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Abstract One of the major goals of molecular and

evolutionary biology is to understand the functions of pro-

teins by extracting functional information from protein

sequences, structures and interactions. In this review, we

summarize the repertoire of methods currently being

applied and report recent progress in the field of in silico

annotation of protein function based on the accumulation

of vast amounts of sequence and structure data. In partic-

ular, we emphasize the newly developed structure-based

methods, which are able to identify locally structural

motifs and reveal their relationship with protein functions.

These methods include computational tools to identify the

structural motifs and reveal the strong relationship between

these pre-computed local structures and protein functions.

We also discuss remaining problems and possible direc-

tions for this exciting and challenging area.

Keywords Functional genomics � Functional motifs �
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Introduction

DNA sequences can be called ‘the blueprint of life’, while

proteins represent the fulfillment of this blueprint in terms

of structures and functions. A fundamental goal of func-

tional genomics research is to understand how proteins

carry out functions in a living cell (Eisenberg et al. 2000;

Brenner 2001; Goldsmith-Fischman and Honig 2003). In

addition to experimental methods, computational methods

have been extensively applied with the aim of developing

hypotheses in terms of assigning specific functions to

specific proteins and providing valuable biological insights.

The basic rationale behind such research is that the gene

sequence determines the amino acid sequence, and the

amino acid sequence determines the protein structure,

which, in turn, determines the protein function (Whisstock

and Lesk 2003). Many proteins, even among those in the

Protein Data Bank (PDB), have not yet been annotated,

although we have succeeded in deriving their structures

(Laskowski et al. 2003; Watson et al. 2005). We review

here the in silico annotation methods currently used to

determine protein function from protein local structures.

Generally speaking, proteins are the main catalysts,

structure components, signal transfers and molecular

machines in a biological organism. As such, they are the

basic elements of functions. However, the definition of

function means different things to different people since it

is an evolving concept associated to an abundance of

interpretations. In general, these functions can be described

at many levels, ranging from the biochemical functions at

the molecular level (e.g. catalytic or binding activities) to

biological processes at the level of biomolecular coopera-

tion (e.g. signal transduction or cellular physiological

process) to the cellular components at the cell level of an

organ (e.g. nucleus or rough endoplasmic) (Devos and

Valencia 2000; Watson et al. 2005). Several schemes/tools/

databases have been developed in recent decades for

measuring protein functions in a systematic model with the

aim of annotating the functions of proteins (Watson et al.

2005); these include EC (Barrett 1997), MIPS (Ruepp et al.

2004), GO (The Gene Ontology Consortium 2000; Camon
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et al. 2004) and KEGG (Kanehisa and Goto 2000), as

shown in Table 1.

Using the existing function annotations as ‘gold stan-

dard’ data, researchers have been able to develop many

protein function annotation methods in recent years based

on protein relationships. We summarize the existing

function annotation methods in the framework of Fig. 1,

which shows the basic tendency for the functional infer-

ence methodology—i.e. to explore sequence similarity,

structure similarity, protein interaction and their integra-

tion. We briefly review these in the following list:

• Using sequence information. The methods in this

category often utilize a BLAST, FASTA or PSI-

BLAST score to detect the sequence similarity and

annotate the functions to a target protein from its

homologous protein (Whisstock and Lesk 2003; Wat-

son et al. 2005). In the safe zone (Rost 1999) of

sequence similarity, the sequence-based methods can

provide putative annotations with high confidence

(Wilson et al. 2000). A number of papers have tested

the global performance between the relationship of the

sequence similarity and function similarity. Shah and

Hunter (1997) tested the sequence similarity among

enzymes in many EC classes at various thresholds and

concluded that the functional similarity could not be

detected perfectly when the sequences are not similar

enough. Wilson et al. (2000) and Devos and Valencia

(2000) obtained similar results. Joshi and Xu (2007)

presented a systematic analysis on the sequence–

function relationships in four model organisms.

• Using structure information. Protein structures are more

conserved than protein sequences (Orengo et al. 1999;

Hou et al. 2005). A number of methods have been

developed with the aim of assessing protein structure

similarity (Kolodny et al. 2005); these can be grouped

as coordinate-based [such as STRUCTAL (Gerstein

and Levitt 1998), SAMO (Chen et al. 2006), TM-align

(Zhang and Skolnick 2005) and ProSup (Lackner et al.

2000)], distance-matrix-based [such as DALI (Holm

and Sander 1993), CE (Shindyalov and Bourne 1998),

FATCAT (Ye and Godzik 2004), SSAP (Orengo and

Taylor 1996)] and secondary-structure-based [such as

VAST (Gibrat et al. 1996), SSM (Krissinel and Henrick

2004), LOCK (Singh and Brutlag 1997) and FAST

(Zhu and Weng 2005)]. Classifying the proteins into

different classes or families based on global structure

similarity will assist researchers in determining the

relationships among different proteins and provide a

foundation of functional organization (Brenner 2001).

SCOP (Murzin et al. 1995), CATH (Orengo et al. 1997)

and FSSP (Holm and Sander 1996) comprehensively

cluster all proteins with known structures. Based on

Table 1 The classification schemes to define functions of proteins

Method URL Description

EC http://www.chem.qmul.ac.uk/iubmb/enzyme/ The functional catalogue for enzyme. It provides four hierarchical level classes. For

example, EC 1.1.1.163 represents cyclopentanol dehydrogenase

MIPS http://mips.gsf.de/projects/funcat The functional categories for yeast. It can be extended to other organisms of life. For

example, 01.01.06.06.01.01 represents diaminopimelic acid pathway

GO http://www.geneontology.org/ The systematic classification of proteins. It is species-independent and contains three

relatively independent ontologies. For example, GO:0051635 represents bacterial cell

surface binding (F)

KEGG http://www.genome.jp/kegg/ Linking genomes to biological systems and also to environments by the processes of

interaction and reaction mapping

MIPS, Munich Information Center for Protein Sequences; EC, Enzyme Commission; KEGG, Kyoto Encyclopedia of Genes and Genomes;

GO, Gene Ontology
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Fig. 1 Framework of existing function annotation methods. The

dotted line links the individual methods with the interaction methods.

The safe zone means that pairwise sequence identity is higher than

40%, the twilight zone, about 20–30%, the midnight zone below 20%
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those clusters, the functional relationships among the

proteins can be roughly detected.

• Using interactome information. Proteins always interact

with other molecules to carry out their functions

(Sharan et al. 2007). Information on protein–protein

interactions or other interaction maps among mole-

cules, such as DNA binding with protein, can be

explored to annotate the protein functions from com-

plexes and pathways of the biochemical processes. The

network-based methods extend the functional inference

from the single molecular level to a systematic level by

considering interactions among genetic components

and transferring functions among them (Vazquez et al.

2003; Barabasi and Oltvai 2004; Zhang et al. 2007).

Sharan et al. (2007) cataloged the methods to direct

methods and module-assisted methods individually.

• Using integrated information. Another sensible strategy

is to use many different data sources to increase the

chances of obtaining function annotations for any given

protein. For example, in Marcotte et al. (1999), proteins

are grouped by experimental data, such as metabolic

function, phylogenetic profiles, Rosetta stone results

and correlated messenger RNA expression patterns to

determine the functional relationships among proteins

of the yeast. In fact, many methods are in this

framework (Sanishvili et al. 2003; George et al. 2005;

Pal and Eisenberg 2005; Zhao et al. 2008a, b),

especially when data integration becomes the focus of

the systems biology study.

In this review we highlight the relationships between

protein local structures and protein functions since it is

commonly believed that local regions on the structures are

responsible for the performance of the particular functional

tasks (Russell 1998; Ferre et al. 2005). Well-known

examples include the Ser–His–Asp triad in enzymes and

other known special structural frameworks that carry out

certain functions of catalysis (Torrance et al. 2005). It is

now widely recognized that some fold similarities suggest

an ‘analogous’ rather than a ‘homologous’ relationship

(Russell 1998). Proteins can adopt similar tertiary folds

while performing different functions at different binding

site locations. Given the existing status that the midnight

zone functional linkages escape from the sequence and

global structure similarity, only the local structures can be

used to analyze detailed relationships with functions by

determining the protein–protein interaction, protein–DNA

interaction or other global performance from the physical

perspective. Also, the local structures of protein provide

more detail information on protein function not only from

the single targeted action of that protein, but also from the

integrative process due to the detailed components and the

three-dimensional architecture. The local structures are

also important in the design of drugs and bioengineering. In

an interesting paper, Schnell and Chou (2008) convincingly

provided nuclear magnetic resonance (NMR) data showing

that the M2 proton channel of influenza a virus is typically

controlled by the local conformational change with a pH-

gated mechanism. The discovery provides sound evidence

that the local structures are crucial for determining protein

function, and it is vitally important in the search for

effective anti-influenza drugs (Borman 2008). Bridging

protein local structures and protein functions can timely

provide useful information for structure-based drug design

[e.g. see the methods in Chou et al. (2003) and Wang et al.

(2007a) against severe acute respiratory syndrome (SARS),

and that in Du et al. (2007) against chicken influenza A

virus H5N1, as well as a review paper (Chou 2004)]. Thus,

it a key task of researchers in this field is to investigate the

relationships between protein functions and protein local

structures.

This review is organized into four parts. First, we will

describe the main molecular functions related to protein

local structures. This is followed by a description of

existing definitions and methods for detecting similarities

in local structures. In the third part, the detailed method-

ologies to bridge local structures with functions are

reviewed. Some discussion and future directions are sum-

marized in the last part.

Molecular functions related to local structures

To bridge the relationship between local structures and

functions, we first catalog the molecular functions of pro-

teins strongly related to local structures. The local

structures are often regarded as the protein–protein inter-

faces, catalytic sites, ligand-binding sites, metal-binding

sites, post-translational modification sites or other miscel-

laneous active sites. Table 2 lists some of the important

functional categories (Chakrabarti and Lanczycki 2007).

Protein–protein interaction

A protein generally interacts with other proteins in per-

forming and regulating many processes in a cell. The pace

of discovery of protein–protein interactions has recently

accelerated due to rapid advances in new technologies

(Salwinski and Eisenberg 2003; Chou and Cai 2006). The

basis of protein–protein interactions often lie in local pla-

nar patches on the protein surface. The factors that

influence the formation of protein–protein complexes can

be cataloged into four different types—i.e. homodimeric

protein, heterodimeric proteins, enzyme–inhibitor com-

plexes and antibody–protein complexes (Jones and

Thornton 1996). From the structural perspective, structural
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characterization of macromolecular assemblies usually

poses a more difficult challenge than structure determina-

tion of individual proteins (Russell et al. 2004). Effective

approaches for the prediction of protein–protein interac-

tions at physical interaction levels are also strongly in

demand (Wodak and Mendez 2004). Zhou and Qin (2007)

reviewed the methods currently being applied for interface

prediction. The characteristics between interface and non-

interface portions of a protein surface, such as sequence

conservation, proportions of amino acids, secondary

structure, solvent accessibility and side-chain conforma-

tional entropy, are often used to distinguish the specificity

of local structures relating to protein binding function.

Protein–nucleotide binding

In the transcription and translation process, proteins always

bind to DNA and RNA to fulfill various functions. Protein–

nucleotide binding is a fundamental function of proteins.

Luscombe et al. (2000) classified the DNA-binding pro-

teins into eight different structural/functional groups. The

helix–turn–helix (HTH) motif is one of the most common

structures used by proteins to bind DNA, while protein–

RNA binding involves a number of different structure

specificities. A comparison between protein–RNA and

protein–DNA complexes revealed that while base and

backbone contacts (both hydrogen bonding and van der

Waals) are observed with equal frequency in protein–RNA

complexes, backbone contacts are more dominant in pro-

tein–DNA complexes (Jones et al. 2001). The positively

charged residue, arginine, and the single aromatic residues,

phenylalanine and tyrosine, all play key roles in the sites

for the RNA-binding function.

Protein–ligand binding

Ligand binding is a key aspect of protein functions. Pro-

teins recognize their natural ligands for transportation,

signal transduction or catalysis (Campbell et al. 2003). The

cleft volumes in proteins have strong relationships with

their molecular interactions and functions. The ligands are

always bound in the largest clefts (Laskowski et al. 1996).

Protein–metal binding

Metal ions have a role in a variety of important functions,

including protein folding, assembly, stability, conforma-

tional change and catalysis (Barondeau and Getzoff 2004).

In order to leverage the wealth of native metalloprotein

structures into a deep understanding of metal ion site

specificity and activity, high-resolution analyses of metal

site structures and metalloprotein design are increasingly

being performed. One of the most ubiquitous zinc-binding

motifs is the C2H2 zinc finger motif, which was first

identified in transcription factors (Ebert and Altman 2008).

Active sites

Another broad concept for protein local structures is the

active site. Active sites of a protein are comprehensively

related to functionally important local regions of the pro-

tein. The special features of functional local structure are to

provide deep insights into the relationship between struc-

ture and function. For example, the catalytic triads provide

a target of structure for finding the catalytic function of the

proteins.

Identifying protein local structures

To date, many different types of local structures have been

defined or identified based on the geometry of the local

regions, protein surface patterns, chemical groups or the

electronic features. Local structure features are believed to

be the factors related to concrete functions. At the sequence

level, the local regions may be scattered on the primary

sequence, forming special motifs. Alternatively, at the

folding level, they form locally spatial shapes. We can

simply catalog the types of methods used to identify the

local structures as follows: methods to detect profiles of

Table 2 The categories of protein functions close related to local structures

Function Descriptor

Protein binding The protein–protein interfaces where the physical interactions take place

Ligand binding Including nucleotide binding (e.g. DNA and RNA binding), lipid binding (e.g. cholesterol, glycerol,

ganglioside, etc.), ligand; and carbohydrate binding (e.g. glucose, fructose, lactose, maltose,

disaccharides, trisaccharides, etc.)

