNF ≤ -ε)
as the following:

The constraints including 'if ' indicators were imple-
mented directly using the GAMS/CPLEX indicator con-
straint facility instead of the Big M method. Other
environmental stimuli (ES) such as oxidative stress or
high osmolarity were assumed to be absent in this study.

Gene deletion and overexpression

A gene deletion or overexpression is implemented by

introducing gene knockout indicators (zg), gene overex-

pression indicators (wg) and surrogate gene expression

indicators ( ) as the following:

The gene knockout indicator allows an expressed gene

(yg = 1) to be unexpressed (  = 0), and the gene overex-

pression indicator allows a repressed gene (yg = 0) to be

expressed (  = 1). If an expressed gene is deleted (yg = zg

= 1, and wg = 0), the value of its surrogate gene expression

indicator is equal to zero (  = 0). If a gene is not

expressed (yg = wg = 0), then the surrogate gene expres-

sion indicator assumes a value of zero (  = 0) and no

gene knockout is allowed (zg = 0). If a repressed gene is

overexpressed (yg = zg = 0, and wg = 1), its surrogate gene

expression indicator takes a value of 1 (  = 1). No over-

expression is allowed if a gene is already expressed (yg = 1,

and zg = wg = 0), and the surrogate gene expression indica-

tor assumes a value of 1 (  = 1). A gene can be either

deleted or overexpressed, but not both at the same time.

Similarly, a transcription factor deletion is implemented

by allowing an active TF (yg = 1) to be deleted (  = 0,

and zg = 1). However, the variables wg are not introduced

for all TFs to prevent an inactive TF from being active.
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The total numbers of gene deletions and overexpressions

are limited to desired values, K1 and K2, respectively.

Then, instead of the gene expression/TF activity indica-
tors, the surrogate gene expression/TF activity indicators
are used to determine the enzyme/TF status and thus
reaction states via GPR associations and transcriptional
regulation by equations (21)-(23) which replace equations
(3),(4), and (7).

Optimality condition

The bi-level optimization problem can be formulated as

an MILP using the strong duality theorem in the similar

way as described in OptKnock [8]. Here, a general proce-

dure to construct the optimality conditions for the inner

LP problem is presented without using large bounds for

primal and dual variables. The objective function and

simulated conditions are specified using a linear combi-

nation of fluxes ( ) and lower bounds for each flux

( ), respectively. The primal LP (P) is formulated as fol-

lows:

The reversible reactions (j � J\JLB) are only constrained

by the mass balance equation, and associated with these

constraints are unconstrained dual variables (ui). The

uptake, secretion, or irreversible reactions are addition-

ally constrained by the lower bounds ( ), and associ-

ated with these constraints are positive dual variables (λj).

The reactions removed by gene knockouts are con-

strained to zero by using binary variables (vj = 0 if dj = 0),

and associated with these constraints are unconstrained

dual variables (hj). The dual LP (D) is formulated as fol-

lows.

At optimality, the values of the objective functions in
(P) and (D) are equal, and primal and dual variables sat-
isfy the constraints of (P) and (D), respectively. The fol-
lowing optimality conditions for the inner problem are
always satisfied as the values of all binary variables (dj) are
fixed to 0 or 1. The inner problem can be written as:

In this study, we used the biomass formation as the
objective function of inner problem (pj = 1 for j = biomass
formation). The constraints including 'if ' indicators are
implemented directly using the GAMS/CPLEX indicator
constraint facility. We also constrained the dual variables

g
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for reaction removal (hj) to be within a small range (-1 to
1) in order to reduce the solution time (J. Kim, J.L. Reed,
and C.T. Maravelias, in preparation).

OptORF formulation

The objective function in the outer problem of OptORF

formulation is a linear combination of fluxes with penalty

terms for the total number of gene deletions or overex-

pressions ( ). The first term

defines biochemical production of interest, the second

term applies a weighted penalty (α) to an additional gene

deletion, and the third applies a penalty (β) to an addi-

tional overexpression. In other words, the biochemical

production rate should increase at least by α or β if an

additional gene is deleted or overexpressed, respectively.

These penalty terms can be very useful for eliminating

strains needing more genetic modifications if the

improvement in production is small. When α or β is a

very small value (≈ 10-6), it effectively eliminates unneces-

sary modifications from the solution without affecting

the optimal biochemical production. For example, if

deleting gene A results in the same product yield as delet-

ing gene A and B (i.e. deletion of gene B does not improve

the yield), then the gene B deletion would not appear in

the optimal solution.

If multiple solutions are desired, integer cuts constrain

successive optimal solutions with a parameter (δ), which

is the number of differences in genes among identified

strategies. A previously identified solution (k) is com-

prised of a set of gene deletions and overpressions that

are stored in parameters  and , respectively. If δ is

set to 1, integer cuts prevent OptORF from finding the

same solution as the previous ones. One may set δ to a

higher value in order to obtain a more diverse set of met-

abolic engineering strategies. In this study, we used α =

10-6, β = 10-6, and δ = 1. The complete OptORF algorithm

is defined by the following equations:

