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Abstract: The financial market is a complex system, which has become more complicated due to the
sudden impact of the COVID-19 pandemic in 2020. As a result there may be much higher degree of
uncertainty and volatility clustering in stock markets. How does this “black swan” event affect the
fractal behaviors of the stock market? How to improve the forecasting accuracy after that? Here we
study the multifractal behaviors of 5-min time series of CSI300 and S&P500, which represents the two
stock markets of China and United States. Using the Overlapped Sliding Window-based Multifractal
Detrended Fluctuation Analysis (OSW-MF-DFA) method, we found that the two markets always
have multifractal characteristics, and the degree of fractal intensified during the first panic period
of pandemic. Based on the long and short-term memory which are described by fractal test results,
we use the Gated Recurrent Unit (GRU) neural network model to forecast these indices. We found
that during the large volatility clustering period, the prediction accuracy of the time series can be
significantly improved by adding the time-varying Hurst index to the GRU neural network.

Keywords: multifractal; forecasting; OSW-MF-DFA; GRU neural network; stock index time series

1. Introduction

In 1970, the economist Eugene F. Fama put forward the efficient market hypothesis
(EMH), which became the cornerstone of contemporary financial theory. In this hypothesis,
all information on the market will be quickly reflected in the stock price, so the stock prices
are unpredictable [1]. However, later behavioral finance theory studies of market behavior
have shown the limitations of the EMH. The criticisms focus on the irrationality of investors,
market friction and incomplete arbitrage, which are in violation of the effective market
hypothesis [2–4]. In empirical terms, momentum effects, reversal effects, January effects,
and financial anomalies such as peaks and thick tails of time series, volatility clustering, etc.
were also found in financial time series [5–9]. Hence, economists have actively sought new
theories to explain these market anomalies. In 1994, Peters proposed the fractal market
hypothesis (FMH). This hypothesis modifies the strict assumptions of the efficient market,
pointing out that asset prices obey fractional Brownian motion, the return rate sequence
has long memory, and the market may be in a non-equilibrium state [10]. Therefore, a
certain level of predictability of prices has become a general consensus. After the FMH was
proposed, the field mainly focused on two aspects, the study of the fractal characteristics of
the stock market and building various models to try to predict market trends.

For the first aspect, regarding the method of studying fractal properties, the starting
point is the rescaled range method (R/S) proposed by the British hydrologist Hurst [11].
When studying the relationship between the Nile Reservoir discharge and the water level,
he found that a biased random walk (fractional Brownian motion) can well describe the
long-term dependence of the two, so he proposed calculating the Hurst exponent by the
rescaled range method, which was used for characterizing the self-similarity of time series.
Many scholars have continuously optimized and improved the method. Peng et al., pro-
posed the detrending fluctuation analysis method (DFA) when studying the long-range
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power-law correlation characteristics of DNA sequences, which became the mainstream for
measuring the long-range correlation of stationary time series [12]. However, Kantelhardt
et al., pointed out that in most cases, the scaling behavior of time series is very compli-
cated and cannot be explained by a simple scaling index [13]. Therefore, the multifractal
detrending volatility method (MF-DFA) was proposed and the author pointed out that a
multifractal structure may come from the thick-tailed distribution and long-range corre-
lation. Thompson et al., used multi-methods for analyzing the fractal characteristics of
GE stock price series. The results showed that the MF-DFA model is better fitted [14]. A
number of existing studies have shown that multifractals are common in financial markets
in various countries, including stock markets [15–19], bonds [20] and Bitcoin markets [21].
The results above definitely all rejected the efficient market hypothesis. However, some
scholars questioned the MF-DFA method. After comparing DFA, CMA, MF-DFA and
other detrend volatility analysis methods, Bashan pointed out that the MF-DFA may result
in false fluctuations, which may be reflected in the larger calculated generalized Hurst
index [22]. This happens because the intervals divided by the MF-DFA method do not
overlap, so the fitting polynomials of adjacent intervals may be discontinuous. Recogniz-
ing this shortcoming, many scholars use overlapping smoothing windows to optimize
the model respectively, which reduces the spurious fluctuations caused by partially over-
lapping adjacent intervals [23,24]. We adopt this optimization method, which is called
OSW-MF-DFA. Some scholars have studied the multifractal changes of the financial market
under the impact of the pandemic and confirmed the reduction of market efficiency caused
by COVID-19 [25–27]. Okorie studied the contagion effect of the fractal of the stock market,
which proved the existence of multifractals from another aspect [28].

For the second aspect of predicting market trends, although stock markets are affected
by various factors such as macroeconomic development, institutions, supervision, noise
trading etc., researchers still try to construct various prediction models: from parametric
models such as ARMA, ARIMA, and GARCH to machine learning such as BP, recurrent
neural network (RNN), LSTM and GRU with gated structure, the prediction accuracy
of the model has been continuously improved. The short-term memory neural network
(LSTM) was proposed by Hochreiter and Schmidhuber in 1997 [29]. The gated recurrent
networks LSTM and GRU, which have been popular in recent years, have been widely
used to predict the trend of stock prices, and they have actually proved to have achieved
good results by catching the long and short term memory of financial time series [30–32].
Yu et al., used the GARCH model and LSTM neural network to predict the volatility of
China’s three major stock indexes, and the results proved that LSTM with long memory
has better predictive ability [33]. However, with the popularization of LSTM, more and
more studies have found that LSTM models have flaws such as limited explanatory power
and slow convergence speed. Aiming at the shortcomings of LSTM, Cho et al., further
optimized on the basis of LSTM and proposed a GRU neural network [34]. Compared
with LSTM, GRU has only two gate control structures: update gate and reset gate, which
reduces parameters while maintaining predictive performance, and it helps to speed up
convergence [35,36].

