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Abstract

Developments in high-throughput microscopy have made it possible to collect huge

amounts of cell image data that are difficult to analyse manually. Machine learning (e.g.,

deep learning) is often employed to automate the extraction of information from these data,

such as cell counting, cell type classification and image segmentation. However, the effects

of different imaging methods on the accuracy of image processing have not been examined

systematically. We studied the effects of different imaging methods on the performance of

machine learning-based cell type classifiers. We observed lymphoid-primed multipotential

progenitor (LMPP) and pro-B cells using three imaging methods: differential interference

contrast (DIC), phase contrast (Ph) and bright-field (BF). We examined the classification

performance of convolutional neural networks (CNNs) with each of them and their combina-

tions. CNNs achieved an area under the receiver operating characteristic (ROC) curve

(AUC) of ~0.9, which was significantly better than when the classifier used only cell size or

cell contour shape as input. However, no significant differences were found between imag-

ing methods and focal positions.

Introduction

Recent advances in automated microscopy have made it possible to collect large numbers of

cell images [1]. However, it is becoming increasingly difficult to analyse these large amounts of

data manually. Therefore, the automation of judgements by machine learning is expected to

improve the speed and processing of large amounts of data and ensure consistency in the

results of judgements [2, 3]. The application of machine learning to biological image process-

ing is expanding with the development of deep learning [4–6]. An interesting use of deep

learning in cell biological research is to infer the differentiation of living cells. For example,
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Buggenthin et al. predicted lineage choice in differentiating primary hematopoietic progeni-

tors from image patches of brightfield microscopy and cellular movement [7]. However, the

impact of cell observation methods on cell type identification on machine learning-based cell

information extraction has not been systematically investigated.

In this study, we examined the classification performance of convolutional neural networks

(CNNs), a representative network architecture, in cell image classification of the lymphoid-

primed multipotential progenitor (LMPP) and pro-B cells. LMPP cells differentiate into pro-B

cells in the process of differentiation of hematopoietic cells to B cells. We obtained cell images

using three different types of imaging methods and their combinations: differential interfer-

ence contrast (DIC), phase contrast (Ph), and bright-field (BF). We then evaluated the depen-

dence of classification performance on the imaging methods using the area under the curve

(AUC) of the receiver operating characteristic (ROC) as a performance measure. AUCs were

examined for different focal positions and different numbers of cell images given to the CNN

for training. Our results indicated that the effects of the imaging methods on the AUC were

not significant, and the AUC was ~0.9, for most cases.

This paper is organised as follows. First, we explain how cell images are acquired, processed,

learned and evaluated. Next, we discuss how the method of photography and the number of

samples affect the classification performance.

Materials and methods

The workflow of the experiment consisted of six steps, as shown in Fig 1.

Sample preparation

Induced leukocyte stem cells (iLS cells) were used to prepare two different immune states of

CD19− LMPP and CD19+ pro-B cells [8]. The LMPP state of the iLS cells was maintained on

Tst-4 stromal cells in the presence of 10 ng/mL IL-7 (R&D Systems, USA), stem cell factor

(R&D), Flt-3L (R&D) and 40 nM 4-OHT (Sigma-Aldrich, USA). The pro-B state was induced

by culturing the cells on Tst-4 cells with 5 ng/mL IL-7 in the absence of 4-OHT for 7 days.

Observation dishes

Both LMPP and pro-B cells were stained with 5 μg/mL Alexa Fluor 594 (Alx594)-conjugated

anti-CD19 antibody fluorescence (115552; BioLegend) and sorted using a fluorescence-acti-

vated cell sorter (FACS Aria III; BD) using CD19− and CD19+ gates. After sorting, the same

numbers of LMPP and pro-B cells were mixed, diluted with Iscove’s Modified Dulbecco’s

Medium (IMDM) (Thermo Fisher Scientific, USA) at a cell density of 4.7 × 105 cells/mL and

seeded on three glass-bottom dishes (Eppendorf, Germany) for Experiment 1 and 2, respec-

tively. We note that both LMPP and pro-B cells sorted here contained multiple phases of the

cell cycle.