Models and simulation conditions
In this study, we have implemented an integrated model
of metabolism and regulation for E. coli, iMC1010 v2 [19],
which consists of 906 metabolic genes and 104 TFs.
There was one transcription factor, GlnL, that was
included in the original model but was missing regulatory
targets. GlnL should affect GlnG activity, but instead
GlnG activity is independent of GlnL (the correct rule for
GlnG should be (GlnL AND Not (nh4(e)>2)). However,
this missing regulatory interaction would not affect the
results of this study as GlnG is not active under these
conditions and was not identified as a strategy for
improving production of the alcohols examined here. In
the OptKnock simulations, we excluded transport reac-
tions for acetate, carbon dioxide, formate, phosphate, and
water from consideration as eliminating transport may be
challenging. In addition, ATP synthase deletion was
excluded from consideration since the deletion resulted
in a high variability in ethanol production at the pre-
dicted optimal growth condition. Equivantly, the deletion
of focA, focB, and atp operon were excluded from the
OptORF simulations. The OptORF approach was applied
to identify metabolic engineering strategies for overpro-
duction of ethanol or higher alcohols (i.e. cj = 1 for j =
desired alcohol secretion) in glucose minimal media.
Maximum glucose uptake rate (GUR) and oxygen uptake
rate (OUR) are specified in order to simulate anaerobic
growth conditions (GUR = 18.5 mmol/gDW/hr, OUR = 0
mmol/gDW/hr) [21]. A minimal growth rate was set to
0.1 hr-1 for all simulations. The optimization problems
were solved using CPLEX 11.2 accessed via the General
Algebraic Modeling System (GAMS).

Results and Discussion
We identified metabolic engineering strategies for etha-
nol production in E. coli using the OptORF formulation
with an integrated model of metabolism and regulation,
and compared the resulting strategies to ones using a pre-
vious approach based on reaction deletions (OptKnock).
First, a set of reaction deletion strategies was obtained
using OptKnock, and then a corresponding set of gene
deletions needed to remove the reactions in each Opt-
Knock strategy was identified. These OptKnock gene
deletion designs were then compared to the gene deletion
strategies found by OptORF without considering tran-
scriptional regulation to examine the differences between
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the reaction-based strategies and gene-based strategies.
To investigate how transcriptional regulation affects
adaptive evolution of microbial strains, we analyzed avail-
able data for adaptively evolved E. coli mutant strains
using the integrated metabolic and regulatory model.
OptKnock strategies were then re-analyzed using an inte-
grated metabolic and regulatory model and compared to
the OptORF strategies identified when transcriptional
regulatory constraints were considered. Finally, we pres-
ent metabolic engineering strategies for overproducing
ethanol or higher alcohols in E. coli that include both
metabolic gene deletions and overexpressions, as well as
transcription factor deletions, using our developed
approach.

Reaction deletion vs. gene deletion
In this section, we compare reaction-based deletions to
gene-based deletions and describe how the OptKnock
and OptORF approaches differ in the strategies they
identify. In most cases, the relationship between genes,
proteins, and reactions is not one-to-one. A metabolic
reaction can be carried out by one or more enzymes, each
of which can be comprised of multiple gene products. An
enzyme can catalyze multiple reactions that utilize differ-
ent substrates, and different enzymes may catalyze the
same reaction. Consequently, removal of a reaction may
require deletion of multiple genes and may accompany
the removal of additional reactions, which can result in a
different metabolic solution space from the one predicted
when reactions can be removed individually. Figure 2
shows an example, where different outcomes are found
for reaction deletions and gene deletions. There are two
transketolases (TktA and TktB) in E. coli each of which
catalyzes two reactions (TKT1 and TKT2) in the pentose
phosphate pathway. By removing TKT1 reaction along

with phosphotransacetylase reaction (PTAr), ethanol
production can be coupled to cellular growth at an
improved production rate. However, deletion of the two
genes (tktA and tktB) needed to remove the TKT1 reac-
tion results in a lethal growth phenotype [22], which is
correctly predicted by the model since TKT2 would also
be eliminated. This illustrates how the coupling of cellu-
lar growth and biochemical production by reaction-based
strategies may no longer occur when the necessary genes
are deleted. Moreover, if the reaction that needs to be
removed happens spontaneously or does not have known
gene(s) associated to it, there is no practical way to genet-
ically engineer the cells.

The number of genetic manipulations needed is an
important factor when evaluating metabolic engineering
strategies. When isozymes are present, a strategy with the
minimum number of reaction deletions does not neces-
sarily correspond to a strategy with the minimum num-
ber of gene deletions. For example, there are four gene
products in E. coli known to function as serine deami-
nases. In order to completely remove this particular met-
abolic reaction from the system, one would have to
knockout all four genes. If removal of an alternative reac-
tion would serve the same purpose, but require fewer
gene deletions, then OptORF would identify the simpler
genetic strategy while reaction-based frameworks would
not be able to distinguish between them.