Metal binding Functions of binding metals, such as zinc, magnesium and calcium

Catalytic site Functional regions performing the catalytic functions

Miscellaneous sites Active sites involving particular functions

630 Amino Acids (2008) 35:627–650

123



sequences with special local shapes, and methods to detect

the substructures with special features based on folding.

Sequence-based local structures

The primary sequence of a protein consists of (combina-

tions of) 20 different amino acids, which fold and pack

together to constitute a special three-dimensional structure.

Sequence motifs are conserved segments in protein

primary sequences. Multiple sequence alignment is often

used to identify the common patterns in several protein

sequences, especially in the homology family. More

advanced sequence comparison algorithms can detect the

profiles of the functional residues in the primary sequence.

Of these algorithms, one of the most common methods is

the Hidden Markov Model (HMM). There are a number of

important sequence pattern databases, which are publicly

available from the Internet (Table 3).

Structure-based local structure

Local three-dimensional structural patterns, such as the

surface cavities of protein (e.g. the clefts and pockets) also

have conserved structural features. Table 4 lists a number

of methods currently used to identify local structure pat-

terns. The procedure of recognition can be generally

divided into two parts. The first is to construct the local

structures. The geometric structure patterns and bio-

chemical properties can be used to segment the protein

architecture into small substructures. The second is to

search the annotated sites from the literature and databases.

The analysis of the protein surface is an active area of

research in terms of the study of local structures. To date,

two aspects of protein surface patches have attracted the

most attention. The first is based on the defined features,

such as surface curvature, surface cavities, electrostatic

potential and hydrophobicity. CASTp (Binkowski et al.

2003b) uses the weighted Delaunay triangulation and the

alpha complex for shape measurements. The local regions

are defined by computational geometry, which identifies

and measures surface accessible pockets as well as interior

inaccessible cavities for proteins and other molecules.

Computational geometry also measures analytically the

area and volume of each pocket and cavity, both in solvent

accessible surface (SA, Richards’ surface) and molecular

surface (MS, Connolly’s surface). CASTp provides an

Table 3 Database of identified local structures based on sequences information

Database URL Descriptor

PROSITE http://us.expasy.org/prosite/ A database of protein families and domains

PRINTS http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/ A compendium of protein fingerprints

Pfam http://www.sanger.ac.uk/Software/Pfam/ A database of common protein domains and families by HMM

ProDom http://prodom.prabi.fr/prodom/current/html/home.php A database of protein domain families

SMART http://smart.embl-heidelberg.de/ Simple Modular Architecture Research Tool

SUPERFAMILY http://supfam.org/SUPERFAMILY/index.html A database of structural and functional protein annotations

Table 4 Methods and databases to identify local structures based on structure information

Method URL Descriptor

CASTp http://sts.bioengr.uic.edu/castp/ A database for identifying pockets and voids of proteins

pvSOAR http://pvsoar.bioengr.uic.edu/ A web server of detecting similar pockets from CASTp

SURFNET http://www.biochem.ucl.ac.uk/*roman/surfnet/ An algorithm for generating protein surfaces

SURFACE http://cmb.bio.uniroma2.it/surface/ A database of protein surface patches

eF-Site http://ef-site.hgc.jp/ A database for molecular surfaces of proteins’ functional sites

LigSite Unavailable A fast algorithm to identify ligand-binding site

CSA http://www.ebi.ac.uk/thornton-srv/databases/CSA/ A database documenting enzyme catalytic residues

PINTS http://www.russell.embl-heidelberg.de/pints/ Finding local similarities between protein structures

SiteBase http://www.modelling.leeds.ac.uk/sb/ A database of known ligand-binding sites

PDBSiteScan http://www.mgs.bionet.nsc.ru/mgs/gnw/pdbsitescan/ Performing the best superposition of sites from PDBSite

SPASM http://xray.bmc.uu.se/usf/spasm.html Comparing user-defined motifs against a structure database

RIGOR http://xray.bmc.uu.se/usf/ Searching a motif database to find matches, (opposite of SPASM, hence the

name)

SuMo http://sumo-pbil.ibcp.fr A graph-based algorithm for finding similarities in substructures
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online resource for locating, delineating and measuring

concave surface regions on the three-dimensional struc-

tures of proteins. These include pockets located on protein

surfaces and voids buried in the interior of proteins.

pvSOAR (Binkowski et al. 2004) provides an online

resource to identify similar protein surface regions. Ki-

noshita and Nakamura (2003) provided a molecular surface

database of proteins’ functional sites, named the eF-site.

The method displays the electrostatic potentials and

hydrophobic properties of proteins together on the Con-

nolly surfaces of the active sites for analysis of the

molecular recognition mechanisms. The Connolly surfaces

are made by using the Molecular Surface Package program,

and the electrostatic potentials are calculated by solving

Poisson–Boltzmann equations with the self-consistent

boundary method.

The second aspect of protein surface patches is based on

a predefined segmentation size of the surface. The method

uses a segmentation procedure to divide the surface into

small segmentations that correspond to certain physical

modules of the surface. SURFNET (Laskowski 1995)

generates molecular surfaces and gaps between surfaces

from three-dimensional coordinates supplied in a PDB-

format file. The gap regions can correspond to the voids

between two or more molecules or to the internal cavities

and surface grooves within a single molecule. The program

visualizes molecular surfaces, cavities and intermolecular

interactions by segmenting the surfaces. Based on the

SURFNET algorithm, SURFACE (Ferre et al. 2004)

identifies clefts and explores the cleft boundaries called the

surface patch. A non-redundant set of protein chains is then

used to build a database of protein surface patches. LIG-

SITE (Hendlich et al. 1997) is a program for the automatic

and time-efficient detection of pockets on the surface of

proteins that act as binding sites for small molecule

ligands. Pockets are identified with a series of simple

operations on a cubic grid.

The special features of catalytic sites or other types of

functional sites are also detected as local structures. Some

functional annotations of residues can be found in dat-

abases and the literature, and the location of these residues

can be represented as potential structural motifs. Although

it is difficult to define just precisely what is the active site

in protein structures, there are a number of methods for

identifying active sites or functionally important residues.

Wallace et al. (1997) described a geometric hashing

algorithm, called TESS, to derive three-dimensional co-

ordinate templates for motifs. TESS has been used to create

a database of enzyme active site templates called PROCAT

(Wallace et al. 1997). PROCAT provides facilities for

interrogating a database of three-dimensional enzyme

active site templates. It has been superseded by the Cata-

lytic Site Atlas (CSA). The CSA (Porter et al. 2004;

Torrance et al. 2005) is a database documenting enzyme

active sites and catalytic residues in enzymes with a three-

dimensional structure. It contains the original annotated

entries derived from the primary literature by hand and the

homologous entries found by the PSI-BLAST alignment. A

HETATM and all annotated SITEs in the PDB also provide

patterns of protein local structures strongly related to pro-

tein functions. Stark and Russell (2003a) reported patterns

in non-homologous tertiary structures (PINTS) that can be

used to uncover the recurring three-dimensional side-chain

patterns based on the algorithm in Stark et al. (2003c).

SiteBase (Gold and Jackson 2006a) is a database of known

ligand-binding sites within the PDB. The search for an

annotated position in the PDB constructs the location

information of the ligand-binding sites. A collection of

known sites from mining the annotations in the PDB has

been designated as the PDBSite (Ivanisenko et al. 2005),

which collects amino acid content structure features cal-

culated by spatial protein structures, and physicochemical

properties of sites and their spatial surroundings. The

PDBSiteScan (Ivanisenko et al. 2004) provides an auto-

matic search of three-dimensional protein fragments

similar in structure to known functional sites.

A comparison of local structures in the PDB also pro-

vides valuable information for constructing the structural

motifs. Kleywegt (1999) presented two programs, spatial

arrangement of side-chains and main-chains (SPASM) and

RIGOR, for recognizing spatial motifs in protein structure.

SPASM can be used to find matches in the structural

database for any user-defined motif. The program also has

a unique capability to carry out ‘‘fuzzy pattern matching’’

with relax requirements on the types of some or all of the

matching residues. RIGOR, on the other hand, can compare

a database of pre-defined motifs against a perhaps newly

determined structure. RIGOR scans a single protein struc-

ture for the occurrence of the pre-defined motifs from a

database. Zemla (2003) presented a method for finding

three-dimensional similarities in protein structure. This

algorithm is able to generate different local superpositions

between pairs of structures and to detect similar fragments.

It allows the clustering of similar fragments and the use of

such clusters to identify sequence patterns that represent

local structure motifs. SUMO (Jambon et al. 2003) can

detect the common site, which corresponds to the catalytic

triad.

Bridges between local structures and protein functions

The general procedure of bridging the local structures with

functions lies in constructing a candidate pool of local

structures, identifying important features of function-rela-

ted local structures and validating their functional
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importance. The existing methods can be grouped into two

categories, i.e. unsupervised and supervised methods, as

shown in Fig. 2.

The unsupervised methods directly mine those local

structures with special features and then detect their func-

tional implications. The supervised methods use known

function-related structures as the templates and match these

similar patterns by comparison. There are strong relation-

ships between the two kinds of methods. Most of the

proposed methods are based on physical and/or biochem-

ical patterns of the protein, and some particular patterns of

local structures are strongly related to functions. In the

unsupervised methods, the patterns are derived directly

from a group of local structures without known functions.

Their functional importance and characteristics are identi-

fied by analyzing the conserved factors in the common

features of local structures. The identified function-related

local structures can then be used to enlarge the pool of

functional templates, which in turn can be used to measure

the potential functional importance of the new substruc-

tures. Figure 2a shows these relations. These functionally

important local regions can be referred to as functional

motifs. The functional motif is the particular local structure

pattern with factors that are the determinations of per-

forming particular functions. Note that the functional motif

is very important for studying the relationship between

structure and function in theory, and it is of practical

importance to the protein design of drug targets and other

bioengineering fields.

We can investigate the functional patterns of the local

structures in multiple ways. More specifically, we group

existing methods to bridge protein local structure and

function into three categories based on the hierarchical

perspective, as shown in Fig. 2b.

1. Element-based methods. These identify the local

structures from sequence, structure and/or other

important amino acid residues information. The meth-

ods detect the common or conservation patterns in

these elements of proteins and bridge the gaps between

the local structures and functions at the micro level.

During the bridging process, if prior knowledge is used

to identify the functional importance or guide the

detection, the method belongs to the supervised

category, otherwise it belongs to the unsupervised

division.

2. Feature-based methods. These investigate the putative

features between the local structures and functions.

This category can be further divided into two subcat-

egories—i.e. scoring methods and learning methods.

The identified functional features of local structures

provide templates of functional motifs. In the scoring

methods, the features of local structures are scored by

a defined function, and then the scores are used to

decide whether the targets are functionally important.

Thresholds are often then chosen to provide guidance

for detecting the importance of target local structures.

In the learning methods, some features are chosen and

learned from the known function-related local struc-

tures. The learned features in the trained machines can

be used as the classifier to decide whether the testing

targets are strongly related to the function. These

methods belong to the supervised division.

3. Network-based methods. These are based on graph

theory and network topology. The methods can be

divided into two subcategories. The first is at the

individual level and the second is at the mapping level.

At the individual level, the protein can be represented

as an interactive graph of the residues, with linkages

Local
Structures:

sites
motifs

pockets
...

Functions:
binding

catalysis
transport

...

Unsupervised

Supervised

Patterns

mining

Templates

matching

Bridges

Element-based Feature-based Network-based

Alignment for
discovery

Template based
comparison

Scoring for
judgement

Learing for
classification

Micro-level
representing the

structure

Macro-level
mapping the

similarity

Unsuperviesed

Supervised

(a) (b)

Fig. 2 Bridges between the local structures and the functions. a The schematic categories of the bridges, b the detailed and hierarchical

classification of these bridges. In the lowest classes, the bound color implies the schematic category to which they belong
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representing the close distance among them. Cliques of

the graph, hub residues and residues with other special

topology measures may correspond to functionally

important regions and residues. At the mapping level, a

network represents the similarity relations among the

local structures. The functional motifs are mined from

informative subgraphs. This approach lies in between

the other two methods mentioned above and can be

regarded as being semi-supervised because it uses

some heuristic knowledge.

Element-based methods

Element-based methods are based on a basic intuition that

the conserved part of a sequence and structure is an

important functional motif (Aloy et al. 2001; Jones and

Thornton 2004). The first step is a discovery process, which

mines similar local structures from the sequences or

structures of the target proteins. When similar local pat-

terns of structures in some proteins are identified, the

identified structure features of local regions will be the

determinants of similar functions among the proteins. The

second step is to match the process by comparing the target

to the known functional templates. Based on the similarity

between these, the function relationship is inferred. This

method is also a basic tool for developing more advanced

techniques to bridge the relationship between local struc-

tures and functions. The sequences, structures or other

elements of the proteins are considered in the comparison.

Table 5 lists the main methods that are currently being

used. Depending on whether or not some prior knowledge

is used in the assessment, the method is classified as being

supervised or unsupervised.

Alignment method

Similar patterns of local structures can be identified in

different proteins, even in proteins of the midnight zone

with neither sequence homology nor structure homology.

