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Abstract

Several cognitive tasks related to learning and memory exhibit synchronization of macro-
scopic cortical areas together with synaptic plasticity at neuronal level. Therefore, there is a
growing effort among computational neuroscientists to understand the underlying mecha-
nisms relating synchrony and plasticity in the brain. Here we numerically study the interplay
between spike-timing dependent plasticity (STDP) and anticipated synchronization (AS).
AS emerges when a dominant flux of information from one area to another is accompanied
by a negative time lag (or phase). This means that the receiver region pulses before the
sender does. In this paper we study the interplay between different synchronization regimes
and STDP at the level of three-neuron microcircuits as well as cortical populations. We
show that STDP can promote auto-organized zero-lag synchronization in unidirectionally
coupled neuronal populations. We also find synchronization regimes with negative phase
difference (AS) that are stable against plasticity. Finally, we show that the interplay between
negative phase difference and STDP provides limited synaptic weight distribution without
the need of imposing artificial boundaries.

Introduction

Synchronization by neuronal oscillation is a ubiquitous phenomenon in the brain [1]. It has
been reported in many species and in a variety of sensory and motor tasks [2, 3]. In particular,
coherent oscillations in the cortex have been related to associative learning as well as working
and long-term memory [4-6]. In these synchronized regimes, it is possible to determine the
relative phase difference in the activation of the involved areas. In unidirectionally coupled
motifs, for example, the relative phase difference is usually positive, which means that the
sender population transfers information and activates the receiver population. However, it has
been shown that, in the presence of dynamical inhibitory loops in the receiver population, uni-
directionally coupled neuronal models may exhibit either positive or negative phase differences

PLOS ONE | DOI:10.1371/journal.pone.0140504 October 16,2015

1/18


http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0140504&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@’PLOS ‘ ONE

Self-Organized Near-Zero-Lag Synchronization Induced by STDP

(PRONEM) and FAPESP Center for
Neuromathematics (grant # 2013/07699-0, S. Paulo
Research Foundation FAPESP). The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

[7, 8]. This sender-receiver model [8] has been proposed as a mechanism to explain the
reported mismatch between directional influence and negative time delay among regions of the
monkey cortex [6, 8, 9].

The counterintuitive situation in which the receiver leads the sender, characterized by a neg-
ative phase difference, is called anticipated synchronization (AS) [10-12]. AS can be a stable
solution of a sender-receiver (or, equivalently, a master-slave) system, if the receiver is also sub-
ject to a negative delayed self-feedback [13-21]. AS has been theoretically and experimentally
studied in a number of physical systems [22-29]. Nonetheless, there are few investigation of
AS in biological systems [30] as well as in the relation between anticipatory behavior and AS
dynamics [31, 32]. In fact, the first observation of AS in a neuronal model was done by Ciszak
et al [30]. It was shown that two unidirectionally coupled FitzHugh-Nagumo neuron models
driven by white noise can exhibit AS in the presence of a negative delayed self-feedback in the
receiver neuron. AS was also verified in other master-slave neuron models due to synaptic
delays [33] and depolarization parameters [34]. A biologically plausible model for AS in neuro-
nal systems was studied in [7], using three Hodgkin-Huxley neuron models coupled in a
sender-receiver configuration, with the delayed self-feedback replaced by a synaptic loop medi-
ated by an inhibitory neuron [7].

More recently, AS was numerically found between unidirectionally coupled neuronal popu-
lations in the presence of dynamical inhibitory loops [8]. It was argued that the reported posi-
tive Granger causality and negative phase difference among cortical areas [6, 9] could be the
first experimental evidence of AS in the brain [8]. In a nutshell, it was experimentally observed
that a brain region A could Granger-cause synchronized activity in a region B, yet the phase
difference between the two could be negative [9]. This paradox was only apparent because, as
the AS phenomenon clearly shows, temporal differences are not a good proxy for causality.
Even a simple neuronal population model could reproduce time differences, coherence and GC
spectra of the experimental data [8]. Additionally, it was shown that the time delay (or phase
difference) between the master and the slave in the model is a smooth function of the excitatory
and inhibitory weights. This means that the synaptic weights mediate transitions from positive
time delay, called delayed synchronization (DS) regime, to negative time delay (AS regime).

