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Abstract
The diagnosis of inflammatory bowel disease (IBD) still remains a clinical challenge and the

most accurate diagnostic procedure is a combination of clinical tests including invasive endos-

copy. In this study we evaluated whether systematic miRNA expression profiling, in conjunc-

tion with machine learning techniques, is suitable as a non-invasive test for themajor IBD

phenotypes (Crohn's disease (CD) and ulcerative colitis (UC)). Based on microarray technol-

ogy, expression levels of 863miRNAs were determined for whole blood samples from 40 CD

and 36 UC patients and compared to data from 38 healthy controls (HC). To further discrimi-

nate between disease-specific and general inflammation we includedmiRNA expression data

from other inflammatory diseases (inflammation controls (IC): 24 chronic obstructive pulmo-

nary disease (COPD), 23 multiple sclerosis, 38 pancreatitis and 45 sarcoidosis cases) as well

as 70 healthy controls from previous studies. Classification problems considering 2, 3 or 4

groups were solved using different types of penalized support vector machines (SVMs). The

resulting models were assessed regarding sparsity and performance and a subset was

selected for further investigation. Measured by the area under the ROC curve (AUC) the corre-

sponding median holdout-validated accuracy was estimated as ranging from 0.75 to 1.00

(including IC) and 0.89 to 0.98 (excluding IC), respectively. In combination, the corresponding

models provide tools for the distinction of CD and UC aswell as CD, UC andHCwith expected

classification error rates of 3.1 and 3.3%, respectively. These results were obtained by incor-

porating not more than 16 distinct miRNAs. Validated target genes of thesemiRNAs have

been previously described as being related to IBD. For others we observed significant enrich-

ment for IBD susceptibility loci identified in earlier GWAS. These results suggest that the pro-

posed miRNA signature is of relevance for the etiology of IBD. Its diagnostic value, however,

should be further evaluated in large, independent, clinically well characterized cohorts.
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Introduction
Inflammatory bowel disease (IBD) is a complex, polygenic, chronic intestinal disorder of
unknown etiology, comprising two major types: Crohn’s disease (CD) and ulcerative colitis
(UC). IBD is believed to evolve through a dysregulated response of the immune system to the
commensal microbiota associated with intestinal tissues in a genetically susceptible host. The
diagnosis of IBD is often achieved only months or years after the first onset of symptoms and
still requires a multitude of information from clinical, radiological, endoscopic and histological
tests. Extensive heterogeneity is observed in terms of disease presentation, behavior, and
response to treatment. However, a definite diagnosis of CD or UC cannot be established in
approximately 10%–17% of colitis patients (known as “indeterminate colitis” (IC)) [1] and
more than 10% of IBD patients change diagnosis (CD or UC) during the first year of the dis-
ease course [2]. Fecal and serological diagnostic tests, e.g. for calprotectin, lactoferrin or CRP
(C-reactive protein) as well as serum antibodies like pANCAs (perinuclear antineutrophil cyto-
plasmic antibody) and ASCAs (anti-S.cerevisiae antibody), supplement invasive endoscopic/
colonoscopic methods to verify IBD-diagnosis, to differentiate between the major subtypes or
to evaluate disease progression [3,4]. In the last 10 years, several genome-wide association stud-
ies (GWAS) were carried out to identify common susceptibility variants for IBD. In a large
meta-analysis of previous IBD GWAS, including more than 75,000 cases and controls, Jostins
et al. identified 71 additional loci, increasing the total number of known IBD susceptibility loci
with association of genome-wide significance to more than 163 [5]. While GWAS findings
have added tremendously to the understanding of disease etiology and the genetic architecture,
common genetic variants have low diagnostic value as shown for IBD [6] and other diseases
[7]. Other studies, employing mRNA-based measurements of differential gene expression in
tissue or peripheral blood of IBD patients of varying disease state, revealed distinct expression
patterns [8–11]. Limitations of these studies were reported when comparing cases and healthy
controls or trying to classify disease subphenotypes [12]. Non-coding, regulatory microRNAs
(miRNAs) have been studied in the context of their function in IBD [13] but especially because
of their ability to serve as diagnostic markers, as recently summarized by Chen et al. [14]. As
miRNA expression levels are more stable in tissues and body fluids, such as peripheral blood,
and as miRNAs act as master-regulators of mRNAs, differential signatures of miRNAs could
serve as superior, non-invasive diagnostic markers to verify IBD diagnosis, discriminate
between major IBD subphenotypes and to predict prognosis. A core set of deregulated miRNAs
has been identified in a series of studies investigating differential miRNA expression in biopsies
and peripheral blood of IBD patients [15–22]. Functional links gained from the analysis of
IBD-associated miRNA target genes implicate an involvement of cellular pathways of the
immune system (NF-κB, IL-23/IL-23R, IL-6/STAT3) [23–29], autophagy [13,30,31], epithelial
barrier function [32,33], IBD-associated dysplasia and colorectal cancer [34–36] in IBD disease
etiology. Besides these mechanistic insights into the disease, highly accurate predictive sets of
miRNAs suitable for diagnostic purposes have not yet been reported. Interestingly, most of the
afore-described studies, investigating deregulation of miRNAs, follow the classic approach of
statistical hypothesis testing for significant differential expression of single candidate miRNAs.
Some publications, however, point out an alternative way of employing large miRNA datasets
and machine-learning techniques, such as support vector machines (SVMs) [37] or random
forests (RFs) [38]. Keller and colleagues successfully applied SVM-based approaches to identify
diagnostic miRNA-profiles for several different diseases [39], such as multiple sclerosis [40,41],
lung cancer [42] or male infertility [43]. Others used similar analysis strategies to generate
miRNA expression signatures for pharyngeal squamous cell carcinomas [44], thyroid lesions
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[45], lung adenocarcinoma [46] or pulmonary tuberculosis [47]. Even ulcerative colitis has
been investigated using SVMs, leading to a signature of platelet-derived miRNAs [48].

Here we investigate microarray-based miRNA expression profiles from peripheral blood of
IBD patients, using penalized SVMs [49] and random forests for distinction of CD and UC
from healthy controls and other complex inflammatory diseases (chronic obstructive pulmo-
nary disease (COPD), multiple sclerosis, pancreatitis and sarcoidosis). The promising results of
our pilot study show, that machine-learning techniques and miRNA signatures should be fur-
ther investigated for IBD diagnostics. Moreover, the miRNA profiles identified yield further
insight into the disease-relevant signaling pathways.

