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INTRODUCTION 
 

Breast cancer (BC) is one of the most common cancers 

in women [1]. The receptor tyrosine kinases (RTKs) 

family plays an important role in physiological 

processes and development, but also in cancer 

progression. Receptor tyrosine kinase-like orphan 

receptor (ROR) forms a small subfamily within the 

RTK; it has a conserved domain structure consisting of 

two members, ROR1 and ROR2 [2]. ROR2 is thought 

to be a crucial regulator in human cancers, serving as a 

tumor-inducible protein and an oncogene [3]. ROR2 

expression is often dysregulated  in human cancers,  and  

 

increased ROR2 levels promote tumor growth, 

migration, and invasion in multiple cancers including 

hepatocellular carcinoma [4], non-small cell lung cancer 

[5], cervical cancer [6], pancreatic cancer [7], 

melanoma [8, 9], colon cancer [10], head and neck 

squamous cell carcinoma [11], and breast cancer [12]. A 

previous Kaplan-Meier survival analysis has indicated 

that ROR2 is an independent prognostic factor for 

squamous carcinoma and gallbladder adenocarcinoma, 

and that low ROR2 levels inhibit squamous carcinoma 

and gallbladder adenocarcinoma growth [13]. The 

ROR2 expression is also increased in human non-small 

cell lung cancer (NSCLC) and correlates with an 
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ABSTRACT 
 

The receptor tyrosine kinase like orphan receptor 2 (ROR2) has been implicated in the pathogenesis of a variety 
of human cancers, including breast cancer. Here, we analyzed the clinical significance of ROR2 in breast cancer 
(BC) progression, and its function in the regulation of BC cell proliferation and growth. Analysis of ROR2 mRNA 
levels in 45 BC tissues and adjacent non-tumor tissues revealed that ROR2 expression was significantly 
increased in BC tissues, and that it correlated with tumor diameter. Kaplan-Meier disease-free survival (DFS) 
analysis demonstrated that BC patients with higher ROR2 expression had lower DFS. Knockdown of ROR2 
suppressed in vitro proliferation of BC cells and promoted apoptosis, while ROR2 overexpression induced BC 
cell proliferation and suppressed apoptosis. Importantly, ROR2 suppression also reduced the tumor growth in 
mouse BC xenografts, indicating that ROR2 promotes BC tumorigenesis in vivo. In addition, our data revealed 
that ROR2 promotes proliferation of BC cells by activating the PI3K/AKT signaling pathway. Together, our 
results indicate that ROR2 acts as an oncogenic gene in breast cancer, and suggest that the ROR2/PI3K/AKT 
regulatory network contributes to breast cancer progression. 
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advanced TNM stage, indicating that ROR2 might be an 

independent prognostic factor in NSCLC [5]. In 

multiple myeloma, ROR2 has been shown to exert a 

pivotal role in cancer cell adhesion; genomic studies 

have indicated that the pathways mostly deregulated by 

ROR2 are phosphatidylinositol 3-kinase (PI3K)/AKT 

and mTOR [14]. However, very little is known about 

the expression and function of ROR2 in breast cancer. 

 

In this study, we analyzed the clinical significance of 

ROR2 in BC progression, and its function in regulating 

BC cell proliferation and growth. Our data demonstrate 

that high ROR2 levels correlate with poor clinical 

outcomes in BC patients. In addition, our results show 

that ROR2 induces BC cell proliferation and tumor 

growth in vitro and in vivo, and that the mechanism 

involves activation of the PI3K/ATK signaling 

pathway. Together, our data suggest that ROR2 may 

represent a novel indicator of poor prognosis in BC 

patients, and might serve as a potential diagnostic 

biomarker and therapeutic target in breast cancer. 

 

RESULTS  
 

High ROR2 levels correlate with poor clinical 

outcomes in BC patients 

 

First, we analyzed ROR2 mRNA levels in 45 BC tissues 

and adjacent pericarcinomatous tissues using qRT-PCR. 