These results, together with the experimental evidence that the synaptic weights can undergo
spike-timing dependent plasticity (STDP) [35-37], open new perspectives in the study of neuro-
nal network dynamics. In fact, the mechanisms relating synchronization and plasticity are still
under investigation [38-43]. Based on STDP rules, the time difference between the spikes of
pre- and post-synaptic neurons engenders modifications in the synaptic weights. On the one
hand, synaptic changes induced by STDP rules can promote a transition between synchronized
regimes. On the other hand, a given synchronization regime can strongly influence the relative
spike times, and hence the STDP dynamics. Here, we investigate the interplay between STDP
and the AS-DS transition. In other words, we study how STDP rules and the synchronization
regimes work synergistically to determine the network dynamics.

Initially we study a simple 3-neuron motif which exhibits AS and DS regimes [7]. In the DS
regime the master (pre-synaptic) neuron fires a spike before the slave (post-synaptic) neuron,
which under STDP rules facilitates long term potentiation (LTP) [36, 44, 45]. In the AS regime
the slave neuron fires a spike before the master neuron, contributing to long term depression
(LTD). In turn, the increase (or decrease) of the excitatory synaptic weights via LTP (or LTD)
generates modifications in the time delay. These successive interactions regulate the functional
organization of a simple 3-neuron motif.

Next, we study the effect of STDP in the excitatory synapses between two unidirectionally
coupled cortical-like populations which exhibits AS or DS. We investigate how the STDP rules
applied at the neuronal level can influence synchronization at the populational level. We show
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that the interplay between these two different scales gives rise to emergent properties when
compared with the 3-neuron motif. First, STDP and the inhibitory loop provide a new mecha-
nism for near-zero-lag synchronization between distant cortical areas. Second, the AS regime is
robust against STDP. Third, the transition from AS to DS can be controlled by the local
amount of inhibition in the receiver population. We also show that, together with AS, STDP
rules provide synaptic weight distributions that are stable, diverse and limited [46]. Further-
more, in the AS regime, such distributions are comparable to those observed experimentally in
the cortex [47-49].

Results
Three-neuron motif

The simplest biophysical neuronal model which exhibits AS is the 3-neuron motif shown in
Fig 1(a) [7]. It consists of three identical Hodgkin-Huxley neurons spiking periodically: the
master (M), the slave (S), and the interneuron (I), coupled by chemical synapses. They are con-
nected via two excitatory synapses, from M to S (gass) and from S to I (gs;), as well as an inhibi-
tory synapse from I to S (g;s, see Methods for more details). The time delay 7 = £° — t" is
defined as the spike timing difference between the S and M neurons. It was shown that without
plasticity, this motif may present two phase-locking regimes: DS (7 > 0) and AS (7 < 0), as well
as a phase-drift (PD) regime [7]. The membrane potentials of M and S shown in Fig 1(b)-1(d))
illustrate each regime.

In what follows, we apply STDP rules in the excitatory synapse from M (pre-synaptic neu-
ron) to S (post-synaptic neuron). Thus, the excitatory synaptic conductance g5 changes
according to the spike timing difference between M and S following Eq 10. Typically, for unidi-
rectionally coupled neurons, the post-synaptic neuron fires after the pre-synaptic neuron
(characterizing a DS regime) promoting LTP. However, due to the existence of the AS regime
in the 3-neuron motif, the presence of STDP can also cause a decrease of the synaptic weight
(LTD).

The effect of STDP in the DS regime causes the synaptic weight g5 to increase via LTP
until the imposed upper boundary is reached (see right panel of Fig 1(b)). Although one could
expect that larger values of the excitatory synaptic weight would facilitate near-zero-lag syn-
chronization, in our model 7 is a monotonically increasing function of gys (see Fig 1(e)).
Therefore, STDP leads to an increase in 7 (compare S and Sgrpp in Fig 1(b)).

In the AS regime the post-pre order of spikes facilitates LTD. When we turn on STDP, the
synaptic weight decreases. The final regime depends on the lower boundary g of the algo-
rithm. If " < 6 nS, the system reaches a PD regime (compare S and Sspp in Fig 1(c)). In the
AS regime, both M and S oscillate with a period Ty, = 14.7 ms, whereas in the PD regime the
new period of the slave is 14.1 ms (i.e. it is faster than the master). After a transient time, the
synaptic weight gy oscillates between 0 and 4 nS (see right panel of Fig 1(c)). On the contrary,
if we choose 6 < " < 32 nS, g decreases until it reaches the boundary and the system
remains in the AS regime. This means that AS is only stable for appropriated boundaries.