We have analyzed the top 50 ethanol producing strains
found by OptKnock for each double, triple, quadruple,
and quintuple reaction deletion (200 in total, see Addi-
tional file 2). Figure 3A shows the minimum number of
gene deletions required to remove the identified set of
reactions for each case. On average, we found that two
more gene deletions would be required than the number
of reaction deletions to completely eliminate the reac-

Figure 2 Differences between reaction deletions and gene deletions. (A) Gene to protein to reaction (GPR) association for transketolase reactions 
(TKT1 and TKT2) in E. coli. (B) Solution spaces for wild-type (blue) and TKT1-PTAr reaction deletion strain (green) predicted by the metabolic model. 
Ethanol production is coupled to cellular growth at an improved rate in the mutant strain. (C) When the corresponding genes (tktA, tktB, pta, and eutD) 
are deleted to eliminate TKT1 and PTAr, no growth is predicted for the mutant strain as indicated by the solution space only residing on the y-axis.
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tions suggested by OptKnock from the network (e.g. a
four reaction deletion strategy would require deleting six
genes). The identified set of necessary gene deletions also
resulted in removal of additional reactions (which are not
accounted for in OptKnock) in most of the cases (196 out
of 200 cases), sometimes resulting in lethal growth phe-
notypes (31 out of 200 cases). For each OptKnock strat-
egy found, we identified another strategy requiring the
same number of gene deletions using OptORF without
transcriptional regulatory constraints (see Additional file
2). This gave us metabolic gene deletion strategies that
can be compared to ones identified by OptKnock. As
shown in Figure 3B, the ethanol yields for OptORF
designed strains were higher than the yields for Opt-
Knock strains, and all OptORF strains were capable of
growing (Figure 3C).

From a computational point of view, gene deletions can
be more advantageous than reaction deletions due to the
nature of combinatorial optimization. The difficulty of
solving such an optimization problem increases exponen-
tially with the total number of decision variables, i.e.,
reactions or genes to choose from. Generally, the total
number of reactions are larger than the total number of
genes in available genome-scale models. For example, the
most recent metabolic reconstruction of E. coli K-12

MG1655 [23] includes 2,381 reactions, but only 1,260
ORFs are accounted for. Although OptORF requires a
number of binary variables for genes, proteins, and regu-
latory rules, these are very tightly constrained by the GPR
association and transcriptional regulatory constraints. As
a result, the computation time to solve an OptORF prob-
lem is comparable to the time to solve an OptKnock
problem.

Adaptive evolution and transcriptional regulation
Transcriptional regulation plays a significant role in con-
trolling the expression of metabolic genes thereby affect-
ing flux through metabolic reactions. These regulatory
effects have not been directly considered in previous
strain design approaches. Transcription factors not only
affect metabolic flux distributions by controlling gene
expression, but they also sense and respond to metabolic
or environmental changes. Integrating transcriptional
regulatory networks with metabolic networks requires
the connection between genes and reactions. We have
effectively formulated these transcriptional regulatory
and gene to protein to reaction (GPR) logical relation-
ships, which enables us to predict the effects of transcrip-
tion factor deletions as well as metabolic gene deletions

Figure 3 Comparison of reaction-based deletion strategies (OptKnock) and gene-based deletion strategies (OptORF). (A) A total of 200 op-
timal reaction deletion strategies (50 double, triple, quadruple, and quintuple reaction deletions each) were found by OptKnock, and the minimal 
number of gene deletions that are required to remove the identified reactions were found for each OptKnock strategy. The last histogram (overall) 
shows the overall distribution of required gene deletions across all 200 strains. (B-C) For each OptKnock strategy, an analogous strategy was then iden-
tified with OptORF which had the same number of gene deletions as the OptKnock strategy, giving 200 OptORF strains with the same overall gene 
deletion distribution as shown in (A). The ethanol yields and growth rates for the 200 OptKnock strains (blue triangles) and 200 OptORF strains (red 
circles) are shown in panels B and C, with OptORF strains having higher ethanol yields as compared to OptKnock strains for the same number of gene 
deletions.
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on transcription regulation and metabolism, simultane-
ously.

Metabolic engineering strategies described in this work
are based on the assumption that microbial cells would
evolve to have higher growth rates, and that biochemical
production would increase along with cellular growth
rate, the latter being the selective pressure during adap-
tive evolutionary experiments. An important question
that one might ask is how malleable the transcriptional
regulatory network is during adaptive evolution. If cells
can easily rewire their transcriptional networks to gain
higher fitness, it is possible that knockout strains could
lose the coupling of biochemical production and growth,
if expressing unexpressed genes leads to a higher growth
rate without a higher biochemical production. To address
this issue, we have analyzed available data for adaptively
evolved strains of E. coli, and compared the data to pre-
dictions using the integrated model of metabolism and
regulation.

First, previously experimentally implemented E. coli
strains designed for lactate production [9] were re-
assessed using the integrated metabolic and regulatory
models. Figure 4A and 4B show the possible lactate and
biomass yields for ΔptaΔadhE and ΔptaΔpfk strains pre-
dicted by the metabolic model (blue) and integrated met-
abolic and regulatory model (green). The experimental
observations for lactate yields and biomass yields during
60 days of adaptive evolution are also shown. All the dele-
tions were simulated based on gene deletions and not
reaction deletions, and yields were plotted to normalize

the fluxes to changes in glucose uptake rate which
occured during adaptive evolution. The ΔptaΔadhE
strain is only predicted to produce more lactate with
increased growth by the integrated metabolic and regula-
tory model, while no coupling between lactate produc-
tion and growth is predicted by either model for the
ΔptaΔpfk strain. Experimentally observed trajectories for
ΔptaΔadhE strain move towards the optimal point pre-
dicted only by the integrated metabolic and regulatory
model (Figure 4A), while the ΔptaΔpfk strain does not
exhibit improved lactate production in agreement with
both models (Figure 4B).