As shown in Figure 1A, the ROR2 gene expression was 

significantly increased in BC tissues compared with 

corresponding non-tumor tissues (P<0.01). As shown in 

Supplementary Table 1, the ROR2 mRNA levels were 

not associated with age, differentiation, or TNM stage 

in BC patients. However, the increased ROR2 

expression was positively associated with the tumor 

diameter (P = 0.032). The Kaplan-Meier disease-free 

survival (DFS) curve revealed that BC patients with 

higher ROR2 expression had a reduced DFS (Figure 

2B). Analysis of ROR2 mRNA levels in four different 

BC cell lines revealed that MCF-7 and MDA-MB-231 

cells expressed the highest levels of ROR2 compared to 

normal breast epithelial cell MCF-10A (Supplementary 

Figure 1). Therefore, we selected MDA-MB-231 cell 

line to knockdown ROR2, and MCF-7 cell line to 

overexpress ROR2 in subsequent experiments. 
 

ROR2 promotes BC cell proliferation in vitro 
 

To analyze the ROR2 function in regulating BC cell 

proliferation, we suppressed the ROR2 expression in 

MDA-MB-231 cells using siRNA, and overexpressed 

ROR2 in MCF-7 cells using the ROR2-overexpression 

plasmid pLenti-ROR2. The endogenous ROR2 

expression was effectively suppressed in siROR2 

transfected MDA-MB-231 cells compared with cells 

transfected with control siRNA, while it was increased 

in pLenti-ROR2 transfected MCF-7 cells compared 

with control vector pLenti (Figure 1C, 1D). 

Proliferation of BC cells, analyzed by CCK-8 assay, 

was significantly inhibited in MDA-MB-231 cells 

transfected with siROR2, while it was increased in 

MCF-7 cells transfected with pLenti-ROR2 (Figure 2A, 

2B). Furthermore, the colony formation ability of 

MDA-MB-231 cells was reduced by siROR2, but it was 

increased in MCF-7 cells by pLenti-ROR2 (Figure 2C, 

2D). Flow cytometry analysis showed that ROR2 

suppression increased apoptosis of MDA-MB-231 cells, 

while ROR2 overexpression decreased apoptosis 

ofMCF-7 cells (Figure 2E, 2F). These results suggest 

that ROR2 inhibits apoptosis and promotes proliferation 

of BC cells. 

 

ROR2 regulates expression of apoptosis-related 

genes in BC cells 

 

Our results showed that gene and protein levels of the 

pro-apoptotic markers Bax and Bak were increased in 

MDA-MB-231-siROR2 cells, and decreased in MCF-7-

pLenti-ROR2 cells. In contrast, gene and protein 

expression of the anti-apoptotic markers BCL-2 and 

BCL-xl was decreased in MDA-MB-231-siROR2 cells, 

but increased in MCF-7-pLenti-ROR2 cells (Figure 3A–

3C). Of note, the levels of mTOR and surviving-1 were 

decreased in MDA-MB-231-siROR2 cells and 

increased in MCF-7-pLenti-ROR2 cells (Figure 3A–

3C). Collectively, these results suggest that ROR2 

promotes BC cell proliferation by regulating expression 

of apoptotic genes. 

 

ROR2 induces PI3K/AKT signaling in BC cells 

 

Next, we investigated whether ROR2 regulates the 

PI3K/AKT signaling pathway in BC cells. ROR2 

suppression reduced the protein levels of PI3K and 

phosphorylated AKT (p-AKT), while ROR2 

overexpression increased the protein levels of PI3K and 

p-AKT (Figure 4A–4C). Furthermore, expression of the 

downstream genes of the PI3K/AKT pathway, PDK1 

and cyclin D1 was reduced, while the expression of p21 

was induced in MDA-MB-231 cells after transfection 

with siROR2. In contrast, the protein levels of PDK1 

and cyclin D1 were induced, while p21 was reduced in 

MCF-7 cells transfected with pLenti-ROR2 (Figure 4A–

4C). These results indicate that ROR2 activates the 

PI3K/AKT signaling in BC cells. 

 

ROR2 promotes BC tumorigenesis in vivo 

 

A xenograft model was established in mice implanted 

with MDA-MB-231 and MCF-7 cells to investigate the 

role of ROR2 in BC tumorigenesis in vivo. Four weeks 
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after mice injections, the tumor volumes were 

significantly reduced in the MDA-MB-231-siROR2 

group, compared with control or scrambled siRNA 

groups. In contrast, the tumor volumes were markedly 

increased in the MCF-7-pLenti-ROR2 group compared 

with control or pLenti vector groups (Figure 5A, 5B). 