Finally, we applied STDP in a PD regime (see Fig 1(d)). Without STDP, the period of the
slave is 14.5 ms. After the plasticity is switched on, the system reaches a different PD regime.
The slave period is 14.1 ms and the synaptic weight gys oscillates between 0 and 4 nS. The
oscillation period of gyss is T ~ 294 ms which is almost 20 times the neuron period and it is
related to the STDP time scales.

In the absence of STDP, the time delay 7 between M and S is a smooth function of g5 [7],
which is shown in Fig 1(e). Note that, as mentioned, larger values of gjss provide larger 7. The
three different situations reported above were obtained by selecting different initial values of
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Fig 1. STDP in a microcircuit of three neurons. (a) Three neurons coupled by chemical synapses in the master-slave-interneuron (MSI) configuration. The
excitatory synaptic weight gy,s may change through STDP rules. (b)-(d) Left: membrane potential of the master (M, black), the slave with no plasticity (S,
grey) and the slave with STDP (Sstpp, red). Right: The synaptic weight gys as a function of time. The vertical arrow indicates the moment at which plasticity
rules were switched on. The system can exhibit synchronized regimes with positive time delay (delayed synchronization, DS) or negative time delay
(anticipated synchronization, AS) and a phase-drift (PD) regime. (b) The system initiates in the DS regime and remains in it. The synaptic weight increases
from the initial value to the upper boundary. (c) The system initiates in the AS regime, then gys decreases to values smaller than 6 nS and the phase-drift
(PD) regime is reached. (d) The system initiates in the PD regime and ends in a different PD regime. (e) Without STDP, the time delay 7 between Mand Sis a
smooth function of the weight gys. If we turn on STDP, the DS region (gus > 32 nS) leads to LTP whereas the AS region (6 < gyss < 32 nS) leads to LTD. For
9ums < 6 nS the system exhibits a PD regime.

doi:10.1371/journal.pone.0140504.g001
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the synaptic weight: gass = 40 nS (DS), gars = 20 nS (AS) and gys = 2 nS (PD). As expected,
when we apply STDP rules in the AS regime the synaptic weight gyss decreases by LTD, while
in a DS regime, gy increases by LTP (see arrows in Fig 1(e)). If the system remains in a phase-
locking regime (due to the boundaries), the final time-delay 7 is determined by the final weight.
In a nutshell, the presence of STDP in the 3-neuron motif takes the system close to the imposed
boundaries of the STDP and far from the zero-lag synchronization solution.

Neuronal populations

Synchronization is robust against STPD. In order to extend our results to a cortical-like
region, we investigate the effects of STDP in a population model which can exhibit AS [8]. We
numerically studied the synchronization properties of two populations composed of hundred
of neurons, described by the Izhikevich model, unidirectionally coupled in a master-slave con-
figuration (see Fig 2(a) and Methods for more details). Neurons from the Master (M) popula-
tion project excitatory synapses (each one with synaptic weight gys) to excitatory neurons
from Slave-Interneuron (SI) population. The inhibitory loop that is mediated by the interneu-
ron in the 3-neuron motif, is mediated by the inhibitory neurons inside the SI population.
Thus, we assume that the slave population is composed by two subgroups: the excitatory neu-
rons, called the Slave (S) sub-population, and the inhibitory neurons, called the Interneuron (I)
sub-population. Each inhibitory synapse from I to S has synaptic weight g;5. Without plasticity
rules, the populations can oscillate with a well defined mean period [8]. Moreover, their activity
can synchronize and the mean time delay 7 between the M and S populations can be positive
(DS) or negative (AS, see Methods). Similarly to the 3-neuron motif, 7 is a continuous and
smooth function of the synaptic weights g5 and gs.

Here we investigate the effects of STDP only in the synapses from M to S allowing each syn-
aptic weight gyss to change according to the plasticity rules (see Eq 11 in the Methods section).
After a transient time, the system reaches a synchronized regime. The mean membrane poten-
tial of the M and S populations are illustrated in Fig 2(b) and 2(c) for the AS and DS regimes
respectively. In the AS regime the Slave precedes the Master, whereas in DS the Slave lags behind
the Master. Due to the external noise and neuronal variability, the time delay in each period
fluctuates around its mean value 7 (see Fig 2(d) and 2(e) and Methods for more details).