Microscopy

All cell images were acquired using a Nikon Eclipse Ti2 inverted microscope with a 40 × water

immersion objective lens (CFI Apo Lambda S 40XC WI; Nikon, Japane) and captured with a

scientific CMOS camera (Zyla 5.5; Andor, UK). BF and DIC images were observed with

Nikon’s standard units, and Ph images were observed with an external phase contrast unit

(Ti2-T-BP-E; Nikon). Alx594-conjugated anti-CD19 antibody fluorescence images were

observed with standard epifluorescence optics consisting of an LED (pE-300 white; CoolLED,
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Fig 1. Workflow of the experiment. The experiment consisted of six processes: sample preparation, microscopy,

segmentation, cell cropping, labelling and training/testing. To standardise imaging conditions, we mixed LMPP and

pro-B at sample preparation. On microscopy, images were obtained in four channels: DIC, BF, Ph and Alexa Fluor 594

(Alx594)-conjugated anti-CD19 antibody fluorescence. We cut out individual cells based on Ph images. Next, cells

were labelled based on the intensity of the Alx594-conjugated anti-CD19 antibody fluorescence. Finally, training and

testing were applied to cell images to evaluate classification performance.

https://doi.org/10.1371/journal.pone.0262397.g001
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UK) and a mirror unit (mCherry HQ; Nikon). Exposure times were 10 ms for BF, DIC and

Ph, and 100 ms for Alx594.

All image acquisition procedures were controlled by Nikon software (NIS-element). To

examine which is the best focal position for the performance of the CNN, Z-stacks (from

-3.6 μm to +2.7 μm, 0.3-μm interval) of Alx594, BF, DIC and Ph were sequentially recorded

and repeated for 144 fields of view (410 μm × 346 μm/field) (Experiment 1). The home focal

position (0 μm in Z-stacks) was determined by observation of 56 cells in the first field of view

of the first dish; a focal position where the area of most cells in Alx594-conjugated anti-CD19

antibody fluorescence images were apparently (by eyes) the largest was defined as the home

focal position. This home focal position was recorded using Nikon Perfect Focus System (PFS)

(TI2-N-ND-P), and used for all three dishes in Experiment 1. Focal position was initially

moved to the home focal position before taking Z-stacks of each channel using PFS, and subse-

quently moved from—3.6 μm to + 2.7 μm with 0.3 μm interval by the motorized focusing unit

of Ti2-E microscope. Furthermore, to investigate whether continuous shots of the same image

channel and focal position improved the performance, one shot of Alx594 and thirty continu-

ous shots (3 s) of BF, DIC and Ph were recorded sequentially and repeated for 204 fields of

view (Experiment 2). The focal position was determined and recorded as Experiment 1. The

focal position was moved to the home focal position before taking each shot of each channel

using PFS. Induction of pro-B state and preparation of the observation dishes were performed

differently in experiments 1 and 2.

Segmentation

Cell regions were extracted from Ph images. Details regarding the extraction procedures

are presented in Fig 2. First, the Otsu method [9] of automatic threshold determination

was applied to an original phase-contrast microscopy image (Fig 2A) to determine the

intensity threshold. Next, the image was binarised using the threshold and morphological

closing was applied to the binarised image [10, 11]. The results are shown in Fig 2B. The

regions touching the border were then removed [12] (Fig 2C) and holes were filled [13]

(Fig 2D).

As shown in Fig 2D, regions contained multiple cells when cells were touching. To separate

the cells, the watershed method was applied [14]. The watershed marker was determined by

the following procedure. First, Euclidean distance transform [15] and Gaussian filter [16] were

applied, as shown in Fig 2E. Next, the pixels of local peaks were used as markers [17].

The boundaries of regions after applying watershed are shown in Fig 2F. This result still

included large regions containing multiple cells or small regions containing no cells. These

regions were removed from the train/test data by removing regions � 2000 pixels and � 8000

pixels. For all microscopic images in this study, pixel resolution was 162.5 nm/pixel was used,

so 2000 pixels and 8000 pixels correspond to 52.81 μm2 and 211.2 μm2, respectively.

Cropping

Images of 150 × 150 pixels were cropped from BF, DIC, Ph and Alx594-conjugated anti-CD19

antibody fluorescence images for each cell in the image. We also cropped cell regions them-

selves as binarised images. In addition, we calculated cell sizes as the total number of pixels in

the cell region. To reduce the effects of background intensity, the Alx594-conjugated anti-

CD19 antibody fluorescence images were divided by the intensity of the blurred Alx594-conju-

gated anti-CD19 antibody fluorescence images before cropping. The blurred image was gener-

ated by applying a gaussian filter with sigma = 200[pixel].
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Labelling

To identify cell types, the Gaussian mixture method was applied to the intensity histograms of

Alx594-conjugated anti-CD19 antibody fluorescence. The intensity of the ith cell image in an

experiment was calculated by:

Fi ¼ loge
li

maxðlÞ

� �

ð1Þ

where li is an element of l and represents the total intensity of pixels in the region < 30 pixels

from the centre of the cell image.