In this case, the alignment of the sequences and/or structure

Table 5 Element-based methods for identifying functional motifs

Local structure Method Software Reference

Sequence motif

Binding sites Multiple sequence alignment – Ma et al. (2003)

Catalytic sites Multiple sequence alignment Conservation Capra and Singh (2007)

Structural motif

Functional active sites Surface comparison – Rosen et al. (1998)

Recurring 3D motifs Geometric hashing for structure alignment – Fischer et al. (1994)

Protein–protein interfaces Comparison and querying BID Fischer et al. (2003)

Functional sites All-vs-all comparison (from FSSP) Phunctioner Pazos and Sternberg (2004)

Constructed surface cavity Pairwise alignment and querying pvSOAR Binkowski et al. (2003b)

Geometric and electrostatic surfaces Pairwise alignment and querying eF-site Kinoshita and Nakamura (2003)

Surface chemical groups Querying for similarity SuMo Jambon et al. (2003)

Binding pockets Alignment all-vs-all and clustering CavBase Schmitt et al. (2002)

Binding sites and interface Comparison for similarity I2I-SiteEngine Shulman-Peleg et al. (2005)

Documented motif

Annotated sites Alignment all-vs.-all and querying PINTS Stark and Russell (2003a)

Ligand-binding sites Alignment all-vs.-all and querying SiteBase Gold and Jackson (2006a)

Known sites, especially interfaces Querying for similarity PDBSiteScan Ivanisenko et al. (2004)

Sequence map to spatial motif

Functional residues and sites Multiple sequence alignment and phylogenetic ET Yao et al. (2003)

Functional residue clusters Based on ET – Landgraf et al. (2001)

Patches of conserved residues Based on ET ConSurf Armon et al. (2001)

Functional sites Based on ET – Aloy et al. (2001)

Function template

Functional 3D templates Matching by geometric hashing TESS Wallace et al. (1997)

Metal-binding sites Comparison with templates PAR-3D Goyal and Mande (2007)

Annotated functional sites Comparison with templates FIC Chakrabarti and Lanczycki (2007)

Tertiary side-chain patterns Subgraph-isomorphism matching ASSAM Artymiuk et al. (1994)
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segments can imply similar functions of the local struc-

tures. These similar local structures of the proteins are

important prognostic factors of their similar functions.

Multiple sequence alignment Ma et al. (2003) used ten

protein interface families selected from two-chain interface

entries in PDB, identified surface residues and filtered out

contact residues. The alignment results of the residue

properties revealed that polar residue hot spots occur fre-

quently at the interfaces of macromolecular complexes,

thereby distinguishing binding sites from the remainder of

the surface. Using multiple structure alignment, these

authors also showed the correspondence between energy

hot spots and structurally conserved residues. Three resi-

dues (Trp, Phe and Met) were observed to be significantly

conservative in binding sites. These identified local struc-

tures are linked with binding functions.

All residues in a protein are not equally important. Some

are essential for certain structures or functions, whereas

others can be readily replaced. Conservation analysis is

one of the most widely used techniques for predicting

these functionally important residues in protein sequences.

Capra and Singh (2007) proposed a method focusing on

the analysis of a multiple sequence alignment of the

homologous sequences in order to find columns that are

preferentially conserved. The results show that conserva-

tion is highly predictive in identifying catalytic sites and

residues near bound ligands, while it is much less effective

in identifying residues in protein–protein interfaces.

Structure alignment: geometric hashing Rosen et al.

(1998) proposed a surface comparison algorithm in search

of active sites and functional similarity. These authors first

represents the surface by a face-center critical point tech-

nique and then derive active sites using geometric hashing

to match the two surfaces. Finally, a clustering process is

used to obtain the functional active sites. This method

addresses the question of the usefulness of geometric

comparisons and concludes that pure geometric surface

matching is capable of obtaining biological meaningful

solutions. Based on the geometric hashing algorithm,

Leibowitz et al. (2001) presented a multiple structural

alignment algorithm to detect a recurring substructural

motif. Given an ensemble of protein structures, the algo-

rithm automatically finds the largest common substructure

(core) of Ca atoms that appears in all of the molecules in

the ensemble. The detection of the core and the structural

alignment are carried out simultaneously. Fischer et al.

(1994) also presented an approach using geometric hashing

to compare spatial, sequence-order independent atoms. It

automatically detects a recurring three-dimensional motif

in protein molecules without any predefinition of the motif.

Pairwise alignment of constructed local structures There

are several methods that detect the functional relationship

between local structures by structure alignment in an all-

against-all manner. Pazos and Sternberg (2004) presented

an automatic method to extract functional sites (residues

associated to functions). The method relates proteins with

the same GO functions through structural alignment in an

all-against-all manner and extracts three-dimensional pro-

files of conserved residues.

Based on the identified local structures derived from

geometry or physicochemical features, the functional

relationship of these local regions can be detected and the

comparison result is stored in a database. When querying a

local structure, similar hits imply functional relationships.

Binkowski et al. (2003a, 2005) described such an approach

for inferring functional relationships of proteins based on

the pvSOAR by detecting sequence and spatial patterns of

the functional relationship of pockets on protein surfaces.

The pvSOAR database provides a pairwise comparison of

the pockets in the pocket database CASTp. Similar pockets

in different match degrees are searched for in an advanced

analysis of the function relationship among the local

structural motifs. With respect to the pockets on the protein

surface, Schmitt et al. (2002) developed a similar method

based on a clique detection algorithm by comparing the

query against the whole database. Kinoshita and Nakamura

(2003) also provided an analogous method for comparing

molecular surface geometries and electrostatic potential on

the surfaces based on eF-site. Their method bridges the

protein surface electronic features of the local region with

the specific functions. Jambon et al. (2003) designed a new

but similar approach for finding similarities using pairwise

matching to detect common three-dimensional sites in

proteins. The basis for their method is a representation of

the protein structure by a set of stereochemical groups.

Protein surface regions with similar physicochemical

properties and shapes may perform similar functions and

bind similar partners. Shulman-Peleg et al. (2005) con-

structed two web servers and software packages for use in

recognizing the similarity of binding sites and interface—

SiteEngine and Interface-to-Interface (I2I)-SiteEngine. The

input into the two methods is two protein structures or two

protein–protein complexes; the output is the surface of the

proteins for a region similar to the binding sites or the

interfaces. The methods are efficient for large-scale data-

base searches of the entire PDB. Obviously, the two locally

identified structures are related to functions by searching

similar local regions of their protein structures.

Pairwise alignment of annotated local structures Infor-

mation on functional sites obtained from databases or the

literature can be used to construct the function-related local
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structure database, while the pairwise alignment method is

used to detect the functional relationships. Stark and Rus-

sell (2003a) developed PINTS to uncover the recurring

three-dimensional side-chain patterns based on the algo-

rithm in Stark et al. (2003c). Their method queries the

structural motif database constructed from the annotation

mining from PDB to find similar three-dimensional motifs

by a recursive, depth-first search algorithm, i.e. to find all

possible groups of identical amino acids common to two

protein structures independent of sequence order (Russell

1998). The search is conducted with distance constraints by

ignoring those amino acids unlikely to be involved in

the protein function. Stark et al. (2003b) identified some

functional sites and compared these with PROCAT and

RIGOR. Moreover, PINTS provides a measure of statistical

significance based on a rigorous model for the behavior of

RMSD (Stark et al. 2003c).

SiteBase (Gold and Jackson 2006a) is a database of

known ligand-binding sites within the PDB. Gold and

Jackson (2006a) provided a method that automatically

identifies ligand-binding sites by searching for HETATM

keywords in PDB files and constructing a database by

excluding protein/peptide ligands and treating Het-groups

as individual ligand-binding sites. Protein atoms within a 5-

Å radius of any ligand atom were defined as its binding site

in this work, and the ligand-binding was identified by

comparison in an all-against-all way with geometric

hashing. Similar functions of binding sites were detected

regardless of the sequence and folding similarity (Gold and

Jackson 2006b). PDBSiteScan (Ivanisenko et al. 2004)

provides an automatic search of three-dimensional protein

fragments that are similar in structure to known functional

sites. A collection of known sites has been designated as

the PDBSite (Ivanisenko et al. 2005), which is a database

of amino acid content, structure features calculated by

spatial protein structures and the physicochemical proper-

ties of sites and their spatial surroundings. Protein–protein

interaction sites are also generated by an analysis of contact

residues in heterocomplexes. The algorithm is developed

based on an exhaustive examination of all possible com-

binations of protein positions. The BID (Fischer et al.

2003) database searches the primary scientific literature

directly for detailed data on protein interfaces by text

mining and stores the characterization of protein–protein

binding interfaces at the amino acid level. The BID also

organizes protein interaction information into tables,

graphical contact maps and descriptive functional profiles.

Evolutionary tracing Protein functional sites have a

number of similar and unique features. In order to explore

the information fully, one can incorporate both sequence

and structure data in a functional site prediction method.

The Evolutionary Trace (ET) method is one such method

that relies on both sequence and structure information. The

most basic form of the algorithm requires a multiple

sequence alignment of a protein family and an evolutionary

tree, based on sequence identity, which can approximate

the functional classification of the protein sequences

(Lichtarge and Sowa 2002).

Yao et al. (2003) proposed an automatic ET method

that ranks the evolutionary importance of amino acids in

protein sequences. This was the first method to quantify

the significance of the overlap observed between the

best-ranked residues and functional sites. The informa-

tion inherent in a phylogenetic tree is added to the

analysis of conserved sequences, often revealing the

more subtle aspects of protein function. Starting with a

multiple sequence alignment, a representative structure

and a phylogenetic tree, this method evaluates conser-

vation at each position in the alignment for different

sequence similarity cut-offs. In its original implementa-

tion, residues were classified as variable, conserved or a

group-specific set that is specific to one branch of the

phylogenetic tree. This analysis can be further expanded by

the use of amino acid substitution matrices to evaluate

conservation. In either case, a representative structure

is used to visualize the distribution of scores at the end

of the analysis.

Based on the ET method, Landgraf et al. (2001) pre-

sented a three-dimensional cluster analysis that offers a

method for predicting functional residue clusters. This

method requires a representative structure and a multiple

sequence alignment as input data. Individual residues are

represented in terms of regional alignments that reflect both

their structural environment and their evolutionary varia-

tion, as defined by the alignment of homologous sequences.

The overall and regional alignments are calculated from the

global and regional similarity matrices, which contain

scores for all pairwise sequence comparisons in the

respective alignments. Three-dimensional clustering anal-

ysis is an easily applied method for the prediction of

functionally relevant spatial clusters of residues in proteins.

Armon et al. (2001) proposed the ConSurf method,

which takes into account the evolutionary relationships

among the sequence homologues by closely approximating

the evolutionary process and by considering the phyloge-

netic relationships among the sequences and the similarity

between amino acids. ConSurf maps evolutionary con-

served regions on the surface of proteins with a known

structure; it also aligns sequence homologues of the protein

and uses the alignment to construct phylogenetic trees.

The trees are then used to infer the presumed amino acid

exchanges that occur throughout the evolution. Each

exchange is then weighted by the physicochemical distance

between the exchanged amino acid residues. The results

show that the patches of conserved residues correlate well
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with the known functional regions of the domains and are

more sensitive than the ET method.

To obtain an indication of the validity of functional

inheritance, Aloy et al. (2001) proposed a method to

evaluate the reliability by exploiting the conservative

functional sites predicted by the ET method. Their method

first used a fully automatic procedure to carry out the ET

method, and then was benchmarked in terms of required

sequence divergence and the resultant selectivity and

specificity of the prediction. Finally, the results that were

obtained using the prediction of location of functional sites

to assist in filtering putative complexes were evaluated.

Template-based comparison

The functional importance of local structures can be

detected by empirical methods or by computational meth-

ods. The identified functional motif can then be used as the

structure template to detect the functional regions in other

protein structures. The chosen method often consists of a

comparison process, and the structure and physicochemical

features can be considered in the comparison to the tem-

plates. In addition, a measurement of the similarity to the

template is used to assess the functional importance of the

testing of local structures.

Wallace et al. (1997) described a three-dimensional

template matching method based on geometric hashing for

automatically deriving three-dimensional templates from

the protein structures deposited in PDB. In their paper,

these researchers described a template derived for the Ser–

His–Asp catalytic triad. Their results showed that the

resultant template provides a highly selective tool for

automatically differentiating between catalytic and non-

catalytic Ser–His–Asp associations.

Goyal and Mande (2007) described the generation of

three-dimensional structural motifs for metal-binding sites

from known metalloproteins. Using three-residue templates

and four-residue templates, the method scans all available

protein structures in the PDB database for putative metal-

binding sites. The search of the whole PDB database

predicted many novel metal-binding sites, which are the

identified functional motifs.

Chakrabarti and Lanczycki (2007) recently performed a

detailed survey of compositional and evolutionary con-

straints at the molecular and biological functional levels for

a large set of known functionally important sites extracted

from a wide range of protein families. They compared

the degree of conservation across different functionally

important sites. The compositional and evolutionary

information at functionally important sites was compiled

into a library of functional templates. In their paper, these

researchers developed a module that predicts functionally

important columns of an alignment based on the detection

of a significant ‘template match score’ to a library tem-

plate. Benchmark studies showed good sensitivity/

specificity for the prediction of functional sites and high

accuracy in attributing correct molecular function type to

the predicted sites.

The comparison between potential sites and the tem-

plates is very important in these kinds of methods.

Artymiuk et al. (1994) developed a program called

ASSAM, which represents a motif-by-distance matrix

between pseudo-atoms and uses the subgraph-isomorphism

algorithms to find matches. This is an elegant method for

the detection of common tertiary side-chain patterns based

on the use of the Ullman subgraph isomorphism algorithm.