Although synchronized oscillations are collective phenomena, the DS and AS regimes can
also be represented at the neuronal level. The raster plots in Fig 3(a)-3(d) illustrate the oscil-
latory behavior of the coupled populations. Black (red) dashed lines indicate the time of peak
average activity of the Master (Slave-Interneuron) population (see Methods for more details).
In the DS regime the darker regions in the Slave-Interneuron population occur shortly after
the ones in the Master population (see Fig 3(a) and 3(b)). On the contrary, in the AS regime,
the darker regions in the Slave-Interneuron population occur before the ones in the Master
population (see Fig 3(c) and 3(d)). However, there is a fraction of the neurons in the Master
population which spikes before the peak of the Slave-Interneuron activity. The histograms in
Fig 3(e) show the probability density of spike-timing intervals between each spike from neu-
rons in the S population and the nearest spike from their respective pre-synaptic neurons in
the M population. Although there are positive and negative values for the spike-timing inter-
vals in both regimes, the peak and the mean of the distribution have positive values in the DS
regime (blue, g;s = 16 nS) and negative values in the AS regime (red, g;s = 4 nS).

STDP promotes near-zero-lag synchronization. The presence of plasticity and the inhibi-
tory dynamical loop can lead unidirectionally coupled neuronal populations to self-organize
into near-zero-lag oscillations. The continuous transition from DS to AS, mediated by the excit-
atory synaptic weights gyss in the absence of STDP, collapses into a flat line in the presence of
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Fig 2. The interplay between phase difference and STDP in neuronal populations. (a) Master and Slave-Interneuron cortical-like populations. Each
synaptic weight gys (from Master to the Slave) is subject to STDP rules. (b)-(c) Membrane potentials of M (black) and S (red) populations in the AS regime (b)
and in the DS regime (c) in the presence of plasticity. (d)-(e) The time delay in each cycle 7;. The mean time delay  (flat line) is negative in the AS regime (d)
and positive in the DS regime (e). The AS and DS regimes are obtained modifying only one parameter in the model. The inhibitory conductances in the Slave-
Interneuron population is set to g;s = 4 nS in the AS regime (b) and (d), whereas g;s = 16 nS in the DS regime (c) and (e).

doi:10.1371/journal.pone.0140504.9002
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Fig 3. Neuronal firing patterns in the DS and AS regimes due to STDP. (a)-(d) Raster plots of each population in the DS and AS regimes. Black dots are
neurons from the Master population. Red dots are neurons from the Slave-Interneuron population. Neurons 0 to 399 are excitatory, whereas neurons 400 to
499 are inhibitory. (e) Histogram of the time delay between the closest spikes in each cycle of all coupled pairs whose pre-synaptic neuron is in the M
population and the post-synaptic neuron is in the S population. The blue distribution represents a DS regime and the red distribution represents an AS
regime. The inhibitory conductances in the S population is set to g;s = 16 nS in the DS regime, and g;s = 4 nS in the AS regime.

doi:10.1371/journal.pone.0140504.9003

STDP (see Fig 4(a)-4(c)). For 7 nS < g5 < 12 nS the system exhibits time delay 7~ 0 (see Fig 4
(h)). This means that independently of the initial values of the excitatory weights, the inhibitory
loop together with STDP rules are sufficient to provide a T ~ 0 synchronized solution.

Despite the time decay of the chemical synapses, the neuronal variability and the external
noise, the network exhibits 7 ~ 0 synchronized solution for a large set of parameters. For large
enough Poisson rate (R > 3500 Hz in our simulations, see Methods) the STDP rule brings the
system closer to zero-lag synchronization (see Fig 5(a)). Although the conductance value of
each individual synapse g5 can change in time, the near-zero-lag regime is stable. In fact, in
the near-zero-lag regime, the standard deviation of 7 (=~ 1.5 ms, see Fig 4(a)-(c)) is much
smaller than the mean period of each population (= 130 ms, see Fig 2(b) and 2(c)). Altogether,
these results reveal a new mechanism which may contribute to the large-scale synchronization
phenomena in the brain.