The ROR2 expression in siROR2-formed tumor tissues 

was significantly lower than in control or siRNA 

groups, while the ROR2 expression in pLenti-ROR2-

formed tumor tissues was higher than in control or 

pLenti vector groups (Figure 5C–5E). Moreover, 

expression of the apoptotic genes Bax, Bak, Bcl-2, Bcl-

xl, mTOR, and surviving-1, and the PI3K/AKT signaling 

genes PI3K, AKT, PDK1, p21, and cyclin D1 followed 

the same pattern as in the in vitro assays (Figure 6A, 

6B). Together, these results indicate that ROR2 

promotes BC tumor growth by regulating the expression 

of apoptotic and PI3K/AKT signaling genes. 

 

DISCUSSION 
 

The receptor tyrosine kinase ROR2 is an important 

regulator in human cancers, serving as a tumor activator 

or an oncogene [3, 11, 15, 16]. The ROR2 expression is 

increased in breast cancer tissues compared to 

corresponding pericarcinomatous tissues [2, 12, 13]. In 

addition, ROR2 promotes the Wnt-mediated signaling 

in several types of cancer, including melanoma and 

colon cancer [10, 17]. 

 

In the present study, we also observed an increased 

expression of ROR2 in breast cancer tissues.  Importantly, 

 

 
 

Figure 1. High ROR2 expression correlates with poor clinical outcome in BC patients. (A) ROR2 mRNA levels in 45 pairs of BC 

tissues compared with corresponding adjacent normal tissues. (B) Kaplan-Meier DFS curves for 45 BC patients classified according to ROR2 
mRNA levels. (C, D) ROR2 expression analyzed by qRT-PCR (C) and Western blotting (D) in MDA-MB-231 and MCF-7 cells transfected with 
siROR2 and pLenti-ROR2 plasmids. Image J software (version 1.48, NIH, USA) was used for the quantitative analysis of ROR2 protein levels 
analyzed by western blotting. Results are shown as means ± SD, n=3; *p<0.05, **p<0.01, ***p<0.001. 
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Figure 2. ROR2 promotes BC cell proliferation in vitro. (A, B) Cell proliferation analyzed by CCK-8 assay in MDA-MB-231 (A) and MCF-7 

(B) cells transfected with ROR2 siRNA and overexpression plasmids. (C, D) Colony formation assay of ROR2 effect on MDA-MB-231 and MCF-7 
cell proliferation. (E, F) Flow cytometry analysis of apoptosis of MDA-MB-231 and MCF-7 cells after siROR2 and pLenti-ROR2 transfection. 
Results are shown as means ± SD; n=3; *p<0.05, **p<0.01. 
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the increased ROR2 expression correlated with a poor 

prognosis in BC patients, suggesting that ROR2 has an 

important role in promoting BC cell proliferation. A 

previous study indicated that ROR2 might serve  

as an independent prognostic factor for squamous/ 

adenosquamous carcinoma and gallbladder adeno-

carcinoma patients, and that ROR2 suppression might 

inhibit squamous carcinoma and gallbladder 

adenocarcinoma growth [13]. The ROR2 expression 

was increased also in human non-small cell lung 

cancer, and positively correlated with advanced TNM 

stage [5, 18]. In addition, ROR2 overexpression 

promoted renal cancer cell proliferation and activated 

the PI3K/AKT signaling pathway [15, 19]. In this 

study, we show that down-regulation of ROR2 

significantly inhibits breast cancer cell proliferation in 

vitro, and BC tumor growth in vivo, and that the 

mechanism involves the phosphatidylinositol 3-kinase 

(PI3K)/AKT signaling pathway.  