Material and Methods

Patient recruitment and sampling
Clinical data and sample material used in this study were obtained under written informed
consent of patients as well as healthy donors, and under approvals of the local ethics commit-
tees (Biobank Popgen & Ethik-Komission der Medizinischen Fakultät, Universitätsklinikum
Schleswig-Holstein, Kiel). We randomly selected blood samples of 40 CD, 36 UC patients and
included 38 healthy controls (HC) from our biobank. Patients were collected at the UKSH ter-
tiary referral center. Diagnoses were verified by a clinician after reviewing the respective medi-
cal health records. As shown in Table 1, patients of every group were matched regarding
demographic parameters (mean age at diagnosis of 27.3 and 28.1 years for CD and UC cases,
respectively; mean age at sampling of 46.0 and 43.8 years for CD and UC cases, respectively;
fraction of males of 54.1% in CD and 53.1% in UC patients, respectively). The majority of the
patients was treated with anti-TNF-α inhibitors, such as Infliximab or Mesalazine (67.6% of
CD and 90.6% of UC cases) and is therefore assumed to be stable regarding the clinical presen-
tation. The activity of immune cells is assumed to be altered partially since a fraction of the
patients additionally was treated with immunosuppressive drugs, such as Azathioprine, Cyclo-
sporine, 6-Mercaptopurine or Tacrolimus (48.6% of CD and 31.3% of UC cases). Furthermore
a substantial fraction of the patients underwent the clinically common treatment with SAIDs
(steroidal anti-inflammatory drugs; 29.7% of CD and 56.3% of the UC cases, respectively) and/
or NSAIDs (non-steroidal anti-inflammatory drugs; 2.7% of CD and 6.3% of the UC cases,
respectively). However, based on the available data exacerbation of IBD at sampling was ruled
out for 51.4% of CD and 56.3% of UC cases.

Table 1. Characterization of the study subjects. Grouped by CD, UC and HC frequency information (in percent) on demographics (gender and smoking
status), medication (anti-TNF-α, immunosuppressant, SAIDs and NSAIDs) as well as symptoms (disease attack at sampling, stenosis, fistula and surgery) is
shown.

demographics medication symptoms

male smoker anti-TNF-alpha immunosuppressant said nsaid disease attack at sampling stenosis fistula surgery

CD no 45.9 35.1 32.4 51.4 70.3 97.3 51.4 27.0 48.6 29.7

yes 54.1 64.9 67.6 48.6 29.7 2.7 0.0 62.2 48.6 70.3

NA 0.0 0.0 0.0 0.0 0.0 0.0 48.6 10.8 2.7 0.0

UC no 46.9 68.8 9.4 68.8 43.8 93.8 56.3 78.1 84.4 90.6

yes 53.1 31.3 90.6 31.3 56.3 6.3 0.0 3.1 3.1 3.1

NA 0.0 0.0 0.0 0.0 0.0 0.0 43.8 18.8 12.5 6.3

HC no 46.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

yes 53.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

NA 0.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

doi:10.1371/journal.pone.0140155.t001
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miRNA extraction and microarray measurement
After sampling, peripheral blood was anticoagulated using ethylenediaminetetraacetic acid
(EDTA) and immediately processed for RNA isolation. Total RNA, including miRNAs, was
extracted using the miRNeasy Mini Kit (Qiagen GmbH, Hilden, Germany) and stored at
-80°C. All samples were analyzed on the automated Geniom Real Time Analyzer (GRTA, febit
biomed GmbH, Heidelberg, Germany) using the Geniom miRNA Biochip for Homo sapiens,
covering 866 human miRNA species [50]. Since miRBase has been updated from version 12 to
14 during the time course of the study, we used 863 miRNAs that were consistently present in
all three versions for the final data analysis. Biotin labeling was conducted by microfluidic
enzymatic on-chip labeling of miRNAs as described previously [51]. Hybridization was carried
out for 16 hours at 42°C followed by signal enhancement processing with GRTA. Detection
images were analyzed using the GeniomWizard Software.

Data preprocessing
Sample data for other inflammatory diseases, representing the inflammation control panel for
the current investigation, was taken from a previously published study [39]. This dataset com-
prised 24 COPD, 23 multiple sclerosis, 38 pancreatitis and 45 sarcoidosis cases as well as
another 70 healthy controls. Raw data of these samples was downloaded from Gene Expression
Omnibus (GEO, Accession code: GSE31568) and analyzed jointly with raw data of samples
generated for this study. Samples with median background-subtracted intensity exceeding
1.5�IQR where removed as outliers resulting in 273 samples, including 37 CD, 32 UC, 92 HC,
23 COPD, 23 multiple sclerosis, 35 pancreatitis and 32 sarcoidosis cases. To account for batch
effects arising from differences in the source of data the background-subtracted intensity values
were centered with regard to the medians of the healthy controls. Normalization then was per-
formed using the R package vsn [52] for robust calibration and variance stabilization.

Classification with penalized support vector machines
To obtain mathematical models that allow diagnostic applications as well as the elucidation
of the role of miRNAs in the development of IBD, different types of classification problems
were investigated. Aiming for the distinction between CD, UC and HC initially a set of mod-
els considering 2 groups was examined (CD vs. HC, UC vs. HC, CD vs. UC). Classification
problems additionally incorporating IC (CD vs. IC, UC vs. IC, IC vs. HC) were carried out to
differentiate CD, UC and HC from general inflammation. Models aiming for the distinction
of combinations of groups were examined by jointly considering 3 groups (CD vs. UC+HC,
UC vs. CD+HC, HC vs. CD+UC as well as CD vs. UC+IC, UC vs. CD+IC, IC vs. CD+UC).
Finally, also a set of models allowing for 4 groups was investigated (CD vs. UC+HC+IC, UC
vs. CD+HC+IC, HC vs. CD+UC+IC, IC vs. CD+UC+HC). Each of the 16 classification prob-
lems was solved using different types of linear penalized support vector machines, namely
LASSO SVM, elastic net SVM, SCAD SVM and elastic SCAD SVM. Additionally, the linear
standard SVM not performing feature selection was used as a reference. It is worth noting
that not every classification problem considered has a diagnostic meaning. However, for the
subsequent construction of combined classifiers, none of these can be neglected.