Interestingly, the result of the interplay between STDP and the collective oscillations cannot,
in general, be predicted by analyzing the phase diagram without plasticity (Fig 4(g)). Assuming
that all the synapses could be roughly described by a mean value, one could consider, for
instance, the region 7 nS< gIS < 16 nS (white arrows in Fig 4(g)). For low initial values of gy/s,
below the zero-lag transition region, the system is in the DS regime, in principle leading STDP
to increase the excitatory synaptic conductances. For larger, intermediate initial values of gs,
the system is in the AS regime, which would lead STDP to reduce excitatory synaptic weights.
Both conditions would push the system toward the zero-lag region, as is indeed observed in Fig
4(h) (although for a narrower interval of g;s values). However, for even larger values of gy the
system is again in the DS regime (Fig 4, orange arrow). Applying the same logic, one would
expect STDP to increase gys even further, pushing the system away from the zero-lag regime.
This is not verified in the simulations, suggesting that the actual STDP rule, which acts sepa-
rately in each synapse, promotes a more robust synchronized regime than the one that would
be reached if all synapses were identical.
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Fig 4. STDP changes the relation between the time delay r and the synaptic weights. STDP promotes zero-lag synchronization (r ~ 0): (a)-(c) ras a
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amount of inhibition g;s.

doi:10.1371/journal.pone.0140504.9004

Anticipated synchronization as an emergent property. In Fig4(d)-4(f) we show the rela-
tionship between 7 and the inhibitory weights g;s with and without plasticity in the excitatory
conductance gys. In the presence of STDP, the time delay resists to change for inhibitory
weights g;s < 4 nS. However, when increasing g;s beyond 4 nS, 7 rapidly increases to near-zero
values. Unlike the 3-neuron situation, in the cortical-like networks it is possible to start in a DS
regime (without plasticity) and reach an AS regime via STDP or vice versa. The model also pre-
dicts that it is possible to start in an AS regime (or in a DS regime) and remains in AS (or DS)
when STDP is turned on. In Fig 4(g) and 4(h) we compare the values of 7 along the parameter
space (grs, ghys) With and without plasticity. Without STDP, the combination of gyss and g;s that
provides positive or negative 7 is non trivial as shown in Fig 4(g). This means that STDP acts as
an organizing mechanism for the network. For fixed STDP parameters there is a well-defined
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doi:10.1371/journal.pone.0140504.g005

and continuous region of negative, positive and near-zero time delay synchronized solutions
(see Fig 4(h)). Furthermore, with and without STDP, the time delay can be modulated by the
amount of external noise, which could switch on or off the anticipation (see Fig 5(a)) Interest-
ingly, the presence of plasticity allows the AS regime to persist for larger noise values and be
robust to the parameters tat govern the STDP.

The transition from AS to DS is continuous and smooth when changing the parameters A,
and A_in Eq 11. Fig 5(b) shows the relationship between 7 and A, for fixed A_ = 1.0. In fact,
our model not only illustrates an example of AS in the presence of STDP but also shows that
STDP enlarges the parameter region in which the time delay is negative.

STDP and negative phase difference stabilize synaptic weight distribution. A remark-
able outcome of our model is related to the synaptic weight distribution when the system
reaches an AS regime via STDP. As a result of the dynamical interaction between AS and
STDP, the weight distribution obeys the three key properties required for biophysical reliability
[46] as shown in Fig 6(a). First, the shape of the distribution is stable. Although each synapse
can individually change in time, the distribution of all synaptic weights maintains a similar pat-
tern along time. Second, it is diverse; it does not concentrate all the values at the boundaries.
Third, it is limited i.e. there are no infinitely large synapses. More interestingly, synaptic
weights do not explode even without an arbitrarily chosen boundary.

