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Abstract—Goal: Systemic sclerosis (SSc) is a rare au-
toimmune, systemic disease with prominent fibrosis of
skin and internal organs. Early diagnosis of the disease
is crucial for designing effective therapy and manage-
ment plans. Machine learning algorithms, especially deep
learning, have been found to be greatly useful in biology,
medicine, healthcare, and biomedical applications, in the
areas of medical image processing and speech recogni-
tion. However, the need for a large training data set and
the requirement for a graphics processing unit (GPU) have
hindered the wide application of machine learning algo-
rithms as a diagnostic tool in resource-constrained envi-
ronments (e.g., clinics). Methods: In this paper, we pro-
pose a novel mobile deep learning network for the char-
acterization of SSc skin. The proposed network architec-
ture consists of the UNet, a dense connectivity convolu-
tional neural network (CNN) with added classifier layers
that when combined with limited training data, yields better
image segmentation and more accurate classification, and
a mobile training module. In addition, to improve the com-
putational efficiency and diagnostic accuracy, the highly
efficient training model called “MobileNetV2,” which is de-
signed for mobile and embedded applications, was used
to train the network. Results: The proposed network was
implemented using a standard laptop (2.5 GHz Intel Core i7).
After fine tuning, our results showed the proposed network
reached 100% accuracy on the training image set, 96.8%
accuracy on the validation image set, and 95.2% on the
testing image set. The training time was less than 5 hours.
We also analyzed the same normal vs SSc skin image sets
using the CNN using the same laptop. The CNN reached
100% accuracy on the training image set, 87.7% accuracy
on the validation image set, and 82.9% on the testing image
set. Additionally, it took more than 14 hours to train the CNN
architecture. We also utilized the MobileNetV2 model to an-
alyze an additional dataset of images and classified them as
normal, early (mid and moderate) SSc or late (severe) SSc
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skin images. The network reached 100% accuracy on the
training image set, 97.2% on the validation set, and 94.8%
on the testing image set. Using the same normal, early
and late phase SSc skin images, the CNN reached 100%
accuracy on the training image set, 87.7% accuracy on the
validation image set, and 82.9% on the testing image set.
These results indicated that the MobileNetV2 architecture
is more accurate and efficient compared to the CNN to
classify normal, early and late phase SSc skin images. Con-
clusions: Our preliminary study, intended to show the effi-
cacy of the proposed network architecture, holds promise
in the characterization of SSc. We believe that the proposed
network architecture could easily be implemented in a clin-
ical setting, providing a simple, inexpensive, and accurate
screening tool for SSc.

Index Terms—Autoimmune, deep learning, mobilenet,
SSc skin, unet.

Impact Statement—The network architecture is capable
of discriminating normal skin images from SSc skin images
using a laptop with a central processing unit (CPU).

l. INTRODUCTION

Systemic sclerosis (SSc) is an autoimmune disease charac-
terized by wide-spread fibrosis of the skin and internal organs.
Based on the extent of skin involvement, the disease can be clas-
sified into two types: limited cutaneous SSc (LcSSc) and diffuse
cutaneous SSc (DcSSc). Both subsets can include internal organ
involvement, with more severe organ involvement occurring
more frequently in DcSSc [1]. The internal organ complications
of SSc are associated with high case-specific disability rates
and mortality rates, posing a heavy socio-economic burden for
society. Several studies have shown that organ involvement
could occur far earlier than expected in the early phase of the
disease [2], [3]. However, since SSc is an uncommon disease
with multiple heterogeneous symptoms, early diagnosis and
determining the extent of disease progression pose significant
challenge for physicians, even at expert centers [4], [5], resulting
in delays in therapy and management. Clinical diagnosis of SSc
takes many factors into account. One fully validated, feasible
method to determine skin thickness is the modified Rodnan
skin thickness score (mRSS). In this assessment, the physician
measures the skin thickness by manually palpating the skin at
17 sites on the patient’s body and then uses a 0-3 scale to
indicate the thickness [6]. The total score is the sum of the
individual skin area, with a higher score indicative of severe
skin thickening. However, as a subjective measurement, mRSS
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heavily depends on the physicians’ palpation experience [7]-[9],
and it is also not sensitive to changes over short-time periods
[10]. Furthermore, many uncontrollable factors could bias the
palpation test, such as the early edematous stages of the disease
[11] and the impact of menopause on skin thickness [12]. All
of these factors would result in marked inter-and intra-observer
variabilities in detecting and monitoring SSc skin involvement.
Therefore, there is an unmet need for a more consistent, reliable
and objective diagnostic approach for SSc.