Support vector machines (SVMs) are widely used for solving supervised classification prob-
lems. However, SVMs do not allow for the selection of important variables (feature selection).
Applying the mathematical idea of regularization abolishes this limitation [49]. Accordingly,
regularized incarnations of the standard SVM along with efficient algorithms for optimizing
their objective functions have been proposed. All these methods share the use of penalties for
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model complexity to provide sparse solutions, i.e. small sets of features that enable good
classification.

For data D 2 fðxi; yiÞjxi 2 Rm; yi 2 f�1; 1ggni¼1
with input vectors xi and class labels yi for

i = 1, . . ., n the SVM optimization problem corresponds to the minimization of k�bk22 with
respect to the decision rule yið�b � xi � b0Þ � 1. As shown by Hastie [49] this also can be written

as a regularization problem minb0 ;�b

Pn
i¼1 Lðyi; fðxiÞÞ þ plð�bÞ where Lðyi; fðxiÞÞ ¼ maxð0; 1�

yið�β � xi � b0ÞÞ is a loss (or cost) function and plð�bÞ a penalty function with parameter λ. The

classic choices of plð�bÞ include the ridge penalty [49] (standard SVM, plð�bÞ ¼ lk�bk22) and the
LASSO [53] (least absolute shrinkage and selection operator, plð�bÞ ¼ lk�bk1) as well as their
combination known as the elastic net [54] (plð�bÞ ¼ l1k�bk1 þ l2k�bk22; l1; l1 � 0). More
recently a penalty function improving the properties of the LASSO was published. The SCAD
(smoothly clipped absolute deviation) penalty [55] is given by the quadratic spline

pSCAD
l ð�bÞ ¼

Xm
j¼1

ljbjjIðjbjj � lÞ þ jbjj2 � 2aljbjj þ l2

2ða� 1Þ Iðl < jbjj � alÞ þ ðaþ 1Þl2
2

Iðjbjj > alÞ
 !

for a> 2 and λ> 0 and indicator function I(�). Similar to the LASSO this function provides feature
selection by shrinking small coefficients |βj|� λ to zero (resulting in a sparse model). However, in
contrast to the LASSO it applies a constant penalty to large coefficients |βj|> aλ (resulting in an
approximately unbiased model). Combining SCAD with the ridge penalty finally results in the elas-

tic SCAD penalty [56] defined as pð�bÞ ¼ pSCAD
l1

ð�bÞ þ l2k�bk2

2 with tuning parameters λ1, λ2 � 0.

Efficient implementations of SVMs regularized using the penalty functions mentioned before are
available in the R package penalizedSVM (version 1.1) [57].

The normalized miRNA expression data were randomly split at a ratio of 5:3, preserving the
proportion of samples per group. The first partition was used to construct the respective
model, whereas the second was used for evaluation. To estimate the distribution of each mod-
el’s predictive performance, the partitioning was conducted repeatedly applying 500-fold hold-
out sampling (random choice of samples without replacement). The tuning parameters
thereby were trained using 5-fold cross validation and fixed grid search based on the respective
training datasets. The final SVMs then were obtained by selecting the sparsest median perform-
ing model for each investigated classification task. A classifier’s performance thereby was mea-
sured by the area under the receiver operating characteristic (ROC) curve (AUC, sensitivity as
a function of 1-specificity). For illustrative purpose, additional performance measures of vary-
ing informational content were determined, e.g. balanced accuracy (BAC), sensitivity (SN),
specificity (SP). For each classification problem the sets of miRNAs (miRNA signatures) con-
sidered by the sparsest median performing model were selected for further investigation,
including validation with random forests and target enrichment analysis.

According to the principal of majority voting [58], the selected models were used to con-
struct combined classifiers for exemplary diagnostic problems (CD vs. UC, CD vs. UC vs. HC,
CD vs. UC vs. IC and CD vs. UC vs. HC vs. IC). The diagnoses provided by these models were
evaluated using the classification error rate estimated based on the complete dataset. Finally,
the risk of observing small combined error rates by chance was assessed using the Z-statistic
with parameters estimated based on 1,000-fold permutation of the class labels. Corresponding
p-values were calculated using the normal cumulative distribution function and tested for sig-
nificance using the standard significance level of 0.05.
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Validation with random forests
A second machine-learning approach, random forest (RF), was used to analyze the reported
miRNA dataset. RF is an ensemble tree method that was first introduced by Breiman et al. in
2001 [38], and has been shown to be accurate in both classification and regression problems.
Randomization is introduced by constructing each decision tree with a randomly chosen boot-
strap sample. Additionally, at each node the optimal splitting variable is selected among a ran-
dom subset of variables (predictors). Variables selected in RF classification trees are assigned
an importance score that is a measure of how much the particular predictor contributes to clas-
sifying the respective data. In this study relative recurrency variable importance metric
(r2VIM), recently proposed as a measure of variable importance, was used. Based on the per-
mutation importance scheme this measure reduces noisy signal selection [59]. For further
details on the concept of RF refer to Strobl et al. [60]).

To evaluate the validity of the feature selection employed by the penalized SVMs, two ran-
dom forests were built for each classification problem. While the first model incorporated vari-
ables per holdout selected by the RF, the second contained variables per holdout selected by the
SVM (holdout signature). To further validate the meaningfulness of the proposed miRNA sig-
nature, another two random forests were built. This time the variable set was constant across
the training datasets for each classification problem. For the third model all variables selected
in at least one training dataset were ranked by the number of times they were selected and the
50% most frequently selected variables (top signature) were used for training of the RF. Finally,
for the fourth model the variables incorporated by the sparsest median performing SVM
(median signature) were used.