Cells were labelled as LMPP, pro-B or unused by applying a two-component Gaussian

mixture model to the histogram. Cells with a probability < 80% in both categories were

labelled as unused and were not used for CNN training and testing (Fig 3A). The range of

unused was (−2.652 < Fi < −2.376) in Experiment 1. In the rest of the cells, the high- and

low-intensity groups were labelled as pro-B and LMPP, respectively.

Training/testing

In the last step, training and testing were conducted and the AUC was calculated. Training

and testing were performed in a cross-validation manner. Cross-validation is a method to eval-

uate a model, which separates data into training data and test data. A model is fitted to the

training data and evaluated by using the test data. These training and evaluation procedures

Fig 2. Workflow of cell segmentation. (A) Original phase-contrast microscopy image. (B) Binary image. (C) Binary image after removing the regions

touching the border. (D) Hole filling result. (E) Euclidean distance transform result. (F) Boundaries of cell regions superimposed on the original image.

https://doi.org/10.1371/journal.pone.0262397.g002
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were repeated while changing the test data. Cell images from dishes 1, 2 and 3 were used as test

data in validations 1, 2 and 3, respectively. Fig 3B shows the cross-validation matrix of dish col-

umns and validation rows.

The training/testing processes consisted of three steps: pre-processing, training of the

deep neural network and evaluation. These steps are described in detail in the following

subsections.

Pre-processing. Three image processing methods were applied to cell images before

feeding them to the deep neural network. 1) Cell images were masked with a circle of radius

50 pixels from the centre and the pixels outside the mask were set to 0. The reason why we

did not use the mask created from the phase contrast is to avoid the influence of the phase

contrast information on other channels through the mask shape. 2) For normalisation, the

average intensity of pixels inside the mask was adjusted to 1. 3) In addition, the cell number

for labels in each dish was trimmed by a random choice to Eq (2) where n is dish number, t
is cell type (LMPP or pro-B) and Cn,t is the number of cells of type t in dish n. The numbers

of cells in Experiment 1 are shown in Table 1. The numbers of cells were reduced twice, i.e.,

in labelling and pre-processing procedures. The numbers of cells in Experiment 2 are

Table 1. Number of cells in Experiment 1.

Experiment 1

Number of cells cropped 62,891

Number of cells labelled 57,589

Number of cells used for training 57,252

The number of cells in each image processing step in Experiment 1; the table in Experiment 2 is shown in supporting

information.

https://doi.org/10.1371/journal.pone.0262397.t001

Fig 3. Image data preparation and cross-validation scheme. (A) Labelling: natural logarithm of intensity histogram. The intensity was calculated by Eq

(1). LMPP, pro-B and unused are colour-coded as brown, green and grey, respectively. (B) Training/testing: cross-validation with the dish as the unit.

Images from the nth dish were used for testing in the nth validation. (C) Schematic of the test process in training and testing. Cell images were input into

the CNN to obtain the label probability. The AUC was calculated from these label probabilities and corresponding marker labels.

https://doi.org/10.1371/journal.pone.0262397.g003
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shown in S1 Table in S1 File.

min
n;t
ðCn;tÞ ð2Þ

Training and testing of CNN and SVM. A CNN or support vector machine (SVM) was

used to identify cell types, i.e., LMPP and pro-B. The CNN had four convolution layers (16

channel kernel size 5, 16 channel kernel size 5, 32 channel kernel size 5, 32 channel kernel size

5, but when using images with � 2 channels, the numbers of channels were all doubled) and

two fully connected layers (2,000 nodes, 2 nodes). ReLU (see Eq (3)) was used as the non-linear

activation function in all hidden layers. The CNN architecture is identical to Xu’s study [6],

except that we changed parameters regarding the resolution and number of channels of the

images to fit the dataset we used. In Eq (3), x is the output of the prior layer. The softmax func-

tion (see Eq (4)) was applied at the output of the neural network, and here xi is the ith node of

output layer x. A max-pooling layer with kernel size 3 and slide 2 was placed behind each con-

volution layer. A drop rate of 0.1 dropout layer was added in all gaps in the layers.