Metabolic gene deletion strains have also been evolved
on different carbon sources [1]. We have analyzed growth
phenotypes for these strains using the metabolic model
and integrated metabolic and regulatory models, and
found that only the strains grown on malate showed a sig-
nificant difference in predicted growth rates between the
regulated and un-regulated models. Figure 4C shows the
experimentally observed growth rates relative to the pre-
dictions for mutant strains grown on malate at the end of
adaptive evolution (day 40). Mutant strains seem to
evolve and increase their growth rates to the optimal val-
ues predicted by the integrated model, but do not reach
the values predicted by the metabolic model alone. The
only strain that did exceed the integrated metabolic and
regulatory model predictions, Δzwf, also had large exper-
imental standard deviations in the observed growth rates.
Based on these results, it is possible that cells undergoing
adaptive evolution do not significantly rewire their tran-

Figure 4 Adaptive evolution of E. coli mutants. (A-B) Adaptive evolution of lactate producing E. coli strains for 60 days. The data from the lactate 
producing strains [9] were compared to integrated metabolic and regulatory model predictions. The production capabilities for each mutant was cal-
culated without considering transcriptional regulation (blue) and considering transcriptional regulation (green). Experimentally observed trajectories 
are shown for every 10 days of adaptive evolution on the model predicted solution spaces. (C) Model predictions for adaptively evolved E. coli strains 
grown on malate. Previously reported data on the adaptive evolution of single gene knockout strains [1] was compared to simulations of the gene 
deletion mutants using the metabolic model (blue) and the integrated metabolic and regulatory model (green). The relative growth rates (experimen-
tally observed/model predicted) were calculated for each strain at the last day of evolution using the two models. Error bars indicate one experimental 
standard deviation among two or three independently evolved strains.
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scriptional regulatory networks, and therefore regulation
should be considered in the design of production strains.

Another advantage of using an integrated model of
metabolism and regulation emerges when it comes to
predicting essential genes. An integrated model is better
at predicting essential genes under a given condition, and
hence more likely prevents gene deletions which are
lethal from being included in the strategies. It was previ-
ously shown that an integrated model of E. coli correctly
predicts the growth phenotypes for 10,833 (78.8%) of the
total 13,750 cases (mutant grown in a single environmen-
tal condition), while a metabolic model alone predicts
8,968 (65.2%) cases correctly [19]. An integrated model is
also capable of predicting essential transcription factors
(e.g. cysB and metR) as well as metabolic genes in E. coli
[19,24,25]. Accordingly, strains that are designed with
regulatory considerations should grow better initially and
may achieve the desired phenotype faster.

Metabolic model vs. integrated model
The ethanol producing strains identified in the first result
section were re-analyzed using the integrated metabolic
and regulatory model to demonstrate the differences
from using the metabolic model. When we re-calculated
the production rates and growth rates for the 200 previ-

ously identified OptKnock strains after imposing regula-
tory constraints, we found that ethanol production was
significantly lower for most strains (Figure 5A, see Addi-
tional file 2). This is attributed to the fact that some of the
regulated enzymes are not being expressed according to
the transcriptional regulatory constraints. For each Opt-
Knock strain we subsequently identified the minimum
number of genes that need to be overexpressed to achieve
the same ethanol yields when regulatory affects are not
considered (Figure 5C, see Additional file 2). In other
words, we found the sets of genes which are down-regu-
lated by transcriptional regulation, but are necessary to
achieve the same growth and ethanol production rates as
shown in Figure 3. Without overexpression of these
genes, the ethanol yields of OptKnock strains were much
lower than the yields of OptORF strains identified when
regulatory effects are considered in the strain design pro-
cess (Figure 5A). Also, the number of lethal growth phe-
notypes for OptKnock strains were much higher when
regulation is accounted for (162 out of 200 cases) imply-
ing that these strains would not be able to grow, at least
initially (Figure 5B), and would possibly be difficult to
construct. Interestingly, OptORF strains exhibit a sharp
increase in growth and ethanol yields between 4 and 5
gene deletion strategies. This is due to the expression of

Figure 5 Comparison of strategies by the metabolic model and the integrated metabolic and regulatory model. The OptKnock deletion strat-
egies in Figure 3 were re-analyzed using the integrated metabolic and regulatory model, where their corresponding gene deletions were the same 
but the maximum growth rate and ethanol production were re-calculated with the integrated model. (A-B) The ethanol yields and growth rates for 
most of the OptKnock strains (blue triangles) were predicted to be significantly lower by the integrated model than the those predicted by the met-
abolic model alone (Figure 3B and 3C) due to transcriptional regulatory constraints. Also shown are strain designed using OptORF (green circles) when 
transcriptional regulation is included (gene overexpression was not allowed such that K2 = 0). (C) For each OptKnock strategy, we identified the min-
imal number of genes (whose expression is repressed by the transcriptional regulation) that were needed to be overexpressed to achieve the same 
ethanol yield as predicted by the unregulated metabolic model (Figure 3B and 3C).
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genes involved in the Entner-Doudoroff pathway, and this
pattern was not observed in Figure 3B and 3C when regu-
latory interactions were not considered in the design of
OptORF strains.