For comparability, model training, as well as evaluation, incorporated the randomly selected
datasets (500-fold holdout partitioning) previously used to construct the SVM classifier. As a
measure of model performance again the area under the ROC curve (AUC) was used. All RF
analyses were performed in R (version 3.0.1) using the packages parallelRandomForest (version
4.6–7) and ROCR (version 1.0–5) [61]. For each forest, 500 trees (ntree) were built with a ter-
minal node size (nodesize) of 10% of the sample size. The number of randomly selected vari-
ables at each node (mtry) was set to the square root of the total number of predictors. For each
analysis a random seed was set to a randomly chosen number between 1 and 100,000.

miRNA target gene enrichment analysis
Experimentally validated miRNA target genes were extracted from miRTarBase [62] version
4.5 and tested for significant enrichment within the previously published IBD susceptibility
loci [5]. In total more than 163 genetic risk loci have been previously identified as being associ-
ated with inflammatory bowel disease (CD: 30, UC: 23, IBD: 110) [5]. 49 out of 1332 experi-
mentally validated miRNA target genes, as listed in miRTarBase, overlap with these loci. To
test for overrepresentation of risk loci among the targets of the miRNAs selected for distin-
guishing CD, UC and HC, Fisher’s exact test was applied (see also S7 Table). Enrichment was
considered as being significant in case p-values were smaller than 0.05. Adjustment for multi-
ple testing was conducted using Bonferroni correction.

Results

Differential expression analysis of peripheral blood miRNAs
To examine potential deregulation, we analyzed expression levels of 863 miRNAs in 40 Crohn’s
disease patients, 36 ulcerative colitis patients as well as 70 healthy control individuals. After
RNA isolation from freshly drawn peripheral blood, miRNA expression data were generated
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utilizing the Geniom Biochip miRNA (Homo sapiens). After batch-correction and normaliza-
tion the background-subtracted microarray intensity values did not show considerable sample-
based mean-variance dependencies or sample-based variability of dispersion estimates. As
illustrated using multidimensional scaling based on Spearman’s rank correlation distance (S1
Fig), the groups of interest are visually hardly distinguishable.

In the differential expression analysis (summarized in S1 Table) we were able to identify
292 and 353 miRNAs as being significantly deregulated in CD and UC, respectively, when
compared to healthy controls (Student's t-test with significance threshold of 0.05 applied to p-
values adjusted for multiple testing according to Holm’s sequential Bonferroni method). In
terms of miRNA expression level differences these results correspond well to previously pub-
lished findings (see S2 Fig and S2 Table). The degree of consistency, thereby, increases with
the sample size of the reference study. The correspondence to expression levels of the core set
of altered miRNAs involved in IBD [14] was estimated to be 75.0%. Additional 20 miRNAs
investigated by Wu et al. (14 cases of active CD, 10 cases of active UC, 13 HC) agree with our
data in 45.0% of the cases [16]. Evaluation of another 7 miRNAs identified in a study employ-
ing 20 UC and 20 HC samples shows a correspondence of 71.4% [48]. Finally, the studies con-
ducted by Zahm et al. [18] (11 deregulated miRNAs identified in 46 cases of active CD and 32
HC) and Paraskevi et al. [22] (17 miRNAs, 128 cases of active CD, 88 cases of active UC, 162
HC) completely overlap with our results (correspondence of 100.0%). Interestingly, a large pro-
portion of miRNAs that have previously been reported as being differentially expressed only
for a certain group (CD or UC) appear to be deregulated similarly in both subtypes in our data
and thus may be general IBD miRNAs. This effect may be explained due to the smaller sample
size and/or higher variability in previous studies.

Classification with penalized support vector machines
Since there are various ways to construct complex classifiers for the distinction between CD,
UC and HC (and IC, respectively), we assessed different types of penalized SVMs as well as the
corresponding sets of miRNAs based on model performance and sparsity. Considering models
incorporating 2 groups, differences in holdout-based median classifier performance of the
penalization methods were small. However, due to its theoretic properties, the elastic SCAD
SVM (median AUC = 0.97) was chosen for further investigation. Plots and tables illustrating
the performance of the LASSO SVM (median AUC = 0.96), elastic net SVM (median
AUC = 0.94) and SCAD SVM (median AUC = 0.95) are shown in S4–S6 Figs and S3–S5
Tables.

Fig 1 summarizes the elastic SCAD SVM’s performance in solving the 16 different diagnos-
tic problems measured by the area under the curve (AUC). The models incorporating 2 groups
show stable superiority (median AUC = 0.97; 0.98 including vs. 0.95 excluding IC) in compari-
son to the models considering 3 groups (median AUC = 0.92; 0.93 including vs. 0.92 excluding
IC) or 4 groups (median AUC = 0.85). In addition, these models provide remarkable sparsity
(median percentage of miRNAs removed = 99.3%, 99.4% including vs. 99.2% excluding IC)
and only marginal loss of performance compared to the standard SVM. As shown in Table 2,
in terms of median sensitivity and specificity, the performance of the selected models can be
estimated as 1.00 and 0.90, respectively (1.00 and 0.91 including IC, 1.00 and 0.90 excluding
IC). The median balanced accuracy (BAC) was 0.95 (0.96 including IC, 0.95 excluding IC).
Additional performance measures (e.g. median Matthews correlation coefficient (MCC) and
Youden’s index (YOUDEN)) are listed in S3 Table for each particular classifier.

The final set of markers selected for diagnostic application is shown in Fig 2. It includes 16
distinct miRNAs originating from elastic SCAD SVMs incorporating 2 groups: hsa-miR-34b-
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Fig 1. SVM classification results.Measured by the area under the ROC curve (AUC), classification performance is shown for models considering (A) 2
groups (CD vs. HC, UC vs. HC, CD vs. UC, CD vs. IC, UC vs. IC, IC vs. HC), (B) 3 groups (CD vs. UC+HC, UC vs. CD+HC, HC vs. CD+UC, CD vs. UC+IC,
UC vs. CD+IC, IC vs. CD+UC) and (C) 4 groups (CD vs. UC+HC+IC, UC vs. CD+HC+IC, HC vs. CD+UC+IC, IC vs. CD+UC+HC). Performance of linear
standard SVMs (considering every miRNAmeasured, white boxes) is compared to linear elastic SCAD SVMs (considering subsets of miRNAs measured,
red boxes). In addition, as a measure of model complexity the percentage of miRNAs neglected for constructing the respective penalized SVMs are plotted
(blue boxes).

doi:10.1371/journal.pone.0140155.g001

Table 2. Performance measures for the different classification models. Corresponding to the classification accuracy of the sparsest median performing
penalized SVM (see Fig 1) for each classifier area under the ROC curve (AUC), sensitivity (SN = TPR, true positive rate), specificity (SP = TNR, true negative
rate) and balanced accuracy (BAC = (SN+SP)/2) are shown.