The sudden explosion of voluminous and complex data sets
in medicine, biology, and engineering has created important
challenges in 1) accurately analyzing, interpreting, and mod-
eling unstructured data sets, and 2) converting unstructured
data sets into a deeper understanding of complex, inter-related
phenomena. Machine learning techniques have been developed
and widely used to understand large data sets in medical image
processing, speech recognition, computer vision, language pro-
cessing, bioinformatics, and drug design [13], [14]. Previous
studies have investigated machine learning in bioinformatics
[15], biology and medicine [16], computational biology [17],
[18], biomedicine [19], [20], and super resolution imaging [21].
Statistical and machine learning techniques have also been
used in psychiatry [22], [23]. It has also shown potential in
autoimmune disease diagnosis, prognosis prediction, and classi-
fication of diseases such as lupus [24], [25], rheumatoid arthri-
tis [26], [27], and inflammatory bowel disease [28]. Machine
learning techniques, especially deep neural networks (DNNs),
have been effectively used in several biomedical applica-
tions, including protein structure prediction [29]-[31], anomaly
classification [32]-[34], segmentation [35], recognition [36],
[37], and brain decoding [38] since DNNs can infer suit-
able high-level representations without much domain-specific
knowledge and prior feature construction. Also, recent ad-
vances in pre-training and transfer-training procedures have en-
abled DNNss to navigate complex optimization landscapes more
efficiently [39]-[41].

Among several deep learning networks, Convolutional Neural
Networks (CNNs) are the most commonly used in engineer-
ing, medicine, and biology. In conventional DNNSs, efficient
feature representations of the input space are iteratively con-
structed through a set of auto-encoding stages. Their success
in biomedical applications has been limited due to the size of
the available training sets, the size of the considered networks,
and computational challenges. To overcome these difficulties
with CNNs, the UNet, a modified CNN architecture with fully
dense connectivity (FD)-UNet was proposed [42]. The per-
formances of the FD-UNet and CNNs for removing artifacts
from 2D Photoacoustic Tomography images generated from
synthetic phantoms (circles, Shepp-Logan, and vasculature) and
an anatomically realistic mouse brain vasculature dataset were
compared [43]. The results showed that the FD-UNet proved to
be superior and more compact than CNNSs for removing artifacts
and improving image quality.

In this paper, we propose a novel network architecture based
on the UNet, a dense connectivity CNN, with newly added
classifier layers, which works with limited training data to yield
better image segmentation and more accurate classification than

traditional methods. In addition, the computational efficiency
and diagnostic accuracy of the network were improved by train-
ing the network with the MicroNetV2 model [44], to assess and
classify SSc.

Il. MATERIALS AND METHODS
A. Deep Neural Networks

An artificial neural network (ANN) is a computational plat-
form composed of inter-connected nodes (‘artificial neurons’)
that resemble and mimic the brain’s neuronal functions. The
connections between the nodes, or edges, strengthen or weaken
as the learning process progresses. A traditional ANN contains
an input layer (senses and detects signals within the environ-
ment), a hidden layer (processes the signals sent by the input
layer), and an output layer (the response to a signal or stimulus).

To improve the performance of the ANNs, two learning algo-
rithms have been developed using statistics and analytics. The
process involves inputting data into the ANN without being
given specific instructions. Supervised learning feeds cate-
gorized data into the input layer, and the output layer returns
the category with the highest score. Unsupervised learning is
like supervised learning but feeds uncategorized data into the
input layer. These conventional algorithms for machine learning
require human expertise to identify the appropriate features for
the ANN to perform certain tasks.