Singh and Saha (2003) formulated the problem of identi-

fying a given structural motif (pattern) in a target protein

and discussed the notion of complete and partial matches.

They described the precise error criterion that has to min-

imized and also discussed different metrics for evaluating

the quality of partial matches. They also presented a novel

polynomial time algorithm for solving the problem of

matching a given motif in a target protein.

Feature-based method

The functions of a protein are strongly related to the

physicochemical features of that protein. The physical

features (such as geometry, size, depth and shape) and the

chemical features (such as energy, hydrophobicity, amino

acid propensity and conservation) of the local structure are

often measured by a score function or learned by a machine

learning algorithm. The functional importance and speci-

ficity of a protein can be identified from the evaluation

score or the trained standards of features. The main

methods are listed in Table 6. The scoring method can

often calculate an explicit value for the features, while the

learning method can reveal the patterns inexplicitly.

Scoring methods

The properties of local structures are believed to be con-

served in terms of determining their functions. The

identified local regions of structure are analyzed based on

the variations in their properties, which are investigated

using the identified functionally important sets of local

structures. The method to predict the functions of the local

structures is often based on a scoring scheme that is used to

analyze the properties of the targets. In particular, the

scores of the features are used as the measurements to

determine whether the local structure has functional

importance, for example, for a particular function.

Scoring by physical features First, the physical features

of the local structures, such as size, depth and shape, are
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Table 6 Feature-based methods for identifying functional motifs

Local structure Feature Software Reference

Scoring for every features: physical features, such as shape, size, depth and geometry, among others

DNA-binding sites Interfacial geometry IAlign Siggers et al. (2005)

Pockets for binding Size and depth PHECOM Kawabata and Go (2007)

Binding pockets Shape – Morris et al. (2005)

Binding pockets Geometrical complementary – Kahraman et al. (2007)

Chemical features, such as energy, potential and conservation, among others

Functional important residues Electrostatic energy and conservation – Elcock (2001)

Protein–ligand binding sites Physicochemical energy Q-sitefinder Laurie and Jackson (2005)

Protein–DNA binding sites Five characteristics of patches Web server Jones et al. (2003)

Protein–RNA binding sites As the former DNA-binding sites and van der Waals Web server Jones et al. (2001)

Protein–DNA binding sites Hydrogen bonds and van der Waals interactions Web server Luscombe et al. (2001)

Protein interface Energy score, propensity, conservation PINUP Liang et al. (2006)

Functional sites Sequence, Rosetta free energy Web server Cheng et al. (2005)

Functional residues Conservation score – Panchenko et al. (2004)

Functional sites Functional groups CFG Innis et al. (2004)

Combined feature, such as the former features

Ligand-binding sites Geometry and conservation score LIGSITEcsc Huang and Schroeder (2006)

Protein–DNA binding sites Shape and electrostatic potential – Tsuchiya et al. (2004)

Carbohydrate-binding sites Six parameters – Taroni et al. (2000)

Protein–protein interfaces Structure and physicochemical ProMate Neuvirth et al. (2004)

Docking pockets Geometry and energy – Li et al. (2004)

Protein–protein interfaces Five parameters – Hoskins et al. (2006)

Ligand binding pockets Cleft volume and residue conservation SURFNET-

Consurf

Glaser et al. (2006)

Learning the features: SVM

Protein–protein interfaces Sequence profile, amino acid composition – Koike and Takagi (2004)

Protein–protein interfaces Evolutionary conservation signal – Bordner and Abagyan (2005)

Protein–DNA binding sites Composition, charge, positive potential patches Web server Bhardwaj et al. (2005)

Binding sites Sequence and structural complementary – Chung et al. (2007)

Neural network

Protein–protein interfaces Composition – Ofran and Rost (2003)

Protein–protein interfaces Conservation and residues structure properties PPISP Zhou and Shan (2001)

Catalytic residues Conservation, ASA, structure, depth – Gutteridge et al. (2003)

Protein–protein interaction sites Conservation and disposition ISPRED Fariselli et al. (2002)

Nucleic-acid-binding sites Ensemble features of sequence and structure – Stawiski et al. (2003)

DNA-binding sites Sequence profiles and solvent accessibility DISPLAR Tjong and Zhou (2007)

DNA-binding sites Structure, ASA and electrostatic potential DbHTH Ferrer-Costa et al. (2005)

Metal-binding site residues Sequence and structure data MetSite Sodhi et al. (2004)

Binding sites Physical and chemical property lists – Keil et al. (2004)

DNA-binding sites Evolutionary conservation DP-BIND Kuznetsov et al. (2006)

Metal-binding sites Evolutionary profiles – Passerini et al. (2006)

Describing the features by statistical methods

Functional sites Calculated feature vectors FEATURE Liang et al. (2003a)

Protein–protein binding site Six parameters PPI-Pred Bradford et al. (2006)

Protein–protein interface Amino acid clusters – Yan et al. (2004)

Protein–DNA binding sites Residues and sequence entropy – Yan et al. (2006)

Protein–protein interaction sites Motifs and coexpression InSite Wang et al. (2007b)

DNA-binding sites Geometrical measures – McLaughlin and Berman (2003)
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considered for scoring the function-related features. The

shape features alone may provide basic information for the

analysis of the functional features related to the protein

function.

Siggers et al. (2005) introduced a new method to

structurally align interfaces observed in protein–DNA

complexes. Their method is based on a procedure that

describes the interfacial geometry in terms of the spatial

relationships between individual amino acid–nucleotide

pairs. They subsequently provided a yet newer method to

study the determinants of binding specificity. Kawabata

and Go (2007) proposed a new definition for pockets using

two explicit adjustable parameters, the radii of small and

large probe spheres, which correspond to the two physical

properties, ‘size’ and ‘depth’. A pocket region was defined

as a space into which a small probe can enter, but a large

probe cannot. Based on the geometric standards of large

probe spheres, this method identified the binding site

positions.

From the geometrical viewpoint, the methods described

above need further improvement to describe or compare

the global shape and the local structures. Morris et al.

(2005) presented a novel technique for capturing the global

shape of a protein’s binding pocket or ligand. This method

uses the coefficients of a real spherical harmonics expan-

sion to describe the shape of a protein’s binding pocket.

Shape similarity is computed as the L2 distance in coeffi-

cient space. Kahraman et al. (2007) used a recently

developed shape matching method to compare the shapes

of protein-binding pockets to the shapes of their ligands.

Their results indicate that pockets binding the same ligand

show greater variation in their shapes than those which can

be accounted for by the conformational variability of the

ligand. This result suggests that geometrical complemen-

tarity in general is not sufficient to derive molecular

recognition.

Scoring by chemical features Chemical features of local

structures are very important for determining their func-

tional specificity. These feature scores of local structures

can be used as standards to determine their functions.

The structural locations of functional sites are conserved

between homologous proteins because functionally impor-

tant residues tend to cluster together in space, forming three-

dimensional residue clusters or surface patches. Panchenko

et al. (2004) presented a method to assign each residue a

score that depends on its own conservation in homologs and

the conservation of residues in its spatial neighborhood. The

high-scoring sites are more likely to be involved in specific

binding or catalysis. Functionally important residues in a

protein are known to be those computed to have energy

among experimentally destabilized residues. Elcock (2001)

proposed a method to predict functionally important residues

based solely on the computed energetics of a protein struc-

ture. The energetic properties of binding surfaces in protein–

protein interfaces and protein–ligand sites were shown to be

different (Burgoyne and Jackson 2006). The pockets from Q-

sitefinder (Laurie and Jackson 2005) were ranked by the

scores of these properties—i.e. hydrophobicity, desolvation,

electrostatics and conservation—which are used to deter-

mine binding sites.

Jones et al. (2003) developed a method to detect DNA-

binding sites on a protein surface. The surface patches

and the DNA-binding sites were initially analyzed for

accessibility, electrostatic potential, residue propensity,

hydrophobicity and residue conservation. In general, DNA-

binding sites are among the top 10% of patches with the

largest positive electrostatic scores. This knowledge was

used to make predictions. Jones et al. (2001) presented a

similar computational analysis of protein–RNA interac-

tions. There are a number of differences between DNA-

binding sites and RNA-binding sites. For the RNA-binding

sites, van der Waals contacts play a more important role

than hydrogen bond contacts. As to the protein–DNA

binding local structures, Luscombe et al. (2001) investi-

gated hydrogen bonds as well as van der Waals contacts and

water-mediated bonds to assess whether there are universal

rules that govern amino acid–base recognition. In a sub-

sequent study, Luscombe and Thornton (2002) also

identified the amino acid conservation and the effects of

mutations on binding specificity.

In Liang et al. (2006), an empirical score function

consisting of a linear combination of the energy score,

interface propensity and residue conservation score is used

to predict interface residues. The top-ranked patches are

predicted to be the potential interface sites. The accuracy of

prediction has been improved significantly, relative to any

single or pairwise combination, by combining the three

terms. Cheng et al. (2005) presented a method to predict

protein function site using sequence alignment information

Table 6 continued

Local structure Feature Software Reference

Drug-binding sites 408 attributes, 8 broad categories SCREEN Nayal and Honig (2006)

Metal-binding sites Geometric features CHED Babor et al. (2008)

Zinc-binding sites A physicochemical feature set Web server Ebert and Altman (2008)
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as well as Rosetta protein design and Rosetta free energy

calculations. Logistic regression with the generalized linear

model has been used to the determine weights of the

sequence conservation, natural/designed sequence profile

difference and natural/optimal residue free energy gap, all

of which optimize the separation between functional and

non-functional residues.

Innis et al. (2004) presented conserved functional group

(CFG) analysis to predict function sites in proteins. The

method relies on a simplified representation of the chemi-

cal groups found in amino acid side-chains to identify

functional sites from a single protein structure and a

number of its sequence homologs.

Scoring by physicochemical features Those features

based only on physical geometry or chemical energy often

can not represent functional features comprehensively.

Most of the methods are used to integrate several important

features together and then score these features for bridging

the gaps between local structures and functions.

The LIGSITE algorithm is based only on the geometry.

Huang and Schroeder (2006) presented an extension and

implementation method, LIGSITEcsc, which is based on the

notion of surface–solvent–surface events and the degree of

conservation of the involved surface residues. The use of

the Connolly surface has led to slight improvements,

whereas the prediction re-ranking significantly improved

the binding site predictions. Glaser et al. (2006) improved

previous approaches by combining two known measures of

‘functionality’ in proteins, i.e. cleft volume and residue

conservation, to develop a method for identifying the

location of ligand-binding pockets in proteins.

Neuvirth et al. (2004) proposed a structure-based algo-

rithm to identify the location of protein–protein interaction

sites. The sites are defined based on Connolly’s molecular

dot surfaces. The method defines an interface score that

combines the chemical and geometry features of the

interaction sites. Interfacial residues are considered to be

those with the 10% highest scores. Geometry and energy

properties have also been used to analyze the pocket

functions for docking (Li et al. 2004). Hoskins et al. (2006)

considered the use of solvent accessibility, residue pro-

pensity and hydrophobicity in conjunction with secondary

structure data as prediction parameters to predict protein–

protein interaction sites. The influence of residue type and

secondary structure on solvent accessibility is analyzed,

and a measure of relative exposedness is defined. The high-

scoring residues are clustered as a basis for predicting

interaction sites.

Tsuchiya et al. (2004) provided a method for analyzing

protein–DNA complexes, focusing on the shape of the

molecular surface of the protein and DNA, along with the

electrostatic potential on the surface, and calculated a new

evaluation score. Based on the score, the method was used

to classify DNA-binding from non-DNA-binding proteins.

Taroni et al. (2000) provided an analysis of the charac-

teristic properties of sugar-binding sites. For each site, six

parameters were evaluated—i.e. solvation potential, resi-

due propensity, hydrophobicity, planarity, protrusion and

relative accessible surface area (ASA). Three of the

parameters were found to distinguish the observed sugar-

binding sites from the other surface patches. These

parameters were then used to calculate the probability of a

surface patch being a carbohydrate-binding site. The total

score of the properties was used to determine whether the

surface patch was a carbohydrate-binding site.

Learning methods

The features of the local structures play crucial roles in

predicting protein function. To identify the relationship

between protein local structure and protein function, the

structural and/or physicochemical features can be learned

implicitly using machine learning methods, such as the

support vector machine (SVM) and neural network.

Support vector machine The support vector machine uses

a linear model to implement nonlinear class boundaries

through the input of a number of nonlinear mapping vec-

tors into a high-dimensional feature space. It is based on

mathematics theory and has many successful applications

in statistical learning fields (Vapnik 1998). These methods

have been confirmed to be able to learn the features of local

structures with functional importance. The features can first

be investigated in the learning process and used to detect

whether these features relate some specific functions.

Koike and Takagi (2004) proposed an SVM method to

identify protein–protein interaction sites. The profiles of

sequentially/spatially neighboring residues, plus additional

information, constitute a feature vector, and the interaction

site ratios are calculated by SVM regression. The predic-

tive performance is evaluated and compared in different

quantitative features. Cai et al. (2004) proposed an SVM

algorithm to predict the catalytic triad of the serine

hydrolase family. Bordner and Abagyan (2005) proposed a

similar SVM to predict protein–protein interfaces. The

local surface properties with a combination of an evolu-

tionary conservation signal were used to train the machine

on a large nonredundant data set of protein–protein inter-

faces. An SVM learning protocol was provided by

Bhardwaj et al. (2005) for the prediction of DNA-binding

proteins. The characteristics, including surface and overall

composition, charge and positive potential patches on the

protein surface, were derived, and the SVM was trained as

a classifier to detect the DNA-binding proteins. The high

accuracy value has been achieved in a large set of testing
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proteins regardless of their sequence or structure homol-

ogy. Chung et al. (2007) recently exploited the SVM

approach to detect whether identified potential protein-

binding sites interact with each other. The information

related to sequence and structural complementary across

protein interfaces were extracted from the PDB. This work

also built a pipeline to predict the location of binding sites.