#groups classifier AUC SN SP BAC

CD/HC 0.950 0.963 1.000 0.981

UC/HC 0.981 1.000 0.900 0.950

CD/UC 0.889 1.000 0.833 0.917

2 median 0.950 1.000 0.900 0.950

CD/IC 0.984 1.000 0.909 0.955

UC/IC 1.000 1.000 1.000 1.000

IC/HC 0.752 0.750 0.765 0.757

median 0.984 1.000 0.909 0.955

CD/UC+HC 0.893 0.969 0.692 0.831

UC/CD+HC 0.917 0.971 0.800 0.886

HC/CD+UC 0.974 1.000 0.963 0.981

3 median 0.917 0.971 0.800 0.886

CD/UC+IC 0.876 0.951 0.800 0.876

UC/CD+IC 0.933 0.976 0.889 0.933

IC/CD+UC 0.984 0.950 1.000 0.975

median 0.933 0.951 0.889 0.933

CD/UC+HC+IC 0.885 0.970 0.800 0.885

UC/CD+HC+IC 0.930 0.985 0.800 0.893

4 HC/CD+UC+IC 0.758 0.830 0.708 0.769

IC/CD+UC+HC 0.817 0.860 0.765 0.813

median 0.851 0.915 0.783 0.849

doi:10.1371/journal.pone.0140155.t002
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3p, hsa-miR-142-5p, hsa-miR-205-5p, hsa-miR-424-5p, hsa-miR-570-3p, hsa-miR-885-5p,
hsa-miR-1301-3p (CD vs. HC), hsa-miR-16-5p, hsa-miR-34b-3p, hsa-miR-99b-5p (UC vs.

Fig 2. Expression profile of signature miRNAs.Median normalized expression levels for miRNAs considered by the final models (sparsest median
performing elastic SCAD SVMs) used to distinguish CD, UC and HC are shown. The heat map was generated using a distance function based on
Spearman’s rank correlation coefficient and agglomerative hierarchical clustering using complete-linkage. Low and high expression levels are plotted using
red and blue, respectively.

doi:10.1371/journal.pone.0140155.g002
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HC) and hsa-miR-34b-3p, hsa-miR-377-3p, hsa-miR-484, hsa-miR-574-5p, hsa-miR-656-3p,
hsa-miR-744-5p, hsa-miR-1247-5p, hsa-miR-1908-5p (CD vs. UC, miRBase version 21
nomenclature). The corresponding models provide tools for the distinction of CD and UC as
well as CD, UC and HC with remarkable small classification error rates of 3.1 and 3.3%, respec-
tively (i.e. applying the proposed models will result in approximately 3 incorrect diagnoses per
100 tests). Notably, these estimates are not based on an independent dataset. Therefore, they
are potentially optimistic but still provide a measure for the combined classifier’s diagnostic
value. This is confirmed by permutation tests showing significant deviation of the classification
error from its random expectation. For further examples of classifier combinations and the cor-
responding size of miRNA signatures see S6 Table.

Validation using random forests
A second, independent machine learning approach, random forest analysis (RFs), was
employed to validate our SVM-based miRNA signatures. As shown in Table 3, random forest
analyses confirmed our SVM results. In the case of models considering 2 groups, the perfor-
mance differences were small (AUC = 0.990 for the SVM using the entirety of the miRNAs,
AUC = 0.992 for the RF per holdout sample using miRNAs selected by the RF and
AUC = 0.996 for the RF using the top 50% of the miRNAs most frequently selected by the RF
across all runs). When using the miRNAs selected by the elastic SCAD SVM for training the
RF in the same way, highly accurate models were obtained: AUC = 0.965 for the elastic SCAD
SVM, AUC = 0.992 for the RF per holdout sample using miRNAs selected by the elastic SCAD
SVM and AUC = 0.994 for the RF using the miRNAs considered by the median performing
elastic SCAD SVM. These results strongly support the validity of the miRNA combinations
chosen as putative diagnostic markers by the SVM approach.

Target genes of the diagnostic miRNA signature correlate with
susceptibility genes
To assess the potential biological significance of miRNAs within the signatures revealed by the
machine-learning approaches we correlated previous knowledge about disease relevance of
IBD-related genes to the experimentally validated target genes of the miRNA signatures
(results summarized in Table 4 and S7 Table). Irrespective of the miRNA signature tested (CD
vs. HC, UC vs. HC or CD vs. UC), we observed an overlap of miRNA target genes and pub-
lished IBD-related genes or, on the other hand, genes within known IBD susceptibility loci.
Thus, target genes of signature miRNAs used for the distinction of CD and HC are significantly
enriched for loci known to be associated with CD (p = 3.22�10−3), UC (p = 1.09�10−3) and sug-
gestive for IBD (p = 4.37�10−2). Targets of signature miRNAs used for the distinction of UC
and HC show suggestive enrichment for loci associated with CD (p = 3.34�10−2). Considering

Table 3. Comparison of classification approaches. The table shows the median classifier performance (AUC) of the classification problems considering
different numbers of groups (2, 3 and 4) and models (SVM and RF). Performance of the standard SVM is compared to the elastic SCAD SVM (a). Perfor-
mance of the RF per holdout sample using the miRNAs selected by the RF is compared to the RF per holdout sample using the miRNAs selected by the elas-
tic SCAD SVM (b). Performance of the RF using the top 50% of the miRNAs most frequently selected by the RF across all runs is compared to the RF using
the miRNAs selected by the median performing elastic SCAD SVM (c). For each comparison performance estimates based on miRNAs selected by the elas-
tic SCAD SVM are enclosed in parentheses.

classification signature 2 groups 2 groups, no IC 3 groups 3 groups, no IC 4 groups

(a) SVM 0.990 (0.965) 0.981 (0.950) 0.938 (0.925) 0.931 (0.917) 0.858 (0.851)

(b) RF, holdout signature 0.992 (0.992) 0.985 (0.985) 0.978 (0.980) 0.969 (0.974) 0.919 (0.910)

(c) RF, top/median signature 0.996 (0.994) 0.992 (0.988) 0.982 (0.989) 0.977 (0.992) 0.941 (0.940)

doi:10.1371/journal.pone.0140155.t003
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the targets of the complete set of miRNAs used for the distinction of CD, UC and HC sugges-
tive enrichment is observed for previously published susceptibility loci of CD (p = 4.80�10−3)
and UC (p = 4.80�10−3).