A DNN uses the same architecture of layered, interconnected
nodes as an ANN but consists of more hidden layers between
the input and output layers. Within the hidden layers, each
input vector is comprised of the previous layer’s output vector to
produce a weighted sum, which results in sequentially computed
output values. This process can represent more abstract data
effectively by ignoring irrelevant information and attending to
small details. In CNN, the most common DNN, auto-encoding
stages iteratively construct feature representations of the input
domain. Due to the limited size of available training sets, the
large size of the required layers, and time consuming computa-
tional graphical processing units (GPU), success of using Com-
putational DNNs in biomedical applications has been limited.

B. Proposed Neural Network Architecture

To overcome these challenges with CNNss, in this study we
propose a more elegant deep learning architecture designed to
work with very few training images and yield more precise
classifications. The main idea is to supplement a usual contract-
ing network by successive layers, where pooling operators are
replaced by up sampling operators. Hence, these layers increase
the resolution of the output [42], [43].

In order to localize, high resolution features from the contract-
ing path are combined with the up sampled output. A successive
convolution layer can then learn to assemble a more precise
output based on this information. One important modification in
our architecture is that we also have a large number of feature
channels in the up-sampling section, which allow the network to
propagate context information to higher resolution layers. The
input images and their corresponding segmentation maps are
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Fig. 1. The proposed MobileNetV2 network architecture.

used to train the network with the stochastic gradient descent
implementation of Caffe [42].

C. MobileNetV2 Stage

The proposed network architecture, shown in Fig. 1 for multi-
classification, consists of a contracting path (left side) and a clas-
sifier head (right side). The contracting path follows the typical
architecture of a convolutional network by using the repeated
application of two 3 x 3 convolutions (unpadded convolutions),
each followed by a rectified linear unit (ReLU) and a 2 x 2
max pooling operation with stride 2 for down sampling. These
three processing stages, called a “block,” are repeated multiple
times (making the network deep), resulting in a set of fully
connected layers (classifier stage). The convolution layers obtain
local weighted sums (named ‘feature maps’) at every layer by
computing filters that are repeatedly applied across the entire
data set to improve training efficiency. The non-linear layers
then increase the feature maps’ non-linear properties. Finally,
the pooling layer performs sub-sampling of non-overlapping
regions in feature maps to enable the network to aggregate local
features to identify complex features. At each down sampling
step, we double the number of feature channels. Max pooling
takes the largest element from the rectified feature map. Taking
the largest element could also take the average pooling.

D. Classifier (Fully Connected Layers) Stage

At the end of the last block of the MobileNetV2 stage,
the feature map matrix is flattened into vector form and fed
into a fully connected layer, like a neural network, called the
classifier stage. With the fully connected layers, we combined
these features together to create a model.

Finally, we have an activation function, Softmax, to classify
the outputs as a SSc or a normal skin sample. Then, in an
additional study, we classified the skin sample images as normal,
early (mild/moderate) SSc, or late stage SSc.

E. Preprocessing Skin Images

Skin images were collected from 20 normal subjects and 20
subjects with early (mild/moderate) and late (severe) stage SSc
from the University of Texas Health Science Center, Houston,
TX (UTHSC). The study was approved by the Institutional
Review Board of UTHSC (HSC-MS-06-0063). The raw skin
images were 512 x 512 pixels in svs format. The image size

was reduced to 128 x 128 pixels in jpg format using Image J
software. Then, these images were further preprocessed using
image augmentation (flipping, cropping, enlarging) and standard
scaling to make all the pixel values to lie between [—1, 1].

F. Training with a Pre-Trained Model

In deep networks with many convolutional layers and different
paths through the network, a good initialization of the weights
is extremely important. Otherwise, parts of the network might
give excessive activation, while other parts may never contribute.
Ideally, the initial weights should be adapted such that each
feature map in the network has approximate unit variance.