 

Targeting deregulated signaling pathways in human 

cancer has been a potentially effective approach in 

cancer therapy [1, 11, 20]. The PI3K/AKT signaling 

pathway, which is frequently deregulated in human 

cancers [21, 22], regulates multiple cellular processes, 

including cell proliferation, apoptosis, and cell 

migration [23–25]. A previous study has shown that 

some compounds exert their inhibitory effect on BC cell 

proliferation and growth through regulating the 

EGFR/PI3K/AKT axis [26]. Down-regulation of ROR2 

 

 
 

Figure 3. ROR2 regulates expression of apoptosis-related genes in BC cells. (A) qRT-PCR of Bax, Bak, Bcl-2, Bcl-xl, mTOR and survivin 

1 in MDA-MB-231 and MCF-7 cells after siROR2 and pLenti-ROR2 transfection. (B, C) Western blotting of Bax, Bak, Bcl-2, Bcl-xl, mTOR and 
survivin 1 in MDA-MB-231 and MCF-7 cells after siROR2 and pLenti-ROR2 transfection. Results are shown as means ± SD; n=3; *p<0.05, 
**p<0.01. 
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decreased thyroid cancer cell proliferation and invasion 

via suppression of the PI3K/AKT signaling activation 

[27]. Our study demonstrates that ROR2 suppression 

reduces BC cell proliferation and tumor growth in vitro 

and in vivo, and induces apoptosis of BC cells by 

regulating the PI3K/AKT pathway. Furthermore, our 

results indicate that ROR2 overexpression activates 

PI3K, leading to AKT phosphorylation and activation, 

followed by up-regulation of PDK1 and cyclin D1, and 

down-regulation of p21, and resulting in the increased 

survival and proliferation of BC cells. 

In conclusion, our results show that the expression of 

ROR2 is increased in human breast cancer tissues, and 

correlates with the DFS rates in BC patients. Knock-

down of ROR2 suppresses BC cell proliferation and 

induces apoptosis in vitro and in vivo, while over-

expression of ROR2 promotes BC cell survival and 

proliferation. In addition, down-regulation of ROR2 

inhibits activation of the PI3K/AKT signaling pathway. 

Together, these data indicate that ROR2 acts as an 

oncogenic gene in BC, and suggest that the 

ROR2/PI3K/AKT regulatory network might contribute 

 

 
 

Figure 4. ROR2 induces PI3K/AKT signaling in BC cells. (A) qRT-PCR of PI3K, AKT, PDK1, p21, and cyclin D1 in MDA-MB-231 and MCF-7 

cells after siROR2 and pLenti-ROR2 transfection. (B, C) Western blotting of PI3K, AKT, pAKT, PDK1, p21, and cyclin D1 in MDA-MB-231 and 
MCF-7 cells after siROR2 and pLenti-ROR2 transfection. Results are shown as means ± SD; n=3; *p<0.05, **p<0.01. 
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Figure 5. ROR2 promotes BC tumorigenesis in vivo. (A, B) Tumor growth in mice implanted with BC xenografts with suppressed (A) and 

overexpressed (B) ROR2. (C) qRT-PCR of ROR2 in ectopic tumors. (D, E) Western blotting of ROR2 protein expression in ectopic tumors. 
*p<0.05, **p<0.01, n=6. 

 

 
 

Figure 6. ROR2 induces PI3K/AKT signaling in vivo. (A) qRT-PCR of Bax, Bak, Bcl-2, Bcl-xl, mTOR, and survivin 1 in MDA-MB-231 

xenografts with ROR2 knockdown, and in ROR2-overexpressing MCF-7 xenografts. (B) qRT-PCR of PI3K, AKT, pAKT, PDK1, p21, and cyclin D1 in 
the above tumors. Results are shown as means ± SD; n=3; *p<0.05, **p<0.01. 
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to breast cancer progression. Thus, ROR2 might serve 

as a novel biomarker for BC diagnosis, and a potential 

therapeutic target for BC therapy. 

 

MATERIALS AND METHODS 
 

Tissue specimens 

 

A total of 45 pairs of BC tissues and paracancerous 

samples were collected from BC patients who had a 

mastectomy. The paracancerous tissues were taken 5 

cm from the cancer tissues; all tissues were 

immediately stored at -80 °C. The paired adjacent non-

tumor tissues were confirmed to have no tumor cells 

through pathological analysis. The patients did not 

receive radiotherapy or chemotherapy before the 

surgery. A written informed consent was obtained from 

all patients before the study. For the disease-free 

survival (DFS) study, each patient saw her doctor for a 

follow up assessment every 3 months in the first year, 

every 6 months in the second year, and annually after 

the second year. Dates of relapse were obtained from 

in-patient or outpatient records or from patients' 

families.  