Finally, the strain designs identified by OptKnock (200),
OptORF without regulatory constraints (200), and
OptORF with regulatory constraints (200) were com-
pared to identify common genetic strategies. Figure 6A
shows the list of commonly found gene deletions for dif-
ferent approaches and their frequency. Among the top
200 strategies found by each approach (shown in Figures
3 and 5), genes that appear in at least 15% of the total 600
strategies are listed. Overall, deletion of pyruvate for-
mate-lyase (PFL) was the most frequent for all of the
approaches. Deletion of phosphoenolpyruvate:sugar
phosphotransferase system (PTS) was mainly found in
approaches without transcriptional regulation, while the

two transcription factor deletions (fnr and gntR) are iden-
tified only by OptORF when transcriptional regulation is
accounted for. Deletion of pgi or tpiA was evenly distrib-
uted across all methods, indicating that one of them is
typically necessary to couple growth to ethanol produc-
tion (see next section for further discussion).

For each of the three approaches, we generated a heat
map based on the correlation coefficients between the
genes that appear in at least 10% of their corresponding
200 strategies (Figure 6B-D). If a pair of gene deletions
always appears in strategies together, the corresponding
cell in the heat map is colored in yellow. A cell is colored
in black when a pair of gene deletions are anti-correlated.
For example, pta and eutD appear together since the dele-
tion of both is required to eliminate the phosphate acetyl-
transferase activity, while either fnr or arcA appears since
the deletion of either transcription factor results in a sim-

Figure 6 Commonly found gene deletions for ethanol production and their correlations. (A) The histogram shows the frequency of the gene 
deletions that appear in at least 15% of all 600 strategies. (B-D) For each approach, a correlation heat map for the genes that appear in at least 10% of 
the 200 strategies is shown. If there is a strong positive (negative) correlation between a pair of genes, the corresponding cell is colored as yellow 
(black).
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ilar phenotype. The pattern of correlation becomes
clearer (strategies have less variation) as the structure of
the model gets simpler from a gene-based deletion with
transcriptional regulation (Figure 6D) to reaction-based
deletion without transcriptional regulation (Figure 6B).
This indicates that as models account for the complex
structure and interactions of networks, more diverse
metabolic engineering strategies can be identified.

Strain designs for ethanol production by OptORF
We have employed OptORF to identify metabolic engi-
neering strategies for ethanol production in E. coli.
Strains are designed to grow on glucose minimal media in
anaerobic conditions. Notable differences from the previ-
ously reported strain designs [12] are that these strategies
include the deletion of transcription factors (e.g. Fnr,
ArcA, or GntR) and electron transport chain components
(e.g. NDH-1) as well as overexpression of metabolic genes
(e.g. edd or fbp). We have identified a set of strategies
consisting of only gene deletions (Table 2), and another
set of strategies that also include overexpression of genes
(Table 3). It should be noted that the deletion of lactate

dehydrogenase (Ldh) is not required in the presented
strategies because ethanol production is preferred over
lactate production at the optimal growth condition, and
so deletion of Ldh would not be required. Lactate could
be produced initially when cells are growing sub-opti-
mally (which is probably why other studies deleted Ldh
[26,27]), but lactate production would be predicted to
decrease as cells adaptively evolve to higher growth rates,
which favor ethanol production due to differences in
redox requirements (ethanol production consumes more
NADH).

Deletion of fnr or arcA is found in most strain designs,
where some enzymes involved in aerobic metabolism
(that are repressed by Fnr and/or ArcA) can be advanta-
geous for ethanol production. Aerobic genes in central
metabolism that are repressed by these anaerobic regula-
tors include aceAB, aceEF, lpd, mdh, sucAB, and
sdhABCD. The de-repression of malate dehydrogenase
(mdh) was predicted to be especially important based on
comparisons between flux distributions with and without
mdh. If necessary, such repressed genes may be overex-

Table 3: Gene deletion and overexpression strategies for ethanol production in E. coli.

Deleted Genes Overexpressed 
Genes

Growth Rate 

(hr-1)

Ethanol 
Yield (%)

fnr pflB tdcE pgi edd 0.225 86.2

fnr pflB tdcE pgi ptsH edd fbp 0.182 90.4

fnr pflB tdcE tpiA edd 0.235 90.5

fnr pflB tdcE tpiA gdhA edd 0.214 91.4

arcA pta eutD tpiA ptsH edd 0.192 91.6

In addition to gene deletions, overexpressed genes are identified to further improve ethanol production. The maximum number of 
overexpressed genes was limited to two for all cases, and strategies including less than four gene deletions are not shown due to the 
negligible increase in ethanol yields by gene overexpression.

Table 2: Gene deletion strategies for ethanol production in E. coli

Deleted Genes    Growth Rate 

             (hr-1)

Ethanol Yield 
(%)

none (wild-type) 0.467 39.3

arcA pgi 0.122 83.5

nuoN pgi 0.121 83.6

fnr gntR pflB tdcE pgi 0.225 86.2

arcA gntR pta eutD tpiA 0.244 89.3

fnr gntR pflB tdcE tpiA 0.235 90.5

The predicted ethanol yields and growth rates are listed for two-deletion strategies and five-deletion strategies. Three or four deletion 
strategies are not shown because the ethanol yield was not significantly improved over two deletion strategies. The variability in ethanol 
yield at the predicted maximum growth rate was zero or very small (< 0.01%) for all cases. The ethanol yield is reported as % of the maximum 
theoretical yield (100% is 0.51 g ethanol/g glucose or 2 mol ethanol/mol glucose). Maximum glucose uptake rate of 18.5 mmol/gDW/hr was 
used to simulate anaerobic growth conditions.
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pressed, as an alternative to deleting fnr or arcA to ensure
that metabolic activity is high enough to achieve the
desired level of ethanol production.