On the contrary, for a DS regime, the third property is not completely satisfied. Eventually it
is necessary to choose an upper boundary for the weights, otherwise some of them grow
beyond biophysical limits. In Fig 6(a) we see that there is a probability of finding arbitrarily
large values of gy in the DS regime in the absence of a boundary, which does not happen for
AS regime. However, the stability of the weights’ distribution and diversity of weights still
occur. In Fig 6(b) we see the evolution of four randomly chosen synaptic weights starting from
different initial conditions in the AS and DS regimes. In the DS regime there is a probability of
extremely fast growing of the synaptic weights. On the contrary, in the AS regime all weights
converge to small values. It is worth mentioning that these results do not depend on the initial
values of gys.
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without an upper boundary. However, in the DS regime some synapses can grow unlimited. (b) Time evolution of four randomly chosen synaptic weights
starting from different initial conditions in the AS and DS regimes. Each color represents a different simulation in which all initial synaptic conductances gj,¢
were the same. The inhibitory conductances in the Slave-Interneuron population is g;s = 4 nS in the AS regime, while g;s = 16 nS in the DS regime.

doi:10.1371/journal.pone.0140504.9006

Discussion

It is known that depending on the relative spike timing, synaptic weights can be modified
through STDP mechanisms [37]. Moreover, previous works have shown how synaptic changes
in the coupling of neural systems can impact their synchronization regimes, inverting the time
lag [7, 8]. In the present paper we have investigated how the interplay between STDP and the
synchronization regimes dynamically control the network function and connectivity.

In the population model, STDP acts at the synaptic level between each pair of pre-post syn-
aptic neurons, whereas the synchronization time 7 between the two populations is influenced
by all gys values, reflecting a collective behavior. Therefore, the presence of plasticity could, in
principle, hamper the synchronization. However the synergetic interplay between STDP and
the AS-DS transition provides robust and stable synchronized regimes. We have shown that
the AS regime is stable in a large set of parameter values in the presence of STDP rules. More-
over, due to the STDP the AS-DS transition is independent of the initial values of the excitatory
weights. Consequently, the time delay can be controlled by the local amount of inhibition at
the receiver population. For instance, if the Master population projects unidirectional synapses
to two distinct slave populations, the phase difference between the two uncoupled slave popula-
tion would depend on the strength in the local inhibitory pool.

Master-Slave populations self-organizes into near-zero-lag
synchronization

Zero-lag synchronization has been extensively studied in the brain. It was first reported in cat
visual cortex [50], but has been widely found in neuronal functions, ranging from perceptual
integration to the execution of motor behaviors [3, 51-54]. From the modeling viewpoint, sev-
eral mechanisms have been pointed out as partially responsible for the enhancement of such
synchrony. Among many, we can cite inhibitory synapses and gap junctions [55, 56], a
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canonical circuit of excitatory and inhibitory neurons for the hippocampal neurons [57-59]
and synaptic plasticity mechanisms [60].

More recently, a robust mechanism, named dynamical relaying, has been proposed [61, 62]
and tested in the thalamo-cortical [63] and hippocampal [64] circuits. The model proposes
that two spatially separated areas can synchronize at zero lag if they are mutually coupled
through a third area placed between them. The mechanism was found to be robust for certain
parameters range, in the presence of inhomogeneity [62, 65], for modified motifs [66] and
against STDP rules [39, 59, 67]. Here we show that STDP rules can also promote zero-lag syn-
chronization in unidirectionally coupled motifs. Our results provide a new motif, different
from those proposed in the dynamical relaying scenario, which allows near-zero-lag synchroni-
zation between distant cortical areas. Furthermore, we show that the zero-lag regime is stable,
robust and can be controlled by the inhibitory synapses in the receiver region.

Plasticity yields robust weight distributions and synchronized regimes

There have been several attempts to answer the question of how weight distributions and syn-
aptic plasticity rules are related [45, 47, 48, 68, 69]. Typically, the experimental synaptic weight
distributions reported in the literature have similar shapes: a monotonic decay function with
maximum probability near zero, but different scales [47]. In addition, plenty of studies (in the
cortex, hippocampus, and cerebellum) strongly suggest the existence of a large majority of
undetectable synapses with almost zero weight. In our model, AS can shape the weight distri-
butions between the Master and Slave populations into biophysical plausible patterns [47].
Such distributions present a monotonic decay and obey three key properties [46]: they are sta-
ble, diverse and limited (see Fig 6(a)).

Furthermore, a negative time delay could facilitate the responsiveness of post-synaptic neu-
rons. For example, the olfactory receptor neurons (ORNs) and the projection neurons (PNs) of
male moths are unidirectionally coupled. Interestingly, it has been verified that the response
time of the PNs is smaller than the one of the ORNs [70]. Rospars et al. [70] have suggested
that this shorter latency of PNs could be explained by AS. Since the PNs exhibit a multiphasic
response pattern with an initial excitation followed by an inhibition, they could be subject to a
similar dynamical inhibitory loop as the one required for AS.