Since we work with a small dataset in biomedical applications,
it is a common practice to take advantage of features learned
by a model trained on a larger dataset in the same domain.
This is done by instantiating the pre-trained model and adding a
fully connected classifier on top. A pre-trained model is a saved
network that was previously trained on a large dataset, typically
on a large-scale image-classification task. The pre-trained model
is "frozen," and only the weights of the classifier are updated
during training. In this case, the convolutional base extracted
all the features associated with each image, and a classifier was
trained to determine the image class given that set of extracted
features.

In this study, we used all the model features extracted from
the MobileNetV2 model pretrained on the ImageNet dataset with
1.4M images and 1000 classes for all the training parameters in
the MobileNetV2 stage of our network architecture [44—46].

G. Fine-Tuning a Pre-Trained Model

One way to increase performance even further is to train
(or "fine-tune") the weights of a few selected layers of the
pre-trained model alongside the training of the added classifier.
The training process will force the weights to be tuned from
generic feature maps to features associated specifically with the
dataset.

In most convolutional networks, the higher up a layer is, the
more specialized it is. The first few layers learn very simple and
generic features that generalize to almost all types of images.
As you go higher up, the features are increasingly more specific
to the dataset on which the model was trained. The goal of fine-
tuning is to adapt these specialized features to work with the
new dataset rather than overwrite the generic learning.

lll. RESULTS
A. Study 1: Classification of SSc

In this study, a total of 1888 (1042 normal and 846 SSc)
post-augmentation images were used for training, validation,
and testing studies. Please note that the SSc group included both
early and late stage SSc and the network classifier was modified
to classify normal or SSc skin images as shown in Fig. 2(a).
80% of the total images (834 normal and 678 SSc) images were
used in the training phase. Then, ~10% of them (104 normal
and 84 SSc images) were used in the validation study. Finally,
the remaining ~10% (104 normal and 84 SSc) were used in the
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Fig. 2. The proposed 2-class and 3-class classifiers for the Mo-
bileNetV2 architecture.

Fig. 3.

Representative normal skin image (a) and SSc (b).

testing study. Fig. 3 shows representative normal and SSc 128
x 128 pixel skin images used in this study.

Transfer learning from the pre-trained network model was
performed [44]-[46]. Initially, for the first 100 epochs, the
pre-trained weights from the MobileNetV2 were used as the
fixed weights of the MobileNetV2 stage of our network ar-
chitecture, consisting of 53 layers in 17 blocks with 2259265
parameters. However, the weights of the fully connected layers
in the classifier head, consisting of 4 layers and 1280 parame-
ters, were trained for a dense SoftMax layer. The network was
implemented in a laptop (2.5 GHz Intel Core i7).

After 100 epochs, we maintained the weights (34112 param-
eters) of the first 10 layers. However, we fine-tuned the weights
(2225153 parameters) of the remaining layers (from 11" to 537
layers) with the weights (1280 parameters) of the fully connected
layers in the classifier stage. The training time was less than 5
hours over 150 epochs.

Fig. 4 shows the learning curves of the training accuracy/loss
after fine-tuning. We estimated the training loss, the sum of
errors made for each epoch in the training set, to determine how
well our model is performing during training after each iteration
of optimization. We also estimated the training accuracy, esti-
mated after the calculation of model parameters in percentage,
to determine the accuracy of our model compared to the true
data.

For the training phase, our networks correctly diagnosed 1512
of 1512 SSc image sets and none was misdiagnosed, yielding
a sensitivity of 100%. The overall accuracy of the model was
100%.

For the validation phase, our networks correctly diagnosed
81 of 84 SSc image sets and misdiagnosed 3 of them, yield-
ing a sensitivity of 96.4%. However, 101 out of 104 normal
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Fig. 4. Learning curves of the MobileNetV2 training accuracy
(acc)/loss for the 2-class classifier. Note the network was finetuned after
the 100" epoch.
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Fig. 5. The convolutional neural network (CNN) architecture.
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Fig. 6. The CNN 2-class and 3-class classifier architectures.

image sets were correctly classified and 3 of them were misclas-
sified, yielding a specificity of 97.1% and an overall accuracy of
96.8%.