Neural network The neural network is a learning method

which adapts the relationships of neurons; as such, it is a

simplified model of the neural processing of the human

brain (Zhang 2000). Based on the analysis of the both

structures and sequences, Gutteridge et al. (2003) used a

neural network to identify catalytic residues in enzymes.

The locations of the active sites were predicted by the

neural network output and spatial clustering of the highest

scoring residues. In most testing cases, the likely functional

residues were identified correctly, as were a number of

potentially novel functional groups.

Ofran and Rost (2003) described a neural network to

identify protein–protein interfaces from sequences. Since

the compositions of contacting residues of the interaction

sites were believed to be unique, the features of this known

interaction sites were used to train the neural network.

Zhou and Shan (2001) trained a neural network to predict

protein–protein interactions. Their method combines con-

servation and structural properties of individual residues.

Fariselli et al. (2002) reported a neural network-based

system using information on evolutionary conservation and

surface disposition. Chen and Zhou (2005) also provided a

neural network method to predict interface residues in a

protein–protein complex.

There are also neural network methods for predicting

nucleic acid-binding (NA-binding) sites. Stawiski et al.

(2003) presented an automatic neural network approach to

predict NA-binding proteins, specifically DNA-binding

proteins. This method uses an ensemble of features

extracted from characterization of the structural and

sequence properties of large, positively charged electro-

static patches. Structural and physical properties of DNA

provide important constraints on the binding sites formed

on the surfaces of the DNA-targeting proteins. The char-

acteristics of DNA-binding sites may form the basis for

predicting DNA-binding sites from the structures of pro-

teins alone. Tjong and Zhou (2007) used a representative

set of protein–DNA complexes from the PDB to analyze

characteristics and to train a neural network predictor of

DNA-binding sites. The input to the predictor consists of

PSI-BLAST sequence profiles and solvent accessibility of

each surface residue and 14 of its closest neighboring

residues. Ferrer-Costa et al. (2005) provided a web-based

method to detect if a protein structure contains a DNA-

binding helix-turn-helix (DbHTH) motif. The method uses

a neural network with no hidden layers, i.e. a linear pre-

dictor, to classify whether a protein is DNA-binding with

the HTH motif. The linear predictor was trained on a non-

homologous set of 79 structures of protein chains with a

DbHTH motif and 490 without the motifs.

Sodhi et al. (2004) used a neural network to predict

metal-binding sites residues in low-resolution structural

models. The method involves sequence profile information

combined with approximate structural data. Several neural

networks were proposed to distinguish the metal sites from

non-sites and then to detect these functionally important

regions. In Keil et al. (2004), the patches of the molecular

surface were segmented into overlapping patches. The

properties of these patches were calculated based on the

physical and chemical properties. A neural network strat-

egy was then used to identify possible binding sites by

classifying the surface patches as protein–protein, protein–

DNA, protein–ligand or nonbinding sites.

Kuznetsov et al. (2006) applied an SVM method to

predict DNA-binding sites using the features including

amino acid sequence, profile of evolutionary conservation

of sequence positions, and low-resolution structural

information. The results indicate that an SVM predictor

based on a properly scaled profile of evolutionary con-

servation in the form of a position specific scoring matrix

(PSSM) significantly outperforms a PSSM-based neural

network predictor. Such results imply that the combina-

tion of the two methods may improve the accuracy.

Passerini et al. (2006) introduced a two-stage learning

method for identifying histidines and cysteines that par-

ticipate in binding of several transition metals and iron

complexes. The first stage is an SVM, which is trained to

locally classify the binding state of single histidines and

cysteines. The second stage is a neural network trained to

refine local predictions. The methods use only sequence

information by utilizing position-specific evolutionary

profiles.

Statistical methods Statistical learning also provides an

effective way to link the features of local structures with

their functional implication. Liang et al. (2003a) provided a

supervised learning algorithm, FEATURE, for the auto-

matic discovery of physical and chemical descriptions of

protein microenvironments. The calculated feature vectors

were used to predict functional motifs based on Bayesian

inference. The method has also been proposed as an

interactive web tool, WebFEATURE, for identifying and

visualizing functional sites (Liang et al. 2003b).

Bradford et al. (2006) developed a method to predict

both protein–protein binding site location and interface

type (obligate or non-obligate) using a Bayesian network in

combination with surface patch analysis. Two Bayesian

network structures, naive and expert, were trained to
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distinguish interaction surface patches. Wang et al. (2007b)

proposed a computational method learned by the Expec-

tation Maximization (EM) algorithm, InSite, to search for

motifs whose presence in a pair of interacting proteins

determined which motif pairs have high affinity that would

lead to an interaction between proteins. Yan et al. (2004)

also provided a two-stage method consisting of an SVM

and a Bayesian classifier for predicting the surface residues

of proteins that participate in protein–protein interaction.

The method exploits the fact that interface residues tend

to form clusters in the primary amino acid sequence. In

addition, Chou and Cai (2004) provided a covariant

discriminant algorithm to predict active sites of enzyme

molecules. The high accuracy of prediction shows the

effectiveness of the method.

Protein–DNA interactions are critical for deciphering

the mechanisms of gene regulation. Yan et al. (2006)

presented a supervised machine learning approach for the

identification of amino acid residues involved in protein–

DNA binding sites. A naive Bayesian classifier was trained

for predicting whether a given amino acid residue is a

DNA-binding residue based on its identity and the identi-

ties of its sequence neighbors. McLaughlin and Berman

(2003) developed statistical models for discerning protein

structures containing the DbHTH motifs. The method uses

a decision tree model to identify the key structural features

required for DNA binding. These features include a high

average solvent-accessibility of residues within the re-

cognition helix and a conserved hydrophobic interaction

between the recognition helix and the second alpha helix

preceding it. The Adaboost algorithm was used to search

the PDB with the aim of identifying the structure con-

taining the motifs with high probability.

Metal ions are crucial in facilitating the function of a

protein. Identifying the features of metal binding sites

provides crucial knowledge of the function performance of

the local structures. Because the residues that coordinate a

metal often undergo conformational changes upon binding,

the detection of binding sites based on simple geometric

criteria in proteins without bound metal is difficult. How-

ever, aspects of the physicochemical environment around a

metal-binding site are often conserved, even when this

structural rearrangement occurs. Ebert and Altman (2008)

developed a Bayesian classifier using known zinc-binding

sites as positive training examples and nonmetal-binding

regions as negative training examples. Babor et al. (2008)

reported an approach that identifies transition metal-bind-

ing sites in proteins by combining the decision tree and

SVM. In the first step, the geometric search of structural

rearrangements following metal binding was taken into

account by a decision tree classifier. A second classifier

based on SVMs was then used to identify the metal-binding

sites.

Nayal and Honig (2006) proposed a comprehensive

method to identify drug-binding sites in which 408 attri-

butes were first computed for each cavity, and these were

then used to distinguish drug-binding sites by the random

forest classification scheme. The cavity properties cover

eight broad categories, such as cavity size, cavity shape,

hydrophobicity, electrostatics, hydrogen bonding, amino

acid composition, secondary structure and rigidity.

Network-based method

An interesting method to identify function motifs is based

on the graph theory and the network concept. The main

methods are listed in Table 7. One subcategory of the

method represents the protein structure as a complex net-

work. A node represents a Ca of the backbone, and an edge

linking two nodes represents the physical distance or the

functional relationship between the nodes. Greene and

Higman (2003) viewed protein structures as network sys-

tems. The systems are identified to exhibit small-world,

single-scale and, to some degree, scale-free properties.

Using the network model, Amitai et al. (2004) identified

active site residues. The method transforms a protein

structure into a residue interaction graph, where graph

nodes represent amino acid residues, and links represent

their interactions. The active site, ligand-binding and evo-

lutionary conserved residues are identified typically with a

high closeness value, from which the functional residues are

filtered out. del Sol et al. (2006) also represented a protein

Table 7 Network-based methods for identifying functional motifs

Local structure Method Software Reference

Micro level: mining the special residues or subgraphs in the structure graphs

Active site residues High closeness value of residue interaction graphs RIG Amitai et al. (2004)

Functional residues Residues of special topology in small-world network – del Sol et al. (2006)

Recurring side-chain patterns Searching for similar subgraph DRESPAT Wangikar et al. (2003)

Structure motifs Mining for cliques of the structure graph CliqueHashing Huan et al. (2006)

Macro level: similar groups of local structures

Functional pockets Similar pocket groups PSN Liu et al. (2007b)
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structure as a small-world network and searched the topo-

logical determinants related to functionally important

residues. The method investigates the performance of res-

idues in protein families. The results indicate that enzyme

active sites are located in surface clefts, and hetero-atom

binding residues have deep cavities, while protein–protein

interactions involve a more planar configuration.

Wangikar et al. (2003) reported a method for detecting

recurring side-chain patterns using an unbiased and

automatic graph theoretic approach. The method first lists

all structural patterns as subgraphs. The patterns are

compared in a pairwise manner based on content and

geometry criteria. The recurring pattern is then detected

using an automatic search algorithm from the all-against-

all pairwise comparison proteins. Similarly, Huan et al.

(2006) defined a labeled graph representation of a protein

structure in which edges connecting pairs of residues are

labeled by the Euclidian distance between the Ca atoms of

the two residues. Based on this representation, a structural

motif corresponding to a labeled clique occurs frequently

among the graphical representation of the protein struc-

tures. The paper further presented an efficient mining

algorithm aimed at discovering structure motifs in this

setting.

In studies on protein structure and function, identifying

calcium-binding sites in proteins is one of the first steps

towards predicting and understanding the role of calcium in

biological systems. Calcium-binding sites are often com-

plex and irregular, and it is difficult to predict their location

in protein structures. Deng et al. (2006) reported a rapid

and accurate method for detecting calcium-binding sites.

This algorithm uses a graph theory algorithm to identify

oxygen clusters of the protein and a geometric algorithm to

identify the center of these clusters. A cluster of four or

more oxygen atoms has a high potential for calcium

binding. A potential calcium-binding position is a clique

and can be detected by a clique-detecting algorithm. The

high accuracy of prediction shows that the majority of

calcium-binding sites in proteins are formed by four or

more oxygen atoms in a sphere center with a calcium atom.

The above network methods all focus on individual

proteins and represent a protein structure a complex net-

work. The specific topology features clearly imply a

particular function module (Zhang and Grigorov 2006;

Zhang et al. 2007). Recently, a novel category of network-

based analysis of the protein local structures at the macro

level has been proposed (Liu et al. 2008). The similarity of

the local structures, specifically the pockets on the protein

surface, is mapped to constitute a similarity network. The

nodes represent the pockets, and the edges represent the

certain similarity relationships among the pockets. The

properties of the pocket similarity network are like other

complex networks (Liu et al. 2008). The similar pockets

are identified by the clusters and community structures, and

the special features of the network are helpful in clustering

the pockets into similar groups (Liu et al. 2007b), which

may imply clusters of structure motifs and correspond to

special functional implications (Liu et al. 2008). With the

network concept, the pockets can also be used to charac-

terize and predict protein functions by annotating the

topology neighbors. In this way, the accuracy of the pre-

diction is better than that with the global structural

similarity approach (Liu et al. 2007a).

Discussion and future directions

Prediction of functions at the cellular level

Most of the methods used to annotate protein functions that

are listed above are based on molecular function at the

biological processing level. At the cellular component and

location levels, the importance of protein local structure is

also critical. In fact, information on the subcellular loca-

tions of proteins is important because it can provide useful

insights into protein functions as well as how and in what

kind of cellular environments they interact with each other

and with other molecules. Such information is also fun-

damental and indispensable to systems biology because a

knowledge of the localization of proteins within cellular

compartments can facilitate our understanding of the

intricate pathways that regulate biological processes at the

cellular level. From this perspective, the functions of pro-

teins at different levels are strongly inter-related to each

other. At the cellular component level, local structures are

still crucial in determining the roles of proteins and specific

functions.

Many methods for predicting the subcellular location of

proteins have been proposed recently because the location

of such proteins in the cell can provide useful insights or

clues about their functions (Chou and Shen 2007b). One of

the more powerful methods applied in location prediction

is based on an important descriptor of the protein sample,

i.e. the pseudo-amino acid (PseAA) composition (Chou

2001). This descriptor can be used to represent a protein

sequence with a discrete model yet without completely

losing the sequence-order information. Since the concept of

PseAA composition was introduced, various PseAA com-

position approaches have been developed, all with the aim

of improving the prediction quality of protein attributes

(Gao et al. 2005; Zhang et al. 2006; Zhou et al. 2007a, b;

Diao et al. 2008; Fang et al. 2008; Li and Li 2008). The

PseAA method has been widely used and extended. A very

flexible PseAA composition generator (PseAAC) was

established (Shen and Chou 2008) which enables users to

generate 63 different kinds of PseAA composition. A web
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server called Cell-PLoc (Chou and Shen 2008) has recently

been developed that allows users to predict the subcellular

locations of proteins in various different organisms. PseAA

composition and PSSM have also been combined in vari-

ous algorithms to improve the prediction quality for

membrane protein type (i.e. MemType-2L: Chou and Shen

2007a), enzyme main-functional class and sub-functional

class (i.e. EzyPred: Shen and Chou 2007a) and protein sub-

nuclear localization (i.e. Nuc-PLoc: Shen and Chou

2007b). A comprehensive review (Chou and Shen 2007b)

published recently provides a summary of these topics. In

addition to sequence information, local structural infor-

mation is useful, interesting and important in protein

localization function prediction.