 

Cell culture 

 

Human breast cancer cell lines were obtained from the 

American Type Culture Collection (ATCC; Manassas, 

VA). Cells were cultured in HyCloneTM High-Glucose 

DMEM medium (Thermo, Cat. SH30243.01B, USA), 

supplemented with 10% fetal bovine serum (FBS; 

Gibco, Cat. 10099-133, USA) and 1% penicillin-

streptomycin solution (Thermo, Cat. 15140122, USA), 

and incubated in a humidified chamber at 37°C 

supplemented with 5% CO2. 

 

Plasmid construction and RNA transfection 

 

The ROR2 interfering plasmid siROR2 (Target sequence 

5’-GGAAUAAGCAGAAGGCAU CTT-3’) and control 

interfering plasmid siRNA (Traget sequence 5’-

UUCUCCGAACGUGUCACGUTT-3’) were obtained 

from General Biosystems (Anhui, China); the ROR2 

overexpression plasmid pLenti-ROR2 and control 

plasmid pLenti were obtained from Applied Biological 

Materials (Jiangsu, China). About 1 × 106 cells were 

seeded in 6-well plates and cultured for 24 h. Cells were 

transfected with 2 μg plasmid using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA, U.S.A.) in a serum-free 

medium in accordance with the manufacturer’s 

instructions. After 4 h, serum-free medium was changed 

to a complete medium containing 10% FBS. The 

transfection efficiency was more than 85%. Transfected 

cells were cultured with medium containing 1 μg/ml 

puromycin for 48 h, and further cultured in a medium 

containing 5 μg/ml puromycin to construct stable 

transfected cell lines for in vivo experiments. 

 

CCK-8 proliferation assay 

 

Transfected cells were cultured in a medium containing 

10% FBS for 24 h. About 2 × 104 transfected cells were 

seeded in 96-well plates. Cell Counting Kit-8 (CCK-8; 

EnoGene, China) was used to evaluate the growth of 

breast cancer cells, according to the kit protocol. After 

incubation with CCK-8 at 37°C for 2-4 h, the 

absorbency was measured at 450 nm using Thermo 

Scientific Microplate Reader (Thermo MK3, U.S.A.). 

 

Colony formation assay 

 

Transfected cells were seeded into 6-well plates at 400 

cells/well and incubated in a humidified chamber at 

37°C with 5% CO2 for 1-2 weeks. To visualize and 

count the colonies, the colonies were fixed with 

methanol and stained with 0.5% crystal violet (Sigma, 

U.S.A.). Colony numbers were quantified by counting 

colonies that contained more than 25 cells observed 

under an inverted microscope. The experiments were 

performed in triplicates.  

 

Flow cytometry  

 

Cell apoptosis was determined using Annexin V-FITC/PI 

(Propidium Iodide) apoptosis detection kit (EnoGene, 

China) in accordance with the manufacturer’s 

instructions. Transfected cells were harvested, washed 

with cold PBS, and re-suspended in binding buffer at a 

concentration of 1 × 106 cells/ml at a final volume of 100 

μL. Cells were then incubated with Annexin V-FITC (5 

μL) and PI (5 μL) on ice. Each sample was re-suspended 

in 500 μL of binding buffer, and analyzed using a 

FACScan (BD, Biosciences, U.K.).  

 

RNA extraction and qRT-PCR  

 

Total RNA was extracted using TRIpure reagent 

(Aidlab, China) and quantified using a NanoDrop2000 

(Thermo Scientific, U.S.A.). 2 μg of RNA were used for 

reverse transcription reaction and cDNA synthesis using 

M-MLV Reverse Transcriptase (TaKaRa, Japan). The 

resulting cDNA products were then used as templates for 

PCR amplification. EvaGreen Express 2× qPCR 

MasterMix-ROX (abm, China) was used for qRT-PCR. 

The conditions of thermal cycling were as follows:  

94 °C for 2 min, followed by 40 cycles at 94 °C for 20 s, 

60 °C for 20 s. Samples were measured in triplicates and 

normalized to GAPDH. All primers were synthesized by 

Generay Biotech (Shanghai, China); the primer 

sequences (5’to 3’) are shown in Supplementary Table 2. 

TianLong medtl™ TL998-IV (TianLong, China) was 
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used for qRT-PCR and data collection. 2−ΔΔCT method 

was used to analyze the relative fold changes. 