ReLUðxÞ ¼ maxðx; 0Þ ð3Þ

softmaxðxÞ ¼
exi

XN

j¼1
exj

ð4Þ

The following training methods were applied to this CNN. To prevent over-fitting, an early

stopping method was used during training. In this study, 10% of training data was used for val-

idation. The CNN was fitted to the remaining 90% of the data, and the loss for validation data

was calculated at the end of each epoch. If the loss of the validation data did not decrease for

five consecutive epochs, the learning was stopped and the model with the smallest loss for vali-

dation was used for evaluation.

Binary cross-entropy was used for the loss function, as defined by Eq (5), where y is the

label and ŷ is the categorical probability CNN output. It becomes minimum when y = ŷ.

Adam, a method for learning rate optimisation [18], was used for learning with parameters α
= 0.0001, β1 = 0.9, β2 = 0.999, ε = 10−8 and η = 1.0. The batch size was 32. Learning was

stopped if the epoch achieved 30 regardless of loss change.

Hðy; ŷÞ ¼ � ylogðŷÞ � ð1 � yÞlogð1 � ŷÞ ð5Þ

Fig 3C shows the workflow of the classification performance test. When using SVM, cell size

was used as the input and the value of the decision function was used to calculate the AUC.

Kernel of SVM is radial basis function and kernel coefficient parameter is 1.

Results

This section examines cell identification classification performances with different imaging

and classification methods.

We compared classification by cell contour using CNN and classification by cell size using

SVM. The AUC was higher for classification by cell contour than by cell size. Classification

performance of the CNN with single-channel images (DIC, BF or Ph) was evaluated. All of BF,

Ph and DIC showed better performances than both SVM with cell size and CNN with only cell

image contours (Fig 4A).

We then used stacked multiple images (DIC + BF, DIC + Ph, BF + Ph, DIC + BF + Ph) as

input for the CNN. In all combinations tested, we found no significant differences in AUC
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from DIC single-channel results (Fig 4B). We also tested z-stacking and time stacking, and nei-

ther yielded obvious improvement of performance. This trend was maintained in Experiment

2 (S1 Fig in S1 File). Cross-validation while shifting the focus on DIC images resulted in no sig-

nificant degradation of the AUC in the range examined (from—3.6 μm to + 2.7 μm) (Fig 4C).

The same results were found for BF and Ph (S2 Fig in S1 File).

To examine how the classification performance changes with the size of training data, we

created data sets with different numbers of cell images (214; 708; 2,144; 7,077 and 21,444 cells)

by random sampling. The AUC increased with increasing number of cells contained in the

training data, but the performance gain by adding more samples tended to diminish as the

data size became larger (Fig 4D).

Sometimes, CNN performance can be affected by the initial values of the parameters. To

confirm that our results were unaffected by this effect, we trained the network with different

initial random numbers. Variations originating from different initial values were smaller than

variations in classification performance between dishes (Fig 4E) in DIC images.

Discussion

In this study, we checked the classification performance of CNN by the following five investi-

gations: 1) comparison of the AUC between the cases using only cell size or cell shape and

where cell images were given as input; 2) the AUC when multi-channel inputs with imaging

methods were given; 3) variation of the AUC when shifting the focus; 4) variation of the AUC

when changing the amount of training data; and 5) variation of the AUC depending on the ini-

tial random number.

The CNN showed better classification performance when BF, Ph or DIC images were given

than when using only cell size or image contours. This result suggests that CNN uses informa-

tion derived from the internal structure of the cells reflected in the texture of cell images, and

not only the shapes or sizes of the cells.

No significant degradation in AUC was observed over the focal range examined.

With regard to the dataset size, an AUC of ~0.8 was maintained even at 708 cells. This sug-

gests that CNN can be used even when a relatively small dataset is available depending on the

purpose. However, testing of the network would be a challenge in such cases (in this study, we

used a fixed testing dataset size of 10,722 cells).

When stacked multiple images (DIC + BF, DIC + Ph, BF + Ph, DIC + BF + Ph) were used

as input for the CNN, no significant improvement of performance over single-channel results

was found.