Several works support that communication between brain regions is more efficient at near
zero-lag synchronization [53, 54, 71]. However, an explanation for the underlying mechanisms
and the functional significance of the reported phase differences between cortical regions [6, 9,
72-75] is still lacking. Although it is often assumed that the phase difference between distant
areas reflects the transmission time of neural activity [73, 74, 76], it has been shown that, for
the same given directional influence, the phase difference can be positive, negative or near zero
[6, 8, 9]. Here we have shown that STDP does not destroy these synchronization regimes, but
rather makes them more robust, and, in principle, tunable by local inhibition.

Methods
The master-slave-interneuron microcircuit

The typical master-slave configuration consists of two neurons unidirectionally coupled by an
excitatory synapse. Here we have studied the 3-neuron motif illustrated in Fig 1. The circuit is
composed by a master-slave coupling and a dynamical inhibitory loop mediated by an inter-
neuron [7]. Each neuron is described by a Hodgkin-Huxley model [77], which consists of four
coupled ordinary differential equations associated to the membrane potential V and the ionic
currents flowing across the axonal membrane corresponding to the Na*, K* and leakage cur-
rents. The gating variables for sodium are h and m and for the potassium is n. The equations
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are [78]:
dv o _
CME = Gum’h(Ey, — V) + Gyn*(Ex — V) )
+Gm(Vrest - V) + I + ZIsyn
dx
7 = &V =x)=B(V)x, (2)

where x € {h, m, n}, C,,, = 97 uF is the membrane capacitance of a 30x30x7 um” equipotential
patch of membrane [78] and ¥I;,, accounts for the synapses from other neurons. The external
constant current I = 280 pA settles the period of the neuron as T'= 14.7 ms for I, = 0. The
reversal potentials are Ey, = 115 mV, Ex=—12 mV and V., = 10.6 mV, with maximal conduc-
tances Gy, = 10807 mS, G, = 3247 mS and G,,, = 2.7 mS, respectively.

The excitatory and inhibitory synapses are modulated by AMPA (A) and GABA, (G). The

fraction r® (i = A,G) of bound synaptic receptors is modeled by:

dr(i) i .

—— = [T](1 =) = Br?, (3)
dt

The values of the rate constants are s = 1.1 mM 'ms ™, B4 =0.19 ms ™", ot = 5.0 mM 'ms ™",

and B = 0.30 ms™". [T] is the neurotransmitter concentration in the synaptic cleft, given by:

Tmax
[T](Vpre) = 1 + e[f(vprefvp)/Kp] ’ (4)
where T,pc = 1 mM ™", K, =5mV and V, = 62 mV. The synaptic current at a given synapse is
given by

10 = gr(E, - V), (5)

where V is the postsynaptic potential, E4 = 60 mV and Eg = —20 mV are the reversal potentials.
The maximal weight g; in the excitatory synapse from M to S (called gyss) and in the inhibitory
synapse from I to S (called g;s) are the important parameters of our model. Particularly, gass can
be modified by STDP rules, as explained below. The existence of an AS regime specially depends
on grs [7]. Here we use gis = 40 nS. The excitatory synaptic weight from S to I is fixed gg; = 40
nS, but our results are almost independent of its specific value. We use fourth order Runge-Kut-
ta’s method for numerical integrations with a time step of 0.01 ms. Simulations were performed
using a C++ code which is available upon request.

Modeling cortical-like neuronal populations

The two unidirectionally coupled neuronal networks in Fig 2 might represent cortical regions
in the brain [62]. Each population is composed of hundreds of neurons described by the Izhike-
vich model [79] given by:

dv )
= = 004" +5v + 140 —u+ Y 1, (6)
% =a(bv — u). (7)

where v is the membrane potential and u the recovery variable, which account for activation of
K" and inactivation of Na™ ionic currents. The currents in YI, represent the synaptic currents.
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If v > 30mV, then v is reset to ¢ and u to u + d. For each excitatory neuron: (g, b) = (0.02, 0.2)
and (¢, d) = (—65, 8) + (15, —=6)0”, whereas for each inhibitory neuron: (g, b) = (0.02, 0.25) +
(0.08, -0.05)0 and (c, d) = (=65, 2). 0 is a random variable uniformly distributed on the interval
[0, 1] which determines the proportion of different neurons (regular spiking, intrinsically
bursting, chattering—including type I and II excitability).