 

Western blot analysis 

 

Proteins were extracted using RIPA buffer, and protein 

concentration was measured using BCA Kit (EnoGene, 

Nanjing, China). Proteins were separated by 10% SDS-

polyacrylamide gel and transferred onto a PVDF 

membrane (Bio-Rad, USA). The membranes were 

blocked with 5 % skimmed milk at room temperature 

for 2 h, and washed in TBS-Tween 20. Subsequently, 

the membranes were incubated with anti-ROR2 

(Biovision, Cat. 6702-100), anti-Bax (EnoGene, Cat. 

E11-0132C), anti-Bak (EnoGene, Cat. E11-0131C), 

anti-Bcl-2 (EnoGene, Cat. E10-30077), anti-Bcl-xl 

(EnoGene, Cat. E90209), anti-mTOR (EnoGene, Cat. 

E11-7156B), anti-survivin 1 (Biorbyt, Cat. orb394299), 

anti-PI3K (Biorbyt Cat. orb137259), anti-AKT (bioss, 

Cat. bs-0115R-1), anti-pAKT (bioss, Cat. bs-12458R-

1), anti-PDK1 (EnoGene, Cat. E10-30154), anti-p21 

(Abcam, Cat. ab215971-p21), anti-cyclin D1 (Abcam, 

Cat. ab185241 - Cyclin D1), and control anti-GAPDH 

(EnoGene, Cat. E12-052) antibodies at 4 °C overnight. 

After washing in TBS-Tween 20, the membranes were 

incubated with secondary antibodies conjugated to 

horseradish peroxidase (HRP, EnoGene) at 37 °C for 1 

h. Protein bands were detected using ECL Western 

Blotting System (Millipore, MA, U.S.A.) and visualized 

using image analyzer (DKSH, USA). The immunoblot 

signal was quantitated with ImageJ software and the 

values were normalized to the GAPDH band density. 

 

Xenograft tumor model 

 

Eight-week-old BALB/c nude mice with an average 

weight of 20 g were obtained from Changzhou Cavens 

Experimental Animal Co., Ltd (Jiangsu, China). Tumors 

were established by injection of 5×106 transfected MAD-

MB-231 or MCF-7 cells in 100 μl of PBS into the 

subcutaneous flanks of nude mice. Tumor dimensions 

were measured using electronic calipers. Tumor volumes 

were calculated by the formula: L ×W2 × 0.5, where L is 

the largest diameter and W is the perpendicular diameter. 

28 days after implantation, the mice were euthanized 

using 20% CO2 exposure for 10 min. The tumors were 

resected for further analysis. The animal protocol 

followed the guidelines of the animal care committee of 

the Nanjing First Hospital, and all procedures were 

approved by the ethics committee of Nanjing First 

Hospital. 

 

Statistical analysis 

 

All assays were performed in triplicates and repeated at 

least three times. Results are shown as mean ± SD. The 

statistical analyses for p values were obtained using 

SPSS18.0 software (SPSS, Inc., Chicago, IL, USA). 

The comparison of different groups was analyzed using 

the unpaired, two-tailed Student’s t-test. Values of p < 

0.05 were considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 
 

Supplementary Figure 1. The expression of ROR2 in different BC cell lines.*p<0.05, **p<0.01. 
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Supplementary Tables 
 

Supplementary Table 1. Clinicopathological characteristics in BC patients and expression of ROR mRNA. 

Variables No. of patients High expression of ROR2 Low expression of ROR2 P value 
Age(year)    0.311 

≥ 55 32 23 9  
< 55 13 11 2  

Diameter    0.032 
≥2(cm) 29 25 4  
<2(cm) 16 9  7  

Differentiation    0.533 
High 27 20 7  
Low/Middle 18 14 4  

TNM Stage    0.096 
I-II 23 15 8  
III 22 19 3  

*p<0.05 
 

 

Supplementary Table 2. Primer sequences used for qRT- PCR analysis. 