The performance of the CNN seemed to be less affected by the optical microscopy tech-

nique and focus than the variance between dishes. Further investigations regarding the gener-

ality of this observation are necessary. For example, closer analyses on whether this property is

maintained for other cells, whether it is maintained even when the number of classes is

increased to> 2, and whether it is maintained even when other architectures (such as ResNet)

are applied, would convey useful insights. In this study, however, we showed that if a suitable

network architecture is chosen and imaging experiments were properly designed and

Fig 4. Experimental results from cross-validation. In all figures, triangles, circles and squares represent validation 1, 2 and 3, respectively.

In addition, blue and red marks represent data from experiments 1 and 2, respectively. (A) Cross-validation results for SVM input: cell size

and CNN inputs: contour and single-channel (BF, Ph, DIC). (B) Cross-validation results for CNN inputs: combination of multiple

channels, z- and time stacks of DIC. (C) AUCs are shown as a function of focal positions. The shot focus was −3.6, −1.5, 0.0, 1.2 and 2.7 μm.

Zero is the reference position calibrated with the Alx594-conjugated anti-CD19 antibody fluorescence image. (D) The AUCs in DIC images

are shown as a function of the cell sample numbers in CNN training while the size of the test was fixed at 10,722 cell images. (E) Variation

of DIC depending on the initial random number of CNN learning.

https://doi.org/10.1371/journal.pone.0262397.g004
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conducted (e.g the number of cells, image preprocessing etc.), the effects of some important

factors including imaging methods and focal position on classification accuracy can be limited

or negligible, at least in the classification task between LMPP and pro-B cells.

Supporting information

S1 File.

(DOCX)

Acknowledgments

We thank M. Watabe for English correction and K. Nishida and K. Fukuhara for technical

support.

Author Contributions

Conceptualization: Katsuyuki Shiroguchi, Koichi Takahashi.

Data curation: Taisaku Ogawa.

Funding acquisition: Katsuyuki Shiroguchi, Koichi Takahashi.

Investigation: Taisaku Ogawa.

Methodology: Tomoharu Iwata.

Project administration: Katsuyuki Shiroguchi, Koichi Takahashi.

Resources: Tomokatsu Ikawa.

Software: Koji Ochiai, Taku Tsuzuki.

Supervision: Katsuyuki Shiroguchi, Koichi Takahashi.

Validation: Koji Ochiai.

Writing – original draft: Taisaku Ogawa, Koji Ochiai.

Writing – review & editing: Katsuyuki Shiroguchi, Koichi Takahashi.

References
1. Conrad C, Gerlich DW. Automated microscopy for high-content RNAi screening. Journal of Cell Biology.

2010. pp. 453–461. https://doi.org/10.1083/jcb.200910105 PMID: 20176920

2. Danuser G. Computer vision in cell biology. Cell. Cell Press; 2011. pp. 973–978. https://doi.org/10.

1016/j.cell.2011.11.001 PMID: 22118455

3. Sommer C, Gerlich DW. Machine learning in cell biology-teaching computers to recognize phenotypes.

J Cell Sci. 2013; 126: 5529–5539. https://doi.org/10.1242/jcs.123604 PMID: 24259662

4. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. Nature Publishing Group; 2015. pp. 436–444.

https://doi.org/10.1038/nature14539 PMID: 26017442

5. Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D. Deep learning for cellular image analysis.

Nat Methods. 2019. https://doi.org/10.1038/s41592-019-0403-1 PMID: 31133758

6. Xu M, Papageorgiou DP, Abidi SZ, Dao M, Zhao H, Karniadakis GE. A deep convolutional neural net-

work for classification of red blood cells in sickle cell anemia. PLoS Comput Biol. 2017;13. https://doi.

org/10.1371/journal.pcbi.1005746 PMID: 29049291

7. Buggenthin F, Buettner F, Hoppe PS, Endele M, Kroiss M, Strasser M, et al. Prospective identification

of hematopoietic lineage choice by deep learning. Nat Publ Gr. 2017;14. https://doi.org/10.1038/nmeth.