Validation of function prediction

A quality assessment of the results is necessary at all three

levels of function prediction. The predicted functions of

proteins can be taken as indicators of the directions to be

taken by researchers when carrying out experiments to

validate the functions of proteins. Many of the computa-

tional methods used to annotate protein functions as well as

those used to predict functionally important local structures

use cross-validation methods to assess the performance of a

prediction; these include the independent dataset test,

subsampling test and jackknife test (Chou and Zhang

1995). However, as elucidated by Chou and Shen (2008),

of these cross-validation methods, the jackknife test is

considered to be the most objective and has been increas-

ingly used by investigators to examine the accuracy of

various predictors (Zhou 1998; Zhou and Assa-Munt 2001;

Zhou and Doctor 2003; Xiao et al. 2005; Zhou and Cai

2006; Chen et al. 2007; Shi et al. 2008). It is important to

consider the relationship among the functional terms and

the semantic similarity with the aim of avoiding biases in

the assessment of functional similarity (Liu et al. 2007a).

Local versus global structure to function

The global structure similarity-based methods provide a

straightforward approach to annotate protein functions.

However, since the relationships between structures and

functions are so complex, local structure-based methods

can be used to predict protein function directly by identi-

fying the local structures carrying out particular functions.

Laskowski et al. (2005) proposed a novel method of pre-

dicting protein function using local three-dimensional

templates. The authors build a template database and use

four types of templates—enzyme active sites, ligand-

binding residues, DNA-binding residues and reverse tem-

plates—to construct the relationship between templates and

functions.

Ferre et al. (2005) described a method for the function-

related annotation of protein structures based on the

detection of local structural similarity with a library of

annotated functional sites. An automatic procedure was

used to annotate the function of the local surface regions,

and then a sequence-independent algorithm was developed

to compare exhaustively these functional patches with a

larger collection of protein surface cavities. After tuning

and validating the algorithm on a dataset of well-annotated

structures, the results are able to provide functional clues to

proteins that do not show any significant sequence or

global structural similarity with proteins in the current

databases.

Binkowski et al. (2005) provided similar methods to

annotate protein functions from the protein surface simi-

larity. Pockets are identified by CASTp from several

proteins. These pockets are queried in the pvSOAR to

locate similar pockets corresponding to annotated proteins.

The conservation among the pockets can be detected by the

sequence identities and other similarity metrics. Tseng and

Liang (2006) developed a Bayesian Markov chain Monte

Carlo method for rate estimation of the special substitution

rates of the short sequence of local structure. Moreover, a

method for protein function prediction is presented by

surface matching using scoring matrices derived from

estimated substitution rates for residues located on the

binding surfaces. The method is effective in identifying

functionally related proteins that have overall low sequence

identity. The method provided by Pazos and Sternberg

(2004) first identifies functional sites in proteins by

bridging the local structures and functions, then the func-

tions of a target proteins can be inferred from the similarity

of the functional sites in the position-specific scoring

matrices.

Information on the functional importance of local

structure can facilitate the annotation of protein function

more precisely. George et al. (2005) proposed an effective

method to annotate protein function through the use of

functional clues of conservation among the catalytic resi-

dues. This method improves the precision of annotation

significantly.

The advantages of predicting protein functions from

local structures are based on the fact that such methods can

be implemented without any prior homology hypothesis.

The methods can be used in proteins in midnight zone

without sequence similarity, and local structures often

provide concrete and specific functional annotations. To

compare the precision and coverage of the global structural

similarity and that of local structures, Liu et al. (2007a)

proposed a novel method to predicted protein from the

pockets on the protein’s local surface region. The similarity

of regional local surface pockets and the global similarity

of proteins are all represented by networks. The prediction
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is based on the network topology. A comparison of the

results show that the local-structure-based prediction is

better than the global-structure-based prediction (Liu et al.

2007a).

Future directions

In this paper, we have reviewed protein function prediction

methods at different levels, i.e. sequence, structure, inter-

action and integration. We have mainly focused on the

importance of local structures and the method used to

predict functionally important local structures. In sum-

mary, we discuss possible future directions.

The interaction between proteins provides high-level

information on protein function, especially in various

biological processes. Although there are thousands of

known interactions, a tiny fraction of these are available in

precise molecular details. If we are able to examine

structural details, systematic representation of the interac-

tion would accurately reflect biological reality. For

example, we can predict which part of the structures is

most likely to be involved in interaction with other mac-

romolecules, proteins, DNA or RNA by analyzing the

properties of different local patches on the protein surface.

The patch analysis, which considers properties of the sur-

face such as flatness, hydrophobicity, charge and, in

particular, residue conservation, is effective in identifying

protein–protein interaction surfaces and has also been

shown to successfully identify DNA-binding sites (Aloy

and Russell 2006). Structural systems biology is a very

effective approach that combines protein interactions and

protein three-dimensional structures. The mechanisms of

protein and protein interaction lie in the local structures

between the two protein surfaces. From this perspective,

structural systems biology provides us with a new direction

in the fields of structural biology and systems biology. It

combines the key features of the two directions to provide

more insight into linking the single protein and systematic

interaction between proteins. The relationships between

local structures and functions are expected to play impor-

tant roles in structural systems biology.

The computational methods used to bridge the rela-

tionship between local structures and functions can be

further improved. The community of computational biol-

ogy has a strong need for comprehensive feature selection

in concise and effective ways. In addition, there is still

much room for improvement in terms of the accuracy of

the methods used to align the features between two local

structures. The validation of the functions of structural

motifs should also be conducted more carefully and by

more reliable biological experiments. Recent advances in

the field inspired by developments in sequences and

structures demonstrate the great potential of such research

in protein science in elucidating essential functional roles

of the local structures. In our opinion, research aimed at

bridging the gaps between local structures and function is

still in its infant stage, and further advances in such areas

will greatly enhance our ability to study the fundamental

properties of proteins at a system-wide level. In other

words, we expect to gain deep insight into essential

mechanisms of biological systems from both structural and

functional perspectives.

Different methods based on the local similarity, global

similarity and interaction require and use different infor-

mation, and they have different aspects, intentions and

advantages. To our knowledge, the function annotation

problem is still in its developing period and needs more

comprehensive or hybrid approaches. None of the existing

methods are likely to be successful in all cases to annotate a

protein with its functions correctly and comprehensively.

One reason for this is that protein functions not only rely on

the sequence and/or folding characteristics, but also on the

cell environment, the cycle of the biological processes and

other chemical compounds. There are still many difficult-

to-decipher proteins that researchers have been unable to

annotate correctly by any existing method. Hence, a sensi-

ble strategy is to use different methods to incorporate data

from multiple sources and to extensively utilize existing

function annotations. Future directions include using com-

binations of different methods at different levels so as to

efficiently explore the overall sequences, global structures

and local structures and to obtain more information on

interactions between the target proteins and others in

the cellular context. Although computational methods

generally cannot directly validate protein functions, the

predefined tentative annotations provide valuable informa-

tion as a basis for further efficient validation experiments.

Acknowledgments This work was supported by the National Nat-

ural Science Foundation of China (NSFC) under Grant No. 10631070

and No. 60503004. LYW and XSZ are also supported by the Grant

No. 5039052006CB from the Ministry of Science and Technology,

China. The research was also supported by NSFC-JSPS collaborative

project No. 10711140116. The authors are grateful to the anonymous

referees as well as editors for comments and for helping to improve

the earlier version. We recognize that this review is far from com-

prehensive, and we apologize for any papers related to the subject that

were not mentioned.

References

Aloy P, Russell RB (2006) Structural systems biology: modelling

protein interactions. Mol Cell Biol 7:188–197

Aloy P, Querol E, Aviles FX, Sternberg MJ (2001) Automatic

structure-based prediction of functional sites in proteins: appli-

cations to assessing the validity of inheriting protein function

from homology in genome annotation and to protein docking.

J Mol Biol 311:395–408

Amino Acids (2008) 35:627–650 645

123



Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I,

Pietrokovski S (2004) Network analysis of protein structures

identifies functional residues. J Mol Biol 344:1135–1146

Armon A, Graur D, Ben-Tal N (2001) ConSurf: an algorithmic tool

for the identification of functional regions in proteins by surface

mapping of phylogenetic information. J Mol Biol 307:447–463

Artymiuk PJ, Poirrette AR, Grindley HM, Rice DW, Willett P (1994)

A graph-theoretic approach to the identification of three-

dimensional patterns of amino acid side-chains in protein

structure. J Mol Biol 243:327–344

Babor M, Gerzon S, Raveh B, Sobolev V, Edelman M (2008)

Prediction of transition metal-binding sites from apo protein

structures. Proteins 70:208–217

Barabasi AL, Oltvai ZN (2004) Network biology: understanding the

cell’s functional organization. Nat Rev Genet 5:101–113

Barondeau DP, Getzoff ED (2004) Structural insights into protein–

metal ion partnerships. Curr Opin Struct Biol 14:765–774

Barrett AJ (1997) Nomenclature committee of the international union

of biochemistry and molecular biology (NC-IUBMB). Enzyme

nomenclature. Recommendations 1992. Supplement 4: correc-

tions and additions. Eur J Biochem 250:1–6

Bhardwaj N, Langlois RE, Zhao G, Lu H (2005) Kernel-based

machine learning protocol for predicting DNA-binding proteins.

Nucleic Acids Res 33:6486–6493

Binkowski TA, Adamian L, Liang J (2003a) Inferring functional

relationships of proteins from local sequence and spatial surface

patterns. J Mol Biol 332:505–526

Binkowski TA, Naghibzadeh S, Liang J (2003b) CASTp: computed

atlas of surface topography of proteins. Nucleic Acids Res

31:3352–3355

Binkowski TA, Freeman P, Liang J (2004) pvSOAR: detecting

similar surface patterns of pocket and void surfaces of amino

acid residues on proteins. Nucleic Acids Res 32:W555–W558

Binkowski TA, Joachimiak A, Liang J (2005) Protein surface analysis

for function annotation in high-throughput structural genomics

pipeline. Protein Sci 14:2972–2981

Bordner AJ, Abagyan R (2005) Statistical analysis and prediction of

protein–protein interfaces. Proteins 60:353–366

Borman S (2008) Flu virus proton channel analyzed: structures of key

surface protein suggest different drug mechanisms. Chem Eng

News 86:53–54

Bradford JR, Needham CJ, Bulpitt AJ, Westhead DR (2006) Insights

into protein–protein interfaces using a Bayesian network

prediction method. J Mol Biol 362:365–386

Brenner SE (2001) A tour of structural genomics. Nat Rev Genet

2:801–809

Burgoyne NJ, Jackson RM (2006) Predicting protein interaction sites:

binding hot-spots in protein–protein and protein–ligand inter-

faces. Bioinformatics 22:1335–1342

Cai YD, Zhou GP, Jen CH, Lin SL, Chou KC (2004) Identify catalytic

triads of serine hydrolases by support vector machines. J Theor

Biol 228:551–557

Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns

D, Harte N, Lopez R, Apweiler R (2004) The gene ontology

annotation (GOA) database: sharing knowledge in Uniprot with

gene ontology. Nucleic Acids Res 32:D262–D266

Campbell SJ, Gold ND, Jackson RM, Westhead DR (2003) Ligand

binding: functional site location, similarity and docking. Curr

Opin Struct Biol 13:389–395

Capra JA, Singh M (2007) Predicting functionally important residues

from sequence conservation. Bioinformatics 23:1875–1882

Chakrabarti S, Lanczycki CJ (2007) Analysis and prediction of

functionally important sites in proteins. Protein Sci 16:4–13

Chen H, Zhou HX (2005) Prediction of interface residues in protein–

protein complexes by a consensus neural network method: test

against NMR data. Proteins 61:21–35

Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell

epitopes using amino acid pair antigenicity scale. Amino Acids

33:423–428

Chen L, Wu LY, Wang Y, Zhang S, Zhang XS (2006) Revealing

divergent evolution, identifying circular permutations and

detecting active-sites by protein structure comparison. BMC

Struct Biol 6:18

Cheng G, Qian B, Samudrala R, Baker D (2005) Improvement in

protein functional site prediction by distinguishing structural and

functional constraints on protein family evolution using compu-

tational design. Nucleic Acids Res 33:5861–5867

Chou KC (2001) Prediction of protein cellular attributes using pseudo

amino acid composition (Erratum: ibid., 2001, Vol. 44, 60).

Proteins 43:246–255

Chou KC (2004) Structural bioinformatics and its impact to

biomedical science. Curr Med Chem 11:2105–2134

Chou KC, Cai YD (2004) A novel approach to predict active sites of

enzyme molecules. Proteins 55:77–82

Chou KC, Cai YD (2006) Predicting protein–protein interactions from

sequences in a hybridization space. J Proteome Res 5:316–322

Chou KC, Shen HB (2007a) MemType-2L: a web server for

predicting membrane proteins and their types by incorporating

evolution information through Pse-PSSM. Biochem Biophys Res

Commun 360:339–345

Chou KC, Shen HB (2007b) Recent progresses in protein subcellular

location prediction. Anal Biochem 370:1–16

Chou KC, Shen HB (2008) Cell-PLoc: a package of web-servers for

predicting subcellular localization of proteins in various organ-

isms. Nat Protoc 3:153–162

Chou KC, Zhang CT (1995) Prediction of protein structural classes.