No. Gene symbol  Forward Primer(5’ to 3’) Reverse Primer(5’ to 3’) 
Length 

(bp) 

1 GAPDH Human 5’-CCTCTGACTTCAACAGCGACAC-3’ 5’-CTGTTGCTGTAGCCAAATTCGT-3’ 121 

2 ROR2 Human 5’-AGTGTCCCGGACTTCAGGT-3’ 5’-CCTTGCAGTGCAGAATTGCC-3’ 173 

3 Bax Human 5’-CCAGAGGCGGGGTTTCAT-3’ 5’-TGAGACACTCGCTCAGCTTC-3’ 116 

4 Bak Human 5’-CCCTCTGCTTCTGAGGAGCA-3’ 5’-GCTAGGTTGCAGAGGTAAGG-3’ 147 

5 Bcl-2 Human 5’-GATGGGATCGTTGCCTTATGC-3’ 5’-GTCTACTTCCTCTGTGATGTTGT-3’ 103 

6 Bcl-xl Human 5’-GGGGTCGCATTGTGGCCTTT-3’ 5’-GCTCTAGGTGGTCATTCAGG-3’ 129 

7 mTOR Human 5’-CCGCTCTCTGAAGAACCTCC-3’ 5’-AGGTTCTCGGGTCAGATCCA-3’ 82 

8 survivin 1 Human 5’-CTTTCTCAAGGACCACCGCATC-3’ 5’-CTTCCAGCTCCTTGAAGCAGAA-3’ 161 

9 PI3K Human 5’-TCCCTGGCCTTCACTGTCTA-3’ 5’-GGGGCTGCACATGTCCTT-3’ 117 

10 AKT Human 5’- ACTGTCATCGAACGCACCTT -3’ 5’-CTCCTCCTCCTCCTGCTTCT-3’ 108 

11 PDK1 Human 5’-GTGGTTTATGTACCATCCCATC-3’ 5’-GGTAAACACCTCTGTTGGCATG-3’ 100 

12 p21  Human 5’-GACTGTGATGCGCTAATGGC-3’ 5’-GTCACCCTCCAGTGGTGTCT-3’ 90 

13 cyclin D1 Human 5’- TGAAGTTCATTTCCAATCCG-3’ 5’- GGGTCACACTTGATCACTCT-3’ 145 

14 GAPDH Mouse 5’- TGTGGAAGGGCTCATGACCACA-3’ 5’-GCAGGGATGATGTTCTGGGCAG-3’ 117 

15 ROR2 Mouse 5’-TTGGGCCTCTTCCGTGAGGTAT-3’ 5’-AGGACCACACCGTAGGACCAGA-3’ 146 

16 Bax Mouse 5’-TTCTTCCGGGTGGCAGCTGACA-3’ 5’-CTTTAGTGCACAGGGCCTTGAG-3’ 112 

17 Bak Mouse 5’-GGAGGTCTTTCGAAGCTACGTT-3’ 5’-GGCAAGTTGTCCATCTCGGGGT-3’ 93 

18 Bcl-2 Mouse 5’-GGCTGGGGATGACTTCTCTCGT-3’ 5’-GTTCCTCCACCACCGTGGCAAA-3’ 113 

19 Bcl-xl Mouse 5’-GGAGAGCGTTCAGTGATCTAAC-3’ 5’-CACGATGCGACCCCAGTTTAC -3’ 119 

20 mTOR Mouse 5’-TCCGCTACTGTGTCTTGGCA-3’ 5’-GCTCGCGGATCTCAAAGACC-3’ 117 

21 survivin 1 Mouse 5’-TAAGGAATTGGAAGGCTGGGAA-3’ 5’-ATCTGCTTCTTGACAGTGAGGA-3’ 96 

22 PI3K Mouse 5’- TGGTTAGACTTGGATCCTTGGG -3’ 5’- TTGGCCCTGGGCTTTTGTAA -3’ 162 

23 AKT Mouse 5’- CCGCCTGCCCTTCTACAACC-3’ 5’- CGAGCCTCTGTGTAGGGTCC-3’ 143 

24 PDK1 Mouse 5’-CCAGCACTCCTTATTGTTCGGT-3’ 5’-TTGTCTGTCCTGGTGATTTCGC-3’ 197 

25 p21  Mouse 5’-CGTCCTCCCAAGATAGCCGA-3’ 5’-CAGGCGCGGTCATACTTGTA-3’ 152 

26 cyclin D1 Mouse 5’-GAGGAGCAGAAGTGCGAAGA-3’ 5’-GGCTCTTCTTCAAGGGCTCC-3’ 88 

 
 

 

 