Genes involved in the electron transfer chain were also
identified as needing to be deleted to limit the amount of
NADH oxidized by this pathway. NADH:ubiquinone oxi-
doreductase (NDH) I and II catalyze the transfer of elec-
trons from NADH to the quinone pool, and the electrons
are passed to fumarate by fumarate reductase (FRD), an
essential enzyme for anaerobic growth. OptORF identi-
fied the deletion of NDH-1 (nuo), the predominant NDH
under anaerobic conditions, to block electron transfer
from NADH to fumarate. As a result, the model predicts
a decrease in FRD flux and reduced succinate production
in NDH-1 deficient strains, while flux through fumarase
and malic enzyme is increased.

Deletion of pgi was also found in many of the strain
designs for ethanol production, suggesting re-direction of
flux through glycolysis to the pentose phosphate (PP)
pathway or Entner-Doudoroff (ED) pathway. This
increases generation of NADPH whose electrons are
passed to NAD via NADH transhydrogenase, and the
additional NADH is used to reduce acetyl-CoA to ethanol
by alcohol dehydrogenase (AdhE). While increasing the
amount of NADH available to produce ethanol, the pgi
deletion also lowers the net ATP production and thus
decreases growth rate as compared to the wild-type
strain. The ED pathway consists of two enzymes, Edd and
Eda, and the expression of edd is repressed by the tran-
scription factor GntR. Deletion of gntR would de-repress
the expression of edd, which allows for the conversion of
glucose to pyruvate and glyceraldehyde-3-phosphate.
Equivalently, overexpression of edd was identified as an
alternative to deletion of gntR. The activation of the ED
pathway in a pgi mutant also leads to a significant
increase in growth rate, which would be favorable for
industrial-scale ethanol production.

There are three enzymes, PflAB, PflCD and TdcE,
which possibly function as pyruvate formate-lyase (PFL).
The regulatory model indicates that expression of pflD
requires either ArcA or Fnr as activators, and a previous
study showed that PFL activity was still detected in pflA
or pflB mutant [28]. Another study revealed that a fnr
deletion alone is sufficient to decrease PFL activity down
to the level of ΔfnrΔarcA strain, while an arcA deletion
alone did not decrease PFL activity [29]. Thus, deletion of
fnr, pflB, and tdcE would abolish PFL activity and require
cells to use pyruvate dehydrogenase (PDH) [26,30],
whose expression is repressed by Fnr and ArcA in anaer-
obic conditions. Deletion of fnr would lower PFL activity
and attenuate the repression of PDH, the result being the
production of NADH instead of formate when pyruvate is
converted to acetyl-CoA. In the absence of oxygen, some

of the acetyl-CoA would be reduced to ethanol consum-
ing two NADH molecules to maintain a redox balance.

Deletion of pta and eutD (both catalyze the conversion
of acetyl-CoA to acetylphosphate) would reduce acetate
production, and hence increase formation of other by-
products such as ethanol, lactate, or succinate. However,
multiple studies have shown that the mutations in the
ack-pta pathway cause accumulation of pyruvate [31-33],
and the integrated metabolic and regulatory model pre-
dicts the secretion of pyruvate (64% mol pyruvate/mol
glucose) in a ΔptaΔeutD mutant. Pyruvate can be either
secreted or reduced to form other fermentation by-prod-
ucts, but there is not enough NADH available to ferment
all the pyruvate generated by glycolysis. In order to con-
vert pyruvate to ethanol, arcA and gntR deletions are
needed to derepress PDH and the ED pathway, along with
a pgi or tpiA deletion to re-direct flux from glycolysis to
the ED pathway. A ΔtpiA mutant alone could cause meth-
ylglyoxal accumulation and inhibit the anaerobic growth
[34], but re-directing flux to the ED pathway should pre-
vent methylglyoxal accumulation.

In the strategies that include both gene deletion and
gene overexpression, we found that overexpression of edd
replaced the gntR deletion in most strains to activate the
ED pathway. In addition, overexpression of fructose-1,6-
bisphosphatase (fbp) was predicted to increase the
amount of fructose-6-phosphate, and reverse the direc-
tion of the non-oxidative branch of the PP pathway in the
strains utilizing the ED pathway. The reversed PP path-
way results in a decreased flux in the TCA cycle and an
increased flux in the ED pathway and PDH, leading to
improved ethanol production. The model predicts that
ptsH deletion (in addition to other modifications)
increases flux through the lower half of glycolysis and
decreases succinate production. Switching glucose trans-
port from the phosphoenolpyruvate:sugar phosphotrans-
ferase system (PTS) to proton symport has been shown to
improve overall performance and production yield for
ethanol as well as other compounds [35].

Glutamate can be synthesized via multiple pathways
depending on the availability of nitrogen sources. When
ammonia is abundant, an ATP-independent pathway
functions to save energy by converting α-ketoglutarate to
glutamate using NADPH. This pathway is encoded by
glutamate dehydrogenase (gdhA), the deletion of which
would require cells to use the ATP-dependent pathway
that normally operates when the concentration of ammo-
nia is low [36]. This ATP-dependent pathway would
decrease growth rate, but increase the flux through the
ED pathway and PDH, and improve the ethanol produc-
tion.