For the testing phase, our networks correctly diagnosed 80 of
84 SSc image sets and misdiagnosed 4 of them, yielding a sensi-
tivity of 95.2%. However, 99 out of 104 normal image sets were
correctly classified and 5 of them were misclassified, yielding a
specificity of 95.1% and an overall accuracy of 95.2%.

We also analyzed the same normal vs SSc skin image sets
using the CNN as shown in Fig. 5 and the same laptop. Although
this method reached 100% accuracy on the training image set,
it took more than 14 hours to train it over 120 epochs. The
network classifier was modified to classify normal or SSc skin
images as shown in Fig. 6(a). Fig. 7 shows the learning curves
of the training accuracy/loss for the CNN architecture.



108 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 2, 2021

-
o

=)
@

e

- acc
loss

loss, acc
o
o

o
-

=)
~N

0.0

0 20 ) &0 80 100
epochs
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Fig. 8. Representative normal skin image (a), early (mild/moderate)
stage SSc (b) and late (severe) stage SSc (c).

For the validation phase, the CNN correctly diagnosed 65 of
84 SScimage sets and misdiagnosed 19 of them, yielding a sensi-
tivity of 77.3%. However, 100 out of 104 normal image sets were
correctly classified and 4 of them were misclassified, yielding a
specificity of 96.1% and an overall accuracy of 87.7%.

For the testing phase, the CNN correctly diagnosed 60 of 84
SSc image sets and misdiagnosed 24 of them, yielding a sensi-
tivity of 71.4%. However, 96 out of 104 normal image sets were
correctly classified and 8 of them were misclassified, yielding a
specificity of 92.3% and an overall accuracy of 82.9%.

These results indicated that the MobileNetV2 architecture is
more accurate and efficient compared to the CNN to classify
normal and SSc skin images.

B. Study 2: Classification of Early (Mild and
Moderate) and Late (Severe) Stage SSc

In this study, an additional 1887 (1041 normal, 423 early and
423 late stage SSc) post-augmentation images were used for
training, validation, and testing studies to classify both early and
late stage SSc using the MobileNetV2 architecture as shown in
Fig. 1. The network classifier was modified to classify normal
or early or late stage SSc as shown in Fig. 2(b). 80% of the
total images (834 normal. 334 early and 344 late stage SSc)
images were used in the training phase. Then, ~10% of them
(103 normal, 40 early and 40 late stage SSc images) were used in
the validation study. Finally, the remaining ~10% (104 normal,
49 early and 39 late stage SSc) images were used in the testing
study. Fig. 8 shows representative normal, early stage and late
stage SSc 128 x 128 pixel skin images in this study.

Transfer learning from the pre-trained network model was
performed. Initially, for the first 200 epochs, the pre-trained

weights from the MobileNetV2 were used as the fixed weights of
the MobileNetV2 stage of our network architecture, consisting
of 53 layers in 17 blocks with 2263108 parameters. However,
the weights of the fully connected layers in the classifier head,
consisting of 4 layers and 1280 parameters, were trained for a
dense Softmax layer. The network was implemented in a laptop
(2.5 GHz Intel Core i7).

After 200 epochs, we maintained the weights (37664 param-
eters) of the first 10 layers. However, we fine-tuned the weights
(2225444 parameters) of the remaining layers (from 11" to 53™
layers) with the weights (1280 parameters) of the fully connected
layers in the classifier stage.

For the training phase, our networks correctly diagnosed 1512
of 1512 SSc image sets and none was misdiagnosed, yielding
an overall accuracy of the model at 100%.

For the validation phase, our networks correctly diagnosed
178 of 183 normal, early and late stage SSc image sets. 1 out
of 103 normal image sets was misclassified as early stage SSc,
2 out of 40 early stage were misclassified as normal and 2 out
of 40 early stage were misclassified as late stage. Finally, all
40 late stage SSc were correctly diagnosed, yielding an overall
accuracy of 97.2%.

For the testing phase, our networks correctly diagnosed 182
of 192 normal, early and late stage SSc image sets. 1 out of 104
normal image sets was misclassified as early stage SSc, 2 out
of 49 early stage were misclassified as normal and 6 out of 49
early stage were misclassified as late stage, 1 out of 39 late stage
was misclassified as early stage, yielding an overall accuracy of
94.8%.