The excitatory (AMPA) and inhibitory (GABA,) synaptic current are mediated by:

[ =gr(E —v), (8)

where x = A,G, E, =0 mV and Eg = —-65 mV. Unless otherwise stated all excitatory (inhibitory)
weights are set to g4 = 0.5 ms (g = 4 nS). The dynamics of the fraction of bound synaptic
receptors 7, is given by:

dr,
g = 20—, (9)

The summation over k stands for pre-synaptic neurons. The time decays are 74 = 5.26 ms
and 7 = 5.6 ms. Each neuron receives an independent Poisson input, representing # pre-syn-
aptic neurons spiking with rate R/n. The noise mimics excitatory chemical synapses from other
brain regions. The rate R strongly influences the main oscillation frequency of each population.
We use Euler’s method with a time step of 0.05 ms to integrate the differential equations.

The Master (M) population is composed of 500 neurons (80% excitatory, 20% inhibitory),
each one receiving 50 synapses (sparse connectivity ~ 10%) from randomly selected neighbors
(excitatory or inhibitory) in the same population. For an external rate R = 2400 Hz, the mean
membrane potential V of this population oscillates with a mean period Ty ~ 130 ms, corre-
sponding to a frequency f~ 7.7 Hz, which is related to theta oscillations reported in several
experiments [53, 74, 75].

The Slave-Interneuron population is also composed of 500 neurons. In order to maintain
the analogy with the 3-neuron motif we called Slave (S) population the sub-group of 400 excit-
atory neurons and Interneuron (I) population the sub-group of 100 inhibitory neurons belong-
ing to the cortical-like Slave-Interneuron network. Each excitatory neuron from the S
population receives 40 excitatory synapses from neighbor neurons belonging to S, 20 synapses
from excitatory neurons from the M population (g, which characterizes the master-slave
coupling) and 10 synapses from the interneurons in the I population (with conductances gjs,
which play the role of the delayed self-feedback responsible for AS). Only the excitatory synap-
tic weights gass evolve under STDP rules.

Each neuron from the I population receives 10 inhibitory synapses from randomly selected
neighbors neurons belonging to the same I population and 40 excitatory synapses from ran-
domly selected neurons belonging to the S population. Results are quantitatively similar if we
measure the mean membrane potential of just the S population or the S and I populations
together. In fact, for all set of parameters employed here, S and I are synchronized. Then, the S
and I populations can be considered as sub-populations of the same cortical region or well sep-
arated regions in the brain oscillating with the same frequency.

We use a sliding window (from 5 to 8 ms) to decrease the noise effect and to determine the
time of the membrane peak in each period ¢/ (x = M,S,I index the population and i the period).
In all calculations we discount a transient time of 10 s and run the simulation until £ =50 s.
The period of each population in each cycle is given by T} = ¢, — ¢ and we calculate the
mean period T, and its variance. Similarly, the time delay in each cycle is defined as
7, = £ — M. Then we obtain the mean time delay 7 and its standard deviation, which is plotted
as the error bars in Figs 4 and 5.
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STDP between unidirected coupled networks

In the 3-neuron motif the g5 synaptic weight evolves under the additive rule:
{A+exp(—t/‘5+)7 ift >0
g =

—A_exp(t/t_), ift <0,

(10)

with A, =A_=1nS, 7, = 7_ = 10 ms and artificial boundaries 0 < gjs5 < 300 nS.
For the populations, each excitatory synaptic weight gyss from the Master to the Slave is sub-
ject to the following hybrid rule [80]:

A exp(—t/t.), if t>0 (additive LTP)
Ag = (1)

—A_gexp(t/t_), if t<0 (multiplicative LTD)

where t = t° — t™, It is worth mentioning that if we use an additive rule to LTD, it is necessary
to choose a lower boundary for gy in order to avoid negative weights. Unless otherwise stated
7, =7_=5ms, A, =0.5nS, A_ = 1.0 and there are no arbitrarily chosen boundaries.
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