Predicted flux distributions corresponding to maxi-
mum biomass production and gene expression states are
shown in Figure 7 for both the wild-type and
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ΔfnrΔpflBΔtdcEΔpgi+edd strain. These were predicted by
the integrated metabolic and regulatory model (Δ: dele-
tion, +: overexpression). The ethanol production rate was
predicted to be approximately 86.2% of the maximum
theoretical yield and the corresponding growth rate was
0.225 h-1 for the mutant strain (39.3% and 0.467 h-1 for the
wild-type). This result is somewhat similar to the previ-
ously reported values [12], but the perturbation strategy
identified by OptORF takes into account transcriptional
regulatory effects, and as such could facilitate the adap-
tive evolution process of the mutant strain to achieve the
desired phenotype. Some of the gene deletions presented
here have been used previously to engineer un-evolved
and evolved strains of E. coli for ethanol production
[26,37]. The strength of the OptORF appoach emerges
when these individual modifications are put together in a
cooperative manner to generate a strategy, which simul-
taneously considers the metabolic and transcriptional
regulatory network.

Strain designs for higher alcohol production
In addition to ethanol, we have also identified metabolic
engineering strategies using OptORF for over-production
of higher alcohols such as isobutanol and 2-phenyletha-
nol from glucose. Since E. coli does not naturally produce
these higher alcohols, we have augmented the iMC1010v2

network with non-fermentative reactions and corre-
sponding GPR associations for synthesis of these alcohols
based on a recent study [20]. In summary, 2-keto acid
decarboxylase (KDC) and alcohol dehydrogenase (ADH)
were added to the network to allow for production of 1-
propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, 3-
methyl-1-butanol, and 2-phenylethanol from intermedi-
ates in isoleucine, leucine, and valine biosynthesis. We
have assumed these enzymes, KDC and ADH, have no
substrate specificity so that the production of any higher
alcohol is equally preferred.

Our computational results found that most of the strat-
egies for ethanol production can also be modified for the

Figure 7 Central metabolic state of wild-type and ethanol production strains. Genes associated with each reaction in the central metabolic net-
works are shown. If isozymes exist, the corresponding genes for each isozyme are listed on separate lines. If an enzyme consists of multiple subunits, 
the associated genes are listed at the same line. (A) Metabolic flux distribution for wild-type strain as predicted by the integrated metabolic and reg-
ulatory model. Genes repressed by transcriptional regulation, as predicted by the integrated model, are highlighted in black. (B) Metabolic flux distri-
bution for the ΔfnrΔpflBΔtdcEΔpgi+edd ethanol production strain as predicted by the integrated metabolic and regulatory model. Genes de-repressed 
by the deletion of the Fnr transcription factor are highlighted in gray. *The expression of ackA is not activated by Fnr in the mutant strain.
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production of some higher alcohols with the additional
deletion of AdhE (which produces ethanol) and addition
of KDC and ADH. In particular, we have found that the
anaerobic production of isobutanol can be coupled to
growth at ~94% of the theoretical maximum yield (Table
4). In addition to the strategies found in the ethanol case,
deletion of the AB-specific pyridine nucleotide transhy-
drogenase (pntAB) was identified to be beneficial for
increasing isobutanol production. This prevents the elec-
tron transfer from NADH to NADP, and thus more
NADH would be available for the production of isobu-
tanol.

In addition to isobutanol, we found that the production
of 1-propanol and 2-phenylethanol can also be coupled to
growth, but their yields were much lower than the isobu-
tanol yield (~38% and ~5.7%, respectively, see Additional
file 3). However, the production of other branched-alco-
hols such as 2-methyl-1-butanol or 3-methyl-1-butanol
can be accompanied with the production of other alco-
hols including ethanol and isobutanol. In other words,
cells could either produce 2-methyl-1-butanol (3-methyl-
1-butanol) along with the other alcohols or produce only
the other alcohols. In such cases, changes in the substrate
specificity of KDC or ADH enzymes would be needed to
generate specific alcohols. Interestingly, the identified
metabolic engineering strategies for 2-phenylethanol
production were very distinct from the strategies for
other alcohol production strains (see Additional file 3).
While strategies for producing other alcohols involved
increasing fluxes in the oxidative branch of PP pathway
and ED pathway, the strategies for 2-phenylethanol
include deletion of genes in the both the oxidative (zwf or
gnd) and non-oxidative (talAB) branches of the PP path-
way. The model predicts that these gene deletions would
increase the fluxes in the aromatic amino acid biosynthe-
sis pathways, which leads to the increased availability of
phenylpyruvate, the precursor for 2-phenylethanol. Anal-
ysis of these higher alcohols illustrates how OptORF can

be used to couple biomass and production of metabolites
which are not part of central metabolism.

Conclusions
We have systematically integrated metabolic and regula-
tory models, and developed a new computational frame-
work (OptORF) for designing microbial strains for
metabolite production. We compared our new approach
to OptKnock, and found four primary differences
between the strains that are identified using the two
approaches. First, OptKnock may propose removing
reactions that do not have any genes associated with
them, making the construction of such strains experi-
mentally impossible. Second, OptORF can find metabolic
engineering strategies requiring the smallest number of
gene deletions while still achieving high production
yields. Since OptKnock strategies are based on reaction
deletions they often require more gene deletions than
those found using OptORF. Third, OptKnock may sug-
gest reaction deletions that result in a different solution
space when the necessary genes are deleted or transcrip-
tional regulatory effects are accounted for. In this case the
adaptive evolutionary outcome would be different than
what is predicted when only reaction deletions are con-
sidered, sometimes resulting in reduced production
yields or lethal phenotypes. Lastly, OptORF can propose
changes such as the overexpression of metabolic genes or
deletion of transcriptional factors that may lead to faster
evolutionary trajectories.