We also analyzed the same normal, the early and late SSc
skin image sets using the CNN as shown in Fig. 5 and the
same laptop. Although this method reached 100% accuracy
on the training image set, it took more than 14 hours to train
it over 120 epochs. The network classifier was modified to
classify normal, the early and late SSc skin images as shown
in Fig. 6(b).

For the validation phase, our networks correctly diagnosed
160 of 183 normal, early and late stage SSc image sets. 9 out
of 103 normal image sets were misclassified as early stage SSc,
7 out of 40 early stage SSc were misclassified as normal and 2
out of 40 early stage SSc were misclassified as late stage, 3 out
of 40 late stage SSc were misclassified as normal and 2 out of
40 late stage SSc were misclassified as early stage, yielding an
overall accuracy of 87.4%.

For the testing phase, our networks correctly diagnosed 168
of 192 normal, early and late stage SSc image sets. 4 out
of 104 normal image sets were misclassified as early stage
SSc and 1 out of 104 normal was misclassified as late stage
SSc, 10 out of 49 early stage SSc were misclassified as nor-
mal and 4 out of 49 early stage SSc were misclassified as
late stage SSc, 1 out of 39 late stage SSc was misclassi-
fied as normal and 4 out of 39 late stage SSc were mis-
classified as early stage SSc, yielding an overall accuracy
of 87.5%.

These results indicated that the MobileNetV2 architecture is
more accurate and efficient compared to the CNN to classify
normal, the early and late SSc skin images.



AKAY et al.: DEEP LEARNING CLASSIFICATION OF SYSTEMIC SCLEROSIS SKIN USING THE MobileNetV2 MODEL

109

IV. DiscussiON AND CONCLUSION

The successful applications of DNN in image classifica-
tion and segmentation, speech recognition, and biomedical and
healthcare research [29]-[41] encouraged us to use deep learning
in the classification of SSc. However, several medical appli-
cations have been hampered due to the limited medical data
size for the training and the requirement of the use of a GPU
supercomputer, which is a network group of computers with
multiple GPUs working in tandem on a single task that enables
faster processing.

To overcome these two challenges, we proposed a novel
deep learning network architecture, consisting of MobileNetV?2
and the fully connected layers (classifier), and implemented it
in a Laptop (2.5 GHz Intel Core i7). We used the pretrained
MobilNetV2 base model to train the parameters of the network
for the first 100 epochs. Then, to further improve the accuracy
and minimize the loss, we unfroze several selected top layers of
a frozen model base and jointly trained both the newly added
classifier layers and these selected layers of the base model
after the first 100 epochs. This allowed us to "fine-tune" the
higher-order feature representations in the base model in order
to make them more relevant for the classification of SSc images.
The overall process took less than 5 hours to train the network
and the fine-tuning it. Our preliminary study suggests that the
network architecture was capable of discriminating normal skin
images from SSc skin images using a laptop with a central
processing unit (CPU).

We further investigated the efficacy of the MobileNetV2
architecture to assess the severity of SSc skin into early/mid
or late stages of SSc. Our preliminary study suggests that the
network architecture was capable of discriminating both early
and late SSc images. Our proposed network architecture per-
formed better than the CNN on the same image sets using the
same laptop.

Our ultimate goal is to use this approach as a rapid and
reliable method to assess the severity of SSc using images to
help dermatopathologists. Once SSc is considered as a possible
diagnosis by the attending physician, this would be followed
by a punch biopsy of the affected skin. Once this biopsy is
processed and imaged, the proposed network architecture could
assign a high-accuracy diagnosis within minutes. This saves
substantial time and money, compared to how diagnoses are
currently made. We plan to increase our database with more
SSc images during the early, mid, and later stages of SSc. Once
the performance of the network has been optimized, the system
could easily be implemented in a clinical setting, providing a
simple, inexpensive, and accurate diagnostic tool for SSc in the
future.
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