Crit Rev Biochem Mol Biol 30:275–349

Chou KC, Wei DQ, Zhong WZ (2003) Binding mechanism of

coronavirus main proteinase with ligands and its implication to

drug design against SARS (Erratum: ibid., 2003, Vol.310, 675).

Biochem Biophys Res Commun 308:148–151

Chung JL, Wang W, Bourne PE (2007) High-throughput identifica-

tion of interacting protein–protein binding sites. BMC

Bioinformatics 8:223

del Sol A, Fujihashi H, Amoros D, Nussinov R (2006) Residue

centrality, functionally important residues, and active site shape:

analysis of enzyme and non-enzyme families. Protein Sci

15:2120–2128

Deng H, Chen G, Yang W, Yang JJ (2006) Predicting calcium-

binding sites in proteins—a graph theory and geometry

approach. Proteins 64:34–42

Devos D, Valencia A (2000) Practical limits of function prediction.

Proteins 41:98–107

Diao Y, Ma D, Wen Z, Yin J, Xiang J, Li M (2008) Using pseudo

amino acid composition to predict transmembrane regions in

protein: cellular automata and Lempel–Ziv complexity. Amino

Acids 34:111–117

Du QS, Wang SQ, Chou KC (2007) Analogue inhibitors by

modifying oseltamivir based on the crystal neuraminidase

structure for treating drug-resistant H5N1 virus. Biochem

Biophys Res Commun 362:525–531

Ebert JC, Altman RB (2008) Robust recognition of zinc binding sites

in proteins. Protein Sci 17:54–65

Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein

function in the post-genomic era. Nature 405:823–826

Elcock AH (2001) Prediction of functionally important residues based

solely on the computed energetics of protein structure. J Mol

Biol 312:885–896

Fang Y, Guo Y, Feng Y, Li M (2008) Predicting DNA-binding

proteins: approached from Chou’s pseudo amino acid composi-

tion and other specific sequence features. Amino Acids 34:103–

109

646 Amino Acids (2008) 35:627–650

123



Fariselli P, Pazos F, Valencia A, Casadio R (2002) Prediction of

protein–protein interaction sites in heterocomplexes with neural

networks. Eur J Biochem 269:1356–1361

Ferre F, Ausiello G, Zanzoni A, Helmer-Citterich M (2004)

SURFACE: a database of protein surface regions for functional

annotation. Nucleic Acids Res 32:D240–D244

Ferre F, Ausiello G, Zanzoni A, Helmer-Citterich M (2005) Functional

annotation by identification of local surface similarities: a novel

tool for structural genomics. BMC Bioinformatics 6:194

Ferrer-Costa C, Shanahan HP, Jones S, Thornton JM (2005)

HTHquery: a method for detecting DNA-binding proteins with

a helix-turn-helix structural motif. Bioinformatics 21:3679–3680

Fischer D, Wolfson H, Lin SL, Nussinov R (1994) Three-dimen-

sional, sequence order-independent structural comparison of a

serine protease against the crystallographic database reveals

active site similarities: potential implications to evolution and to

protein folding. Protein Sci 3:769–778

Fischer TB, Arunachalam KV, Bailey D, Mangual V, Bakhru S, Russo

R, Huang D, Paczkowski M, Lalchandani V, Ramachandra C,

Ellison B, Galer S, Shapley J, Fuentes E, Tsai J (2003) The binding

interface database (BID): a compilation of amino acid hot spots in

protein interfaces. Bioinformatics 19:1453–1454

Gao Y, Shao SH, Xiao X, Ding YS, Huang YS, Huang ZD, Chou KC

(2005) Using pseudo amino acid composition to predict protein

subcellular location: approached with Lyapunov index, Bessel

function, and Chebyshev filter. Amino Acids 28:373–376

George RA, Spriggs RV, Bartlett GJ, Gutteridge A, MacArthur MW,

Porter CT, Al-Lazikani B, Thornton JM, Swindells MB (2005)

Effective function annotation through catalytic residue conser-

vation. Proc Natl Acad Sci USA 102:12299–12304

Gerstein M, Levitt M (1998) Comprehensive assessment of automatic

structural alignment against a manual standard, the scop

classification of proteins. Protein Sci 7:445–456

Gibrat JF, Madej T, Bryant SH (1996) Surprising similarities in

structure comparison. Curr Opin Struct Biol 6:377–385

Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM

(2006) A method for localizing ligand binding pockets in protein

structures. Proteins 62:479–488

Gold ND, Jackson RM (2006a) SiteBase: a database for structure-

based protein–ligand binding site comparison. Nucleic Acids

Res 34:D231–D234

Gold ND, Jackson RM (2006b) Fold independent structural compar-

isons of protein–ligand binding sites for exploring functional

relationships. J Mol Biol 355:1112–1124

Goldsmith-Fischman S, Honig B (2003) Structural genomics: com-

putational methods for structure analysis. Protein Sci 12:1813–

1821

Goyal K, Mande SC (2007) Exploiting 3D structural templates for

detection of metal-binding sites in protein structures. Proteins

70:1206–1218

Greene LH, Higman VA (2003) Uncovering network systems within

protein structures. J Mol Biol 334:781–791

Gutteridge A, Bartlett GJ, Thornton JM (2003) Using a neural

network and spatial clustering to predict the location of active

sites in enzymes. J Mol Biol 330:719–734

Huan J, Bandyopadhyay D, Prins J, Snoeyink J, Tropsha A, Wang W

(2006) Distance-based identification of spatial motifs in proteins

using constrained frequent subgraph mining. In: Proc LSS

Computational Systems Bioinformatics Conference (CSB),

pp 227–238

Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding

sites using the Connolly surface and degree of conservation.

BMC Struct Biol 6:19

Hendlich M, Rippmann F, Barnickel G (1997) LIGSITE: automatic

and efficient detection of potential small molecule-binding sites

in proteins. J Mol Graph Model 15:359–63,389

Holm L, Sander C (1993) Protein structure comparison by alignment

of distance matrices. J Mol Biol 233:123–138

Holm L, Sander C (1996) Mapping the protein universe. Science

273:595–602

Hoskins J, Lovell S, Blundell TL (2006) An algorithm for predicting

protein–protein interaction sites: abnormally exposed amino acid

residues and secondary structure elements. Protein Sci 15:1017–

1029

Hou J, Jun SR, Zhang C, Kim SH (2005) Global mapping of the

protein structure space and application in structure-based

inference of protein function. Proc Natl Acad Sci USA

102:3651–3656

Innis CA, Anand AP, Sowdhamini R (2004) Prediction of functional

sites in proteins using conserved functional group analysis. J Mol

Biol 337:1053–1068

Ivanisenko VA, Pintus SS, Grigorovich DA, Kolchanov NA (2004)

PDBSiteScan: a program for searching for active, binding and

posttranslational modification sites in the 3D structures of

proteins. Nucleic Acids Res 32:W549–W554

Ivanisenko VA, Pintus SS, Grigorovich DA, Kolchanov NA (2005)

PDBSite: a database of the 3D structure of protein functional

sites. Nucleic Acids Res 33:D183–D187

Jambon M, Imberty A, Deleage G, Geourjon C (2003) A new

bioinformatic approach to detect common 3D sites in protein

structures. Proteins 52:137–145

Jones S, Thornton JM (1996) Principles of protein–protein interac-

tions. Proc Natl Acad Sci USA 93:13–20

Jones S, Thornton JM (2004) Searching for functional sites in protein

structures. Curr Opin Chem Biol 8:3–7

Jones S, Daley DTA, Luscombe NM, Berman HM, Thornton JM

(2001) Protein–RNA interactions: a structural analysis. Nucleic

Acids Res 29:943–954

Jones S, Shanahan HP, Berman HM, Thornton JM (2003) Using

electrostatic potentials to predict DNA-binding sites on DNA-

binding proteins. Nucleic Acids Res 31:7189–7198

Joshi T, Xu D (2007) Quantitative assessment of relationship between

sequence similarity and function similarity. BMC Genomics

8:222

Kahraman A., Morris RJ, Laskowski RA, Thornton JM (2007) Shape

variation in protein binding pockets and their ligands. J Mol Biol

368:283–301

Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and

genomes. Nucleic Acids Res 28:27–30

Kawabata T, Go N (2007) Detection of pockets on protein surfaces

using small and large probe spheres to find putative ligand

binding sites. Proteins 68:516–529

Keil M, Exner TE, Brickmann J (2004) Pattern recognition strategies

for molecular surfaces: III. Binding site prediction with a neural

network. J Comput Chem 25:779–789

Kinoshita K, Nakamura H (2003) Identification of protein biochem-

ical functions by similarity search using the molecular surface

database eF-site. Protein Sci 12:1589–1595

Kleywegt GJ (1999) Recognition of spatial motifs in protein

structures. J Mol Biol 285:1887–1897

Koike A, Takagi T (2004) Prediction of protein–protein interaction

sites using support vector machines. Protein Eng Des Sel

17:165–173

Kolodny R, Koehl P, Levitt M (2005) Comprehensive evaluation of

protein structure alignment methods: scoring by geometric

measures. J Mol Biol 346:1173–1188

Krissinel E, Henrick K (2004) Secondary-structure matching (SSM),

a new tool for fast protein structure alignment in three

dimensions. Acta Cryst D60:2256–2268

Kuznetsov IB, Gou Z, Li R, Hwang S (2006) Using evolutionary and

structural information to predict DNA-binding sites on DNA-

binding proteins. Proteins 64:19–27

Amino Acids (2008) 35:627–650 647

123



Lackner P, Koppensteiner WA, Sippl MJ, Domingues FS (2000)

ProSup: a refined tool for protein structure alignment. Protein

Eng 13:745–752

Landgraf R, Xenarios I, Eisenberg D, (2001) Three-dimensional

cluster analysis identifies interfaces and functional residue

clusters in proteins. J Mol Biol 307:1487–1502

Laskowski RA (1995) SURFNET: a program for visualizing molec-

ular surfaces, cavities and intermolecular interactions. J Mol

Graph 13:323–330

Laskowski RA, Luscombe NM, Swindells MB, Thornton JM (1996)

Protein clefts in molecular recognition and function. Protein Sci

5:2438–2452

Laskowski RA, Watson JD, Thornton JM (2003) From protein

structure to biochemical function? J Struct Func Genomics

4:167–177

Laskowski RA, Watson JD, Thornton JM (2005) Protein function

prediction using local 3D templates. J Mol Biol 351:614–626

Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based

method for the prediction of protein–ligand binding sites.

Bioinformatics 21:1908–1916

Leibowitz N, Fligelman ZY, Nussinov R, Wolfson HJ (2001)

Automatic multiple structure alignment and detection of a

common substructural motif. Proteins 43:235–245

Li FM, Li QZ (2008) Using pseudo amino acid composition to predict

protein subnuclear location with improved hybrid approach.

Amino Acids 34:119–125

Li X, Keskin O, Ma B, Nussinov R, Liang J (2004) Protein–protein

interactions: hot spots and structurally conserved residues often

locate in complemented pockets that pre-organized in the

unbound states: implications for docking. J Mol Biol 344:781–

795

Liang MP, Banatao DR, Klein TE, Brutlag DL, Altman RB (2003a)

WebFEATURE: an interactive web tool for identifying and

visualizing functional sites on macromolecular structures.

Nucleic Acids Res 31:3324–3327

Liang MP, Brutlag DL, Altman RB (2003b) Automatic construction

of structural motifs for predicting functional sites on protein

structures. Pac Symp Biocomput 8:204–215

Liang S, Zhang C, Liu S, Zhou Y (2006) Protein binding site

prediction using an empirical scoring function. Nucleic Acids

Res 34:3698–3707

Lichtarge O, Sowa ME (2002) Evolutionary predictions of binding

surfaces and interactions. Curr Opin Struct Biol 12:21–27

Liu ZP, Wu LY, Wang Y, Chen L, Zhang XS (2007a) Predicting gene

ontology functions from protein’s regional surface structures.

BMC Bioinformatics 8:475

Liu ZP, Wu LY, Wang Y, Zhang XS, Chen L (2007b) An approach

for clustering protein pockets into similar groups. In: Optimi-

zation and systems biology. Lecture Notes in Operations

Research, vol 7. World Publishing, Beijing, pp 204–212

Liu ZP, Wu LY, Wang Y, Zhang XS, Chen L (2008) Analysis of

protein surface patterns by pocket similarity network. Protein

Pept Lett (in press)

Luscombe NM, Thornton JM (2002) Protein–DNA interactions:

amino acid conservation and the effects of mutations on binding

specificity. J Mol Biol 320:991–1009

Luscombe NM, Austin SE, Berman HM, Thornton JM (2000) An

overview of the structures of protein–DNA complexes. Genome

Biol 1:1–37

Luscombe NM, Laskowski RA, Thornton JM (2001) Amino acid–

base interactions: a three-dimensional analysis of protein–DNA

interactions at an atomic level. Nucleic Acids Res 29:2860–2874

Ma B, Elkayam T, Wolfon H, Nussinov R (2003) Protein–protein

interaction: structurally conserved residues distinguish between

binding sites and exposed protein surfaces. Proc Natl Acad Sci

USA 100:5772–5777

Marcotte EM, Pellegrini M, Thompson MJ, Yeates TO, Eisenberg D

(1999) A combined algorithm for genome-wide prediction of

protein function. Nature 402:83–86

McLaughlin WA, Berman HM (2003) Statistical models for discern-

ing protein structures containing the DNA-binding helix-turn

helix motif. J Mol Biol 330:43–55

Morris RJ, Najmanovich RJ, Kahraman A, Thornton JM (2005) Real

spherical harmonic expansion coefficients as 3D shape descrip-

tors for protein binding pocket and ligand comparisons.