In a next step we investigated whether previously identified genetic variation in the IBD sus-
ceptibility genes could directly play a role in miRNA-target gene interaction. We used dbSNP
annotations of the human genome provided by the UCSC genome browser to identify SNPs
that could interfere with miRNA binding sites. As a result we found that most 3’-UTRs of the
analyzed IBD-risk genes indeed exhibit genetic variation (SNPs and small InDels) but mostly
not in the respective signature-miRNA binding site regions. Only for hsa-miR-99b, which is
part of the UC signature, we were able to identify potentially interesting SNPs located in the
essential miRNA binding site seed regions of RAVER2 (rs183861354, chr1:64831085, G>A)
and mTOR (rs375505566, chr1:11107188, G>A). Strikingly, both SNPs change the same
nucleotide position within the seed region of the miRNA binding site. Whether this single
nucleotide variant affects the binding behavior and as a consequence the gene functions in IBD
cases compared to healthy controls, remains to be shown.

Discussion
In this study we compared miRNA expression profiles of whole peripheral blood samples from
patients with inflammatory bowel disease (Crohn’s disease and ulcerative colitis) to healthy
controls and “disease controls”. We were able to confirm significantly deregulated miRNAs in
blood that were previously reported by others and could further add new candidates to the cat-
alogue of IBD-associated miRNAs. To our knowledge this study represents the largest (both in
terms of samples and measured miRNAs) blood-based miRNA-expression study for IBD pub-
lished to date. Our analysis, however, was focused on the identification of disease specific,

Table 4. Signature miRNAs regulate target genes previously identified as IBD-risk genes. Both CD and UC diagnostic signatures contain several miR-
NAs that regulate experimentally validated target genes known to be involved in IBD-related phenotypes in humans and/or mice. Genes marked with * have
even been reported as candidate genes in susceptibility loci identified in recent IBD GWAS.

signature miRNA target gene function/disease implication reference

CD/HC hsa-miR-205 LRRK2 * susceptibility gene for CD [63]

SHIP2/INPPL1 regulator of PI3K, therapeutical target in inflammation [64]

ZEB1 regulates intestinal cell growth [65]

E2F1 activation promoted by chronic inflammation [66]

ERBB3 inhibits treatment of IBD [67]

hsa-miR-142-5p NFE2L2/NRF2 susceptibility for DSS-induced colitis [68]

hsa-miR-424 MYB colonic epithelial disruption by mir-150 [69]

CUL2 * susceptibility gene for CD [70]

PU.1 role in T-cell mediated colitis [71]

hsa-miR-34b HNF4A * susceptibility gene for early onset CD [72]

CREB1 diverse implications in CD [73]

UC/HC hsa-miR-34b HNF4A * susceptibility gene for UC [74]

NOTCH1 regulator of intestinal epithelial barrier [75]

c-MET/HGFR upregulated in UC [76]

CAV1 upregulated in UC inflamed tissue [77]

hsa-miR-99b RAVER2 * susceptibility gene for UC [78]

mTOR inhibition depletes mouse colitis [79]

hsa-miR-16 HMGA1/2 P-ANCA autoantigens [80]

ACVR2a associated with IBD-related CRC [81]

doi:10.1371/journal.pone.0140155.t004
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diagnostic classification signatures derived from the overall miRNA expression profiles irre-
spective of single miRNA deregulation.

miRNAs are often referred to as “blood-based biomarkers” for diagnosing disease or moni-
toring disease progression. As it has been shown for several types of cancer this holds true as
long as a relatively stable condition, such as a recurrent aberrant gene expression in certain tis-
sues or exosomal miRNA content can be measured repeatedly. Concerning blood-based
miRNA expression in inflammatory or auto-immune diseases, however, the assumption of sta-
ble conditions is often violated. Numerous known comorbidities as well as environmental and
life-style factors, treatment and disease activity may influence miRNA levels in the blood
stream and lead to intra- and interindividual miRNA-expression variability. Also general fac-
tors like blood cell composition, depending on the type of disease may vary significantly, and
hence impact miRNA levels in peripheral blood. Thus, instead of aiming to identify single
miRNA “biomarkers”, to enhance predictive power it appears more promising to investigate
complex predictors that are based on larger numbers of miRNAs. In this way, besides simple
deregulation, also certain combinations of regulatory effects are taken into account for diagnos-
tic or predictive models.

In this work we demonstrated the use of machine-learning techniques to construct IBD-spe-
cific miRNA signatures and we were able to reveal highly accurate classification models that
distinguish healthy and diseased individuals as well as the two main IBD subtypes and other
inflammatory conditions from each other. Furthermore, a minimal set of not more than 16
miRNAs, being sufficient for sensitive and specific classification, holds great promises and
should be further evaluated in independent sample panels.

The here-investigated models represent solutions to construct classifiers for miRNA expres-
sion data but they also exhibit some limitations, most notably the limited generalizability of the
models to other technologies. All models are trained based on the same type of data that origi-
nate from a certain technology (here the Geniom Array). Application of these models to inde-
pendent samples in a clinical or diagnostic setting would always require to remove technology
biases. In addition to that, the here-presented classifiers remain restricted to the set of miRNAs
that are present on the microarray used to detect differential expression. Future studies utiliz-
ing next generation sequencing (NGS) will presumably overcome this limitation as all present
miRNAs in a sample are theoretically detectable by this technology. Furthermore, implement-
ing approaches that include more levels of available information e.g. genetic variants, micro-
biome data or clinical data from electronic health records (that include information on
differential diagnoses, medication, disease activity, etc.) will potentially add to the predictive
power needed for highly sensitive and specific classification.