4182 PMID: 28218899

PLOS ONE Impact of imaging methods on cell image classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0262397 January 27, 2022 10 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0262397.s001
https://doi.org/10.1083/jcb.200910105
http://www.ncbi.nlm.nih.gov/pubmed/20176920
https://doi.org/10.1016/j.cell.2011.11.001
https://doi.org/10.1016/j.cell.2011.11.001
http://www.ncbi.nlm.nih.gov/pubmed/22118455
https://doi.org/10.1242/jcs.123604
http://www.ncbi.nlm.nih.gov/pubmed/24259662
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1038/s41592-019-0403-1
http://www.ncbi.nlm.nih.gov/pubmed/31133758
https://doi.org/10.1371/journal.pcbi.1005746
https://doi.org/10.1371/journal.pcbi.1005746
http://www.ncbi.nlm.nih.gov/pubmed/29049291
https://doi.org/10.1038/nmeth.4182
https://doi.org/10.1038/nmeth.4182
http://www.ncbi.nlm.nih.gov/pubmed/28218899
https://doi.org/10.1371/journal.pone.0262397


8. Ikawa T, Masuda K, Huijskens MJAJ, Satoh R, Kakugawa K, Agata Y, et al. Induced developmental

arrest of early hematopoietic progenitors leads to the generation of leukocyte stem cells. Stem Cell

Reports. 2015; 5: 716–727. https://doi.org/10.1016/j.stemcr.2015.09.012 PMID: 26607950

9. Otsu N. Threshold Selection Method From Gray-Level Histograms. IEEE Trans Syst Man Cybern.

1979; SMC-9: 62–66. https://doi.org/10.1109/tsmc.1979.4310076

10. Soille P. Morphological Image Analysis. Morphological Image Analysis. Springer Berlin Heidelberg;

2004. https://doi.org/10.1007/978-3-662-05088-0

11. Module: morphology—skimage v0.18.dev0 docs. [cited 14 May 2020]. Available: https://scikit-image.

org/docs/dev/api/skimage.morphology.html#skimage.morphology.closing

12. Module: segmentation—skimage v0.18.dev0 docs. [cited 14 May 2020]. Available: https://scikit-image.

org/docs/dev/api/skimage.segmentation.html?highlight=segmentation#skimage.segmentation.clear_

border

13. scipy.ndimage.morphology.binary_fill_holes—SciPy v0.16.1 Reference Guide. [cited 14 May 2020].

Available: https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.morphology.

binary_fill_holes.html

14. Watershed segmentation—skimage v0.18.dev0 docs. [cited 14 May 2020]. Available: https://scikit-

image.org/docs/dev/auto_examples/segmentation/plot_watershed.html

15. scipy.ndimage.morphology.distance_transform_edt—SciPy v0.14.0 Reference Guide. [cited 14 May

2020]. Available: https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.

morphology.distance_transform_edt.html

16. Module: filters—skimage v0.18.dev0 docs. [cited 14 May 2020]. Available: https://scikit-image.org/

docs/dev/api/skimage.filters.html#skimage.filters.gaussian

17. Module: feature—skimage v0.18.dev0 docs. [cited 14 May 2020]. Available: https://scikit-image.org/

docs/dev/api/skimage.feature.html#skimage.feature.peak_local_max

18. Kingma DP, Ba JL. Adam: A method for stochastic optimization. 3rd International Conference on Learn-

ing Representations, ICLR 2015—Conference Track Proceedings. International Conference on Learn-

ing Representations, ICLR; 2015.

PLOS ONE Impact of imaging methods on cell image classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0262397 January 27, 2022 11 / 11

https://doi.org/10.1016/j.stemcr.2015.09.012
http://www.ncbi.nlm.nih.gov/pubmed/26607950
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1007/978-3-662-05088-0
https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.closing
https://scikit-image.org/docs/dev/api/skimage.morphology.html#skimage.morphology.closing
https://scikit-image.org/docs/dev/api/skimage.segmentation.html?highlight=segmentation#skimage.segmentation.clear_border
https://scikit-image.org/docs/dev/api/skimage.segmentation.html?highlight=segmentation#skimage.segmentation.clear_border
https://scikit-image.org/docs/dev/api/skimage.segmentation.html?highlight=segmentation#skimage.segmentation.clear_border
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.morphology.binary_fill_holes.html
https://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.ndimage.morphology.binary_fill_holes.html
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_watershed.html
https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_watershed.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_edt.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.distance_transform_edt.html
https://scikit-image.org/docs/dev/api/skimage.filters.html#skimage.filters.gaussian
https://scikit-image.org/docs/dev/api/skimage.filters.html#skimage.filters.gaussian
https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.peak_local_max
https://scikit-image.org/docs/dev/api/skimage.feature.html#skimage.feature.peak_local_max
https://doi.org/10.1371/journal.pone.0262397