Bioinformatics 21:2347–2355

Murzin A, Brenner S, Hubbard T, Chothia C (1995) SCOP: a

structural classification of proteins database for the investigation

of sequences and structures. J Mol Biol 247:536–540

Nayal M, Honig B (2006) On the nature of cavities on protein

surfaces: application to the identification of drug-binding sites.

Proteins 63:892–906

Neuvirth H, Raz R, Schreiber G (2004) ProMate: a structure based

prediction program to identify the location of protein–protein

binding sites. J Mol Biol 338:181–199

Ofran Y, Rost B (2003) Predicted protein–protein interaction sites

from local sequence information. FEBS Lett 544:236–239

Orengo C, Michie A, Jones S, Jones D, Swindells M, Thornton J

(1997) CATH—a hierarchic classification of protein domain

structures. Structure 5:1093–1108

Orengo CA, Taylor WR (1996) SSAP: sequential structure alignment

program for protein structure comparison. Methods Enzymol

266:617–635

Orengo CA, Todd AE, Thornton JM (1999) From protein structure to

function. Curr Opin Struct Biol 9:374–382

Pal D, Eisenberg D (2005) Inference of protein function from protein

structure. Structure 13:121–130

Panchenko AR, Kondrashov F, Bryant S (2004) Prediction of

functional sites by analysis of sequence and structure conserva-

tion. Protein Sci 13:884–892

Passerini A, Punta M, Ceroni A, Rost B, Frasconi P (2006)

Identifying cysteines and histidines in transition-metal-binding

sites using support vector machines and neural networks.

Proteins 65:305–316

Pazos F, Sternberg MJE (2004) Automatic prediction of protein

function and detection of functional sites from structure. Proc

Natl Acad Sci USA 101:14754–14759

Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas:

a resource of catalytic sites and residues identified in enzymes

using structural data. Nucleic Acids Res 32:D129–133

Rosen M, Lin SL, Wolfson H, Nussinov R (1998) Molecular shape

comparisons in searches for active sites and functional similarity.

Protein Eng 11:263–277

Rost B (1999) Twilight zone of protein sequence alignments. Protein

Eng 12:85–94

Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M,

Tetko I, Guldener U, Mannhaupt G, Munsterkotter M, Mewes

HW (2004) The FunCat, a functional annotation scheme for

systematic classification of proteins from whole genomes.

Nucleic Acids Res 18:5539–5545

Russell RB (1998) Detection of protein three-dimensional side-chain

patterns: new examples of convergent evolution. J Mol Biol
279:1211–1227

Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, Topf

M, Sali A (2004) A structural perspective on protein–protein

interactions. Curr Opin Struct Biol 14:313–324

Salwinski L, Eisenberg D (2003) Computational methods of analysis

of protein–protein interactions. Curr Opin Struct Biol 13:377–

382

Sanishvili R, Yakunin AF, Laskowski RA, Skarina T, Evdokimova E,

Doherty-Kirby A, Lajoie G A, Thornton JM, Arrowsmith CH,

Savchenko A, Joachimiak A, Edwards AM (2003) Integrating

648 Amino Acids (2008) 35:627–650

123



structure, bioinformatics, and enzymology to discover func-

tion—BioH, a new carboxylesterase from Escherichia coli.
J Biol Chem 278:26039–26045

Schmitt S, Kuhn D, Klebe G (2002) A new method to detect related

function among proteins independent of sequence and fold

homology. J Mol Biol 323:387–406

Schnell JR, Chou JJ (2008) Structure and mechanism of the M2

proton channel of influenza A virus. Nature 451:591–595

Shah I, Hunter L (1997) Predicting enzyme function from sequence: a

systematic appraisal. Proc Int Conf Intell Syst Mol Biol 5:276–283

Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of

protein function. Mol Syst Biol 3:88

Shen HB, Chou KC (2007a) EzyPred: a top–down approach for

predicting enzyme functional classes and subclasses. Biochem

Biophys Res Commun 364:53–59

Shen HB, Chou KC (2007b) Nuc-PLoc: a new web-server for

predicting protein subnuclear localization by fusing PseAA

composition and PsePSSM. Protein Eng Des Sel 20:561–567

Shen HB, Chou KC (2008) PseAAC: a flexible web-server for

generating various kinds of protein pseudo amino acid compo-

sition. Anal Biochem 373:386–388

Shi JY, Zhang SW, Pan Q and Zhou GP (2008) Using pseudo amino

acid composition to predict protein subcellular location:

approached with amino acid composition distribution. Amino

Acids. doi:10.1007/s00726-007-0623-z

Shindyalov IN, Bourne PE (1998) Protein structure alignment by

incremental combinatorial extension (CE) of the optimal path.

Protein Eng 11:739–747

Shulman-Peleg A, Nussinov R, Wolfson HJ (2005) SiteEngines:

recognition and comparison of binding sites and protein–protein

interfaces. Nucleic Acids Res 33:W337–W341

Siggers TW, Silkov A, Honig B (2005) Structural alignment of

protein–DNA interfaces: insights into the determinants of

binding specificity. J Mol Biol 345:1027–1045

Singh AP, Brutlag DL (1997) Hierarchical protein structure alignment

using both secondary structure and atomic representations. Proc

Intell Syst Mol Biol 4:284–293

Singh R, Saha M (2003) Identifying structural motifs in proteins. Pac

Symp Biocomput 8:228–239

Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch L, Jones DT

(2004) Predicting metal-binding site residues in low-resolution

structural models. J Mol Biol 342:307–320

Stark A, Russell RB (2003a) Annotation in three dimensions. PINTS:

patterns in non-homologous tertiary structures. Nucleic Acids

Res 31:3341–3344

Stark A, Shkumatov A, Russell RB (2003b) Finding functional sites

in structural genomics proteins. Structure 12:1405–1412

Stark A, Sunyaev S, Russell R (2003c) A model for statistical

significance of local similarities in structure. J Mol Biol

326:1307–1316

Stawiski EW, Gregoret LM, Mandel-Gutfreund Y (2003) Annotating

nucleic acid-binding function based on protein structure. J Mol

Biol 326:1065–1079

Taroni C, Jones S, Thornton JM (2000) Analysis and prediction of

carbohydrate binding sites. Protein Eng 13:89–98

The Gene Ontology Consortium (2000) Gene ontology: tool for the

unification of biology. Nature Genet 25:25–29

Tjong H, Zhou HX (2007) DISPLAR: an accurate method for

predicting DNA-binding sites on protein surfaces. Nucleic Acids

Res 35:1465–1477

Torrance JW, Bartlett GJ, Porter CT, Thornton JM (2005) Using a

library of structural templates to recognise catalytic sites and

explore their evolution in homologous families. J Mol Biol

347:565–581

Tseng YY, Liang J (2006) Estimation of amino acid residue

substitution rates at local spatial regions and application in

protein function inference: A Bayesian Monte Carlo approach.

Mol Biol Evol 23:421–436

Tsuchiya Y, Kinoshita K, Nakamura H (2004) Structure-based

prediction of DNA-binding sites on proteins using the empirical

preference of electrostatic potential and the shape of molecular

surfaces. Proteins 55:885–894

Vapnik V (1998) Statistical learning theory. Springer, New York

Vazquez A, Flammini A, Maritan A, Vespignani A (2003) Global

protein function prediction from protein–protein interaction

networks. Nat Biotechnol 21:697–700

Wallace AC, Borkakoti N, Thornton JM (1997) TESS: a geometric

hashing algorithm for deriving 3D coordinate templates for

searching structural database. Application to enzyme active sites.

Protein Sci 6:2308–2323

Wang SQ, Du QS, Zhao K, Li AX, Wei DQ, Chou KC (2007a)

Virtual screening for finding natural inhibitor against cathepsin-

L for SARS therapy. Amino Acids 33:129–135

Wang H, Segal E, Ben-Hur A, Li Q, Vidal M, Koller D (2007b) InSite: a

computational method for identifying protein–protein interaction

binding sites on a proteome-wide scale. Genome Biol 8:R192

Wangikar PP, Tendulkar AV, Ramya S, Mali DN, Sarawagi S (2003)

Functional sites in protein families uncovered via an objective

and automatic graph theoretic approach. J Mol Biol 326:955–978

Watson JD, Laskowski RA, Thornton JM (2005) Predicting protein

function from sequence and structural data. Curr Opin Struct

Biol 15:275–284

Whisstock JC, Lesk AM (2003) Prediction of protein function from

protein sequence and structure. Q Rev Biophys 36:307–340

Wilson CA, Kreychman J, Gerstein M (2000) Assessing annotation

transfer for genomics: quantifying the relations between protein

sequence, structure and function throng traditional and probabi-

listic scores. J Mol Biol 297:233–249

Wodak SJ, Mendez R (2004) Prediction of protein–protein interac-

tions: the CAPRI experiment, its evaluation and implications.

Curr Opin Struct Biol 14:242–249

Xiao X, Shao S, Ding Y, Huang Z, Huang Y, Chou KC (2005) Using

complexity measure factor to predict protein subcellular loca-

tion. Amino Acids 28:57–61

Yan C, Dobbs D, Honavar V (2004) A two-stage classifier for

identification of protein–protein interface residues. Bioinformat-

ics 20[Suppl]:i371–i378

Yan C, Terribilini M, Wu F, Jernigan RL, Dobbs D, Honavar V

(2006) Predicting DNA-binding sites of proteins from amino

acid sequence. BMC Bioinformatics 7:262

Yao H, Kristensen DM, Mihalek I, Sowa ME, Shaw C, Kimmel M,

Kavraki L, Lichtarge O (2003) An accurate, sensitive, and

scalable method to identify functional sites in protein structures.

J Mol Biol 326:255–261

Ye Y, Godzik A (2004) FATCAT: a web server for flexible structure

comparison and structure similarity searching. Nucleic Acids

Res 32:W582–585

Zemla A (2003) LGA—a method for finding 3D similarities in

protein structures, Nucleic Acids Res 31:3370–3374

Zhang XS (2000) Neural networks in optimization. Kluwer,

Dordrecht

Zhang Z, Grigorov MG (2006) Similarity networks of protein binding

sites. Proteins 62:470–478

Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment

algorithm based on TM-score. Nucleic Acids Res 33:2302–2309

Zhang S, Jin G, Zhang XS, Chen L (2007) Discovering functions and

revealing mechanisms at molecular level from biological

networks. Proteomics 7:2856–2869

Zhang SW, Pan Q, Zhang HC, Shao ZC, Shi JY (2006) Prediction

protein homo-oligomer types by pseudo amino acid composition:

approached with an improved feature extraction and naive Bayes

feature fusion. Amino Acids 30:461–468

Amino Acids (2008) 35:627–650 649

123

http://dx.doi.org/10.1007/s00726-007-0623-z


Zhao XM, Wang Y, Chen L, Aihara K (2008a) Gene function prediction

using labeled and unlabeled data. BMC Bioinformatics 9:57

Zhao XM, Wang Y, Chen L, Aihara K (2008b) Protein domain

annotation with integration of heterogeneous information

sources. Proteins. doi:10.1002/prot.21943

Zhou GP (1998) An intriguing controversy over protein structural

class prediction. J Protein Chem 17:729–738

Zhou GP, Assa-Munt N (2001) Some insights into protein structural

class prediction. Proteins 44:57–59

Zhou GP, Cai YD (2006) Predicting protease types by hybridizing

gene ontology and pseudo amino acid composition. Proteins

63:681–684

Zhou GP, Doctor K (2003) Subcellular location prediction of

apoptosis proteins. Proteins 50:44–48

Zhou HX, Qin S (2007) Interaction-site prediction for protein

complexes: a critical assessment. Bioinformatics 23:2203–2209

Zhou HX, Shan Y (2001) Prediction of protein interaction sites from

sequence profile and residue neighbor list. Proteins 44:336–343

Zhou XB, Chen C, Li ZC and Zou XY (2007a) Improved prediction

of subcellular location for apoptosis proteins by the dual-layer

support vector machine. Amino Acids. doi:10.1007/

s00726-007-0608-y

Zhou XB, Chen C, Li ZC, Zou XY (2007b) Using Chou’s amphiphilic

pseudo-amino acid composition and support vector machine for

prediction of enzyme subfamily classes. J Theor Biol 248:546–

551

Zhu J, Weng Z (2005) FAST: a novel protein structure alignment

algorithm. Proteins 58:618–627

650 Amino Acids (2008) 35:627–650

123

http://dx.doi.org/10.1002/prot.21943
http://dx.doi.org/10.1007/s00726-007-0608-y
http://dx.doi.org/10.1007/s00726-007-0608-y

	Bridging protein local structures and protein functions
	Abstract
	Introduction
	Molecular functions related to local structures
	Protein-protein interaction
	Protein-nucleotide binding
	Protein-ligand binding
	Protein-metal binding
	Active sites

	Identifying protein local structures
	Sequence-based local structures
	Structure-based local structure

	Bridges between local structures and protein functions
	Element-based methods
	Alignment method
	Multiple sequence alignment
	Structure alignment: geometric hashing
	Pairwise alignment of constructed local structures
	Pairwise alignment of annotated local structures
	Evolutionary tracing

	Template-based comparison

	Feature-based method
	Scoring methods
	Scoring by physical features
	Scoring by chemical features
	Scoring by physicochemical features

	Learning methods
	Support vector machine
	Neural network
	Statistical methods


	Network-based method

	Discussion and future directions
	Prediction of functions at the cellular level
	Validation of function prediction

	Local versus global structure to function
	Future directions

	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