Regularized instances of support vector machines incorporate penalties for model complex-
ity to prevent overfitting and to provide sparse solutions. In the here-presented study this prop-
erty is used to obtain small sets of miRNAs suitable for diagnostic application. It is expected
that miRNAs essential for solving a particular classification problem likewise are selected by
random forests using the recurrent relative variable importance. However, this approach does
not aim at selecting a minimal set of features so that one does not expect miRNA signatures to
be fully overlapping. To obtain more comparable results, future studies might consider regular-
ized random forests as introduced by Deng and Runger [82]. In this work the miRNA signature
selected using the elastic SCAD SVM was confirmed by comparably high classification perfor-
mance of random forests as an independent classification approach. For this purpose afore-
mentioned limitations can be neglected.

To obtain a model applicable with high accuracy to independent data we chose the sparsest
median performing elastic SCAD SVM along with the corresponding miRNA signature. Both,
the regularization approach and the comprehensive holdout sampling decrease the model’s
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probability of being overfitted to the dataset generated for this study. However, due to correlat-
ing expression profiles it is expected that models with matching accuracy potentially incorpo-
rate differing miRNAs. For the same reason more complex signatures may exist which merely
incoporate additional highly correlated miRNAs.

Classifiers for complex diagnostic problems were constructed by majority voting of simpler
models. As shown in this study, this approach results in remarkable low classification error
rates. However, follow-up studies could potentially incorporate the estimation of class proba-
bilities to enhance the interpretability of the classification results.

To get insights into functional implications of the miRNAs contained in the revealed IBD
signature, we screened current databases for experimentally validated miRNA-target gene
interactions. Notably, a considerable fraction of the target genes within the IBD miRNA signa-
tures has been implicated in intestinal diseases (see Table 4). Many of those targets were identi-
fied in recent IBD GWAS but most of the genetic variation detected does not correlate (and
thus not interfere) with miRNA regulatory binding sites. Only the hsa-mir-99b binding sites in
the 3’-UTRs of the IBD susceptibility gene RAVER2, a ribonucleoprotein (hnRNP) involved in
regulation of splicing and mTOR, a serine/threonine proteine kinase, shown to be involved in
activation of autophagy, represent good candidates for further experimental investigation. In
the future, more complete data on genetic varation in 3’-UTRs of IBD related genes will sup-
posedly come from whole genome sequencing approaches and will thus enable for more com-
plete analyses of miRNA target genes. In a recent review on genetic studies in IBD Liu and
Anderson [83] conclude that most of the identified GWAS loci actually reside in noncoding
regions of the genome and that a vast number of these noncoding variants will likely play a role
in gene regulation. miRNAs are certainly an important part of the regulatory machinery of the
genome, but besides their utility in diagnostics, miRNA signatures might also give valuable
insights into disease development and progression.

Supporting Information
S1 Fig. MDS (multidimensional scaling) plots for visualization of background-subtracted
intensity values. Background-subtracted intensity values normalized using variance stabiliza-
tion (A) before and (B) after median centering based on the batches observed for healthy con-
trols. The corresponding medians are indicated by black circles. MDS was performed using a
distance function based on Spearman’s rank correlation coefficient. Data points of each group
are represented by their α-shape (generalized convex hull). The second plot visualizes the
batch-corrected normalized data used for diagnostic classification.
(TIFF)

S2 Fig. Median expression levels of miRNAs previously published as being deregulated in
CD, UC and HC. The horizontal side bar indicates the correspondence between the literature
and the dataset used for this study. Measurements with directions of effect deviating from the
literature are marked using black bars. The heat map was generated using a distance function
based on Spearman’s rank correlation coefficient and agglomerative hierarchical clustering
using complete-linkage. Low and high expression levels are plotted using red and blue, respec-
tively.
(TIFF)

S3 Fig. Median expression profiles of significantly deregulated miRNAs in CD, UC and
HC. For each pair of groups two-sample t-tests were applied. Deregulation was considered as
being significant for Holm-corrected p-values<0.05. Not significantly differentially expressed
miRNAs were neglected. 667 out of 863 miRNAs were differentially deregulated in any of the
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comparisons.
(TIFF)

S4 Fig. Classification results for LASSO SVM.Measured by the area under the ROC curve
(AUC) classification performance is shown for models considering (A) 2 groups (CD vs. HC,
UC vs. HC, CD vs. UC, CD vs. IC, UC vs. IC, IC vs. HC), (B) 3 groups (CD vs. UC+HC, UC vs.
CD+HC, HC vs. CD+UC, CD vs. UC+IC, UC vs. CD+IC, IC vs. CD+UC) and (C) 4 groups
(CD vs. UC+HC+IC, UC vs. CD+HC+IC, HC vs. CD+UC+IC, IC vs. CD+UC+HC). Perfor-
mance of linear standard SVMs (considering every miRNA measured, white boxes) is com-
pared to linear LASSO SVMs (considering subsets of miRNAs measured, red boxes). In
addition, as a measure of model complexity the percentage of miRNAs neglected for construct-
ing the respective penalized SVMs are plotted (blue boxes).
(TIFF)

S5 Fig. Classification results for elastic net SVM.Measured by the area under the ROC curve
(AUC) classification performance is shown for models considering (A) 2 groups (CD vs. HC,
UC vs. HC, CD vs. UC, CD vs. IC, UC vs. IC, IC vs. HC), (B) 3 groups (CD vs. UC+HC, UC vs.
CD+HC, HC vs. CD+UC, CD vs. UC+IC, UC vs. CD+IC, IC vs. CD+UC) and (C) 4 groups
(CD vs. UC+HC+IC, UC vs. CD+HC+IC, HC vs. CD+UC+IC, IC vs. CD+UC+HC). Perfor-
mance of linear standard SVMs (considering every miRNA measured, white boxes) is com-
pared to linear elastic net SVMs (considering subsets of miRNAs measured, red boxes). In
addition, as a measure of model complexity the percentage of miRNAs neglected for construct-
ing the respective penalized SVMs are plotted (blue boxes).
(TIFF)