Based on our analysis of experimental data using inte-
grated metabolic and regulatory model it is unclear to
what extent, if any, cells re-wire their transcriptional reg-
ulatory network during adaptive evolution. Given that a
finite number of mutations are found in adaptively
evolved strains [38], it seems likely that cells could get
stuck in a local maxima in the fitness landscape, where
they would need to change the regulation of multiple
gene products to improve fitness. This idea is supported
by the fact that the same starting strain can evolve to dif-

Table 4: Gene deletion and overexpression strategies for isobutanol production in E. coli.

Deleted Genes Overexpressed 
Genes

Growth Rate (hr-1) Isobutanol Yield 
(%)

adhE gdhA 0.223 89.5

adhE gntR pgi 0.128 93.8

adhE pgi edd fbp 0.128 94.3

adhE pntA nuoN edd fbp 0.110 95.1

adhE pntA gdhA edd fbp 0.102 95.5

The predicted isobutanol yields and growth rates are listed for gene deletion and overexpression strategies. The two enzymes needed for 
synthesis of isobutanol (KDC and ADH) were assumed to be present for all cases. The variability in isobutanol yield at the predicted maximum 
growth rate was zero or very small (< 0.01%) for all cases. The isobutanol yield is reported as % of the maximum theoretical yield (100% is 0.41 
g isobutanol/g glucose or 1 mol isobutanol/mol glucose). The simulation conditions were the same as the ethanol case.
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ferent end points, and in some cases achieve only sub-
optimal behaviors [9,39,40]. By taking regulatory effects
into account when designing strains it may be possible to
start with strains that are already expressing the neces-
sary enzymes needed to achieve the desired production
and growth rates. Some evolved strains may stay within
the solution space defined by metabolic and regulatory
constraints, while others may alter their regulatory net-
works if it results in a significant growth advantage, thus
altering the solution space in which they evolve. Thus, it
will be particularly important to conduct parallel evolu-
tionary experiments to find evolved strains that lead to
higher production without violating regulatory con-
straints.

In its current implementation, OptORF uses Boolean
approximations to describe how transcriptional regula-
tion affects metabolic fluxes. Although the use of Boolean
variables do not exactly represent the dynamic nature of
metabolism and regulation, it has been previously shown
that constraint-based models using these approximations
successfully predict the cellular behavior in continuous
and batch culture [1,19,21,24]. The approach could be
extended to include other types of regulatory models
which can account for varying levels of gene expression
or enzyme activity. A previous study has shown that the
behavior of a transcriptional regulatory network can be
well approximated by a system of linear equations near a
steady-state, where gene expression does not substan-
tially change [41]. The OptORF approach could be
improved by applying these linear approximations in the
regulatory part of the model, in order to describe varying
gene expression levels, and using approaches to constrain
metabolic fluxes based on predicted gene expression lev-
els [42-44].

The OptORF approach is currently applied to produce
metabolites that can be coupled to biomass production. A
recent study has used a genetic algorithm to design
strains with un-coupled metabolite and biomass produc-
tion, where a bi-level problem is used and the inner prob-
lem uses an objective function to predict un-evolved
cellular phenotypes [45]. OptORF could also be extended
to find metabolic engineering strategies that do not
require coupling of cellular growth and product forma-
tion, and would evaluate gene deletions, gene overexpres-
sion, and regulatory effects simultaneously to identify
such strategies.

The novelty of the method developed here is that it
accounts for transcriptional regulatory networks in addi-
tion to metabolism in the design of strains for metabolic
engineering. However if desired, the approach can be
used with and without transcriptional regulatory con-
straints to consider the interdependence of reactions
through their GPR associations. It should be noted that
the integrated model of metabolism and regulation allows

for simulating the effects of both gene overexpression
(where un-expressed genes are expressed) and gene dele-
tion. The OptORF approach can also suggest transcrip-
tion factor deletion as an alternative to metabolic gene
deletion or overexpression, which provides greater flexi-
bility in metabolic engineering strategies. By further
incorporating flux modulation approaches such as those
proposed in OptReg [12], additional engineering strate-
gies can be designed which consider adjustment of flux
values and not just the complete removal/addition of
reactions via gene deletion or gene overexpression.

The approach we have developed here is general and
can be used to engineer production of a variety of prod-
ucts in different microorganisms, for which constraint-
based models exist. The number of microbial transcrip-
tional regulatory network models continues to grow,
which has been enabled by high-throughput datasets and
computational analysis [46-52]. Regulatory networks
reconstructed from analysis of high-throughput datasets
can be integrated with metabolic networks using Boolean
or other types of regulatory modeling formalisms, and
our approach can applied to new integrated models of
metabolism and regulation. As such, it will have impacts
on the biological production of a wide variety of prod-
ucts, ranging from biofuels and other commodity chemi-
cals to specialty chemicals [53-55].
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