S6 Fig. Classification results for SCAD SVM.Measured by the area under the ROC curve
(AUC) classification performance is shown for models considering (A) 2 groups (CD vs. HC,
UC vs. HC, CD vs. UC, CD vs. IC, UC vs. IC, IC vs. HC), (B) 3 groups (CD vs. UC+HC, UC vs.
CD+HC, HC vs. CD+UC, CD vs. UC+IC, UC vs. CD+IC, IC vs. CD+UC) and (C) 4 groups
(CD vs. UC+HC+IC, UC vs. CD+HC+IC, HC vs. CD+UC+IC, IC vs. CD+UC+HC). Perfor-
mance of linear standard SVMs (considering every miRNA measured, white boxes) is com-
pared to linear SCAD SVMs (considering subsets of miRNAs measured, red boxes). In
addition, as a measure of model complexity the percentage of miRNAs neglected for construct-
ing the respective penalized SVMs are plotted (blue boxes).
(TIFF)

S7 Fig. Comparison of SVM and random forest.Measured by the area under the ROC curve
(AUC) classification performance is shown for models considering (A) 2 groups (CD vs. HC,
UC vs. HC, CD vs. UC, CD vs. IC, UC vs. IC, IC vs. HC), (B) 3 groups (CD vs. UC+HC, UC vs.
CD+HC, HC vs. CD+UC, CD vs. UC+IC, UC vs. CD+IC, IC vs. CD+UC) and (C) 4 groups
(CD vs. UC+HC+IC, UC vs. CD+HC+IC, HC vs. CD+UC+IC, IC vs. CD+UC+HC). Classifi-
cation performance of the linear elastic SCAD SVM (white box) is compared to a Random for-
ests per holdout sample considering variables selected using the SVM (red box) and the
Random forest itself (blue box), respectively.
(TIFF)

S8 Fig. Comparison of SVM and random forest.Measured by the area under the ROC curve
(AUC) classification performance is shown for models considering (A) 2 groups (CD vs. HC,
UC vs. HC, CD vs. UC, CD vs. IC, UC vs. IC, IC vs. HC), (B) 3 groups (CD vs. UC+HC, UC vs.
CD+HC, HC vs. CD+UC, CD vs. UC+IC, UC vs. CD+IC, IC vs. CD+UC) and (C) 4 groups
(CD vs. UC+HC+IC, UC vs. CD+HC+IC, HC vs. CD+UC+IC, IC vs. CD+UC+HC).
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Classification performance of the linear elastic SCAD SVM (white box) is compared to a Ran-
dom forests considering variables selected using the median performing SVM (red box).
Additionally, Random forests were trained with the top 50% of the variables ranked by their
frequency of selection (blue box).
(TIFF)

S1 Table. Differential expression analysis. For each binary combination of groups t-tests for
differential miRNA expression were conducted. The test results are summarized by the fold
change (fc), the t-statistic (t), the p-value (p) and the p-values adjusted for multiple testing
using Holm-correction (padj).
(XLSX)

S2 Table. miRNAs previously described to be deregulated in IBD. Tables were adapted from
Chen et al. (A) and Coscun et al. (B), respectively. For binary comparisons (CD vs. HC, UC vs.
HC, IBD vs. HC and CD vs. UC). Directions of effect known from the literature as well as mea-
sured by the microarray used for this study are summarized.
(XLSX)

S3 Table. Performance measures for LASSO SVM. Corresponding to the classification accu-
racy of the sparsest median performing penalized SVM (see S4 Fig) for each classification task
area under the ROC curve (AUC), Matthews correlation coefficient (MCC), balanced accuracy
(BAC), Youden’s index (YOUDEN), sensitivity (SN = TPR), specificity (SP = TNR), positive
predictive value (PPV), false discovery rate (FDR), negative predictive value (NPV) and false
omission rate (FOR) are shown.
(XLSX)

S4 Table. Performance measures for elastic net SVM. Corresponding to the classification
accuracy of the sparsest median performing penalized SVM (see S5 Fig) for each classification
task area under the ROC curve (AUC), Matthews correlation coefficient (MCC), balanced
accuracy (BAC), Youden’s index (YOUDEN), sensitivity (SN = TPR), specificity (SP = TNR),
positive predictive value (PPV), false discovery rate (FDR), negative predictive value (NPV)
and false omission rate (FOR) are shown.
(XLSX)

S5 Table. Performance measures for SCAD SVM. Corresponding to the classification accu-
racy of the sparsest median performing penalized SVM (see S6 Fig) for each classification task
area under the ROC curve (AUC), Matthews correlation coefficient (MCC), balanced accuracy
(BAC), Youden’s index (YOUDEN), sensitivity (SN = TPR), specificity (SP = TNR), positive
predictive value (PPV), false discovery rate (FDR), negative predictive value (NPV) and false
omission rate (FOR) are shown.
(XLSX)

S6 Table. Exemplary diagnostic application. The final median performing models were used
to predict the disease status based on each individual’s miRNA expression data. For each com-
bined classifier, constructed using majority voting, the number of groups, n(groups), consid-
ered by the atomic models as well as the respective number of miRNAs, n(mirnas), and unique
miRNAs, n(unique), are shown. In addition the classification errors per individual’s group (ε
(CD), ε(UC), ε(HC) and ε(IC)) were estimated. Furthermore, for each classifier the mean clas-
sification error (mean) as well as the corresponding permutation based Z-score (Z(mean))
were calculated. Z-scores corresponding to p-values lower than the significance threshold of
0.05 are marked using �.
(XLSX)
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S7 Table. Enrichment analysis for validated signature miRNA targets. The proportion of
validated targets of the miRNAs selected for diagnostic prediction (CD vs. HC, UC vs. HC, CD
vs. UC and CD vs. UC vs. HC) known to be coded at risk loci (CD, UC and IBD) is compared
to the proportion of general miRNA targets known to be coded at risk loci (CD, UC and IBD).
Targets of signature miRNA coded at risk and non-risk loci are denoted as C_r and C, repec-
tively. miRNA targets excluding signature targets coded at risk and non-risk loci are denoted as
R_r and R, repectively. The total number of validated miRNA targets is denoted as N. Enrich-
ment analysis was performed using Fisher’s exact test, resulting p-values are marked as being
nominal significant (�, p<0.05) and significant after Bonferroni correction for multiple testing
(��; padj<0.05).
(XLSX)

S8 Table. Raw miRNA expression data. Background subtracted microarray intensities from
GeniomWizard Software that were used to infer miRNA expression levels.
(XLSX)
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