In this article we aim to study the fractal properties of the Chinese and American
intraday stock markets under the impact of the COVID-19 pandemic and use them to
forecast by applying to the GRU model. According to the impact of the pandemic on the
financial markets, we divide the time interval into three periods: before, during and after
the first panic period of pandemic. In terms of multifractal research, this article utilizes
the OSW-MF-DFA method optimized by overlapping smoothing windows. We obtain
the generalized Hurst index and multifractal spectrum of the two stock indexes, then
analyze and compare the fractal characteristics of the two markets at different periods.
The time-varying Hurst exponent and its decomposition sequence are calculated by the
DFA method, which are used as the input variables of the subsequent predictions. A
time-varying Hurst sequence is also added to regular input variables such as opening price,
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closing price, highest price, lowest price, and volatility in GRU neural network, to explore
whether it can improve forecasting efficiency.

Through empirical tests, we found that the two markets always have multifractal
characteristics, and the degree of fractal intensifies during the pandemic. Among them,
the US market was more affected by the pandemic. When putting time-varying Hurst
and its decomposition sequence into the prediction model as inputs, we found that they
can significantly improve the prediction performance of the model and outperform the
volatility indicators during the panic period of pandemics (COVID-19) which has high
volatility clustering.

2. Materials and Methods
2.1. Data

This article uses the CSI300 Index and the S&P 500 Index as representatives of the Chi-
nese and US stock markets. The research sample is 5-min intraday data from 1 January 2019
to 9 June 2021. The CSI300 Index is China’s first cross-market index that reflects the overall
Shanghai and Shenzhen markets. It consists of 300 mainstream stocks with the best market
capitalization and liquidity in the Chinese stock market. It is the investment benchmark
most valued by investors. Covering 500 high-quality companies on major exchanges such
as the New York Stock Exchange and the Nasdaq, the S&P500 Index was established by
the world’s authoritative rating agency Standard & Poor’s. It can reflect the entire picture
of the US stock market. The initial indicators are the 5-min opening price, closing price,
lowest price, and highest price. The data comes from the Wind financial terminal.

The COVID-19 pandemic in 2020 is a “black swan” event for the financial market,
which has caused changes in the global financial environment. It is reasonable to speculate
that the fractal situation of the market may change at different stages of the pandemic, and
the features that help improve the prediction efficiency are also different. Considering that
there are great differences between China and the United States in the time of the outbreak,
it cannot be divided by a unified standard.

For the Chinese stock market, we adopt a pandemic development indicator con-
structed by Wang et al., who wrote a paper studying of the impact of the pandemic on the
financial market [37]. They take into account the development of the pandemic and calcu-
lated the indicator to trace and forecast the trend of the pandemic. The study concluded
that the number of new hospitalizations decreased to zero in early April. Therefore, this
article divides the research interval of the CSI300 Index into the following three segments:

• Before the pandemic: 1 January 2019–31 December 2019
• Pandemic: 1 January 2020 (the starting point of the pandemic in China)–8 April 2020

(Wuhan unblocked)
• After the first panic period of pandemic: 9 April 2020–9 June 2021

For the US stock market, on the one hand, the rapidly developing pandemic has
severely suppressed the market; on the other hand, the Federal Reserve and the Treasury
Department have introduced unprecedented unlimited QE policies and large-amount
rescue programs in their efforts to support the market. Cox found that the Fed’s policies
had a significant impact on stock market behavior, and during the first panic period of
pandemic, the market reflected more sentiment than substance [38]. Taking into account
these two factors, this article divides the research interval of the S&P 500 index as follows:

• Before the pandemic: 1 January 2019–14 February 2020 (the starting point of the
market plunge)

• Pandemic: 15 February 2020–16 June 2020 (the Fed shrinks its balance sheet for the
first time, which means that the policy begins to tighten)

• After the first panic period of pandemic: 17 June 2020–9 June 2021
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2.2. Descriptive Statistics

Before the multifractal analysis, perform descriptive statistics of the market’s return
rate in the three stages, which can give us a whole picture of the market. At the same
time, it is also a feasibility analysis for the follow-up empirical study. Considering it is
unjustified to compare the results of two indices with the different levels directly, we make
a mean normalization process for the sequence of returns before the study. The formula is
as follows:

r =
r− r

rmax − rmin
(1)

First, we draw the return sequences of the CSI300 Index and the S&P500 Index as
shown in Figures 1 and 2. It can be roughly seen that the return is not evenly distributed,
but there is a phenomenon of volatility clustering, especially during the first panic period
of the pandemic. Therefore, we assume that the sequence of returns does not obey a
normal distribution.
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Figure 2. Time series of the logarithmic return of the S&P 500 index.

Then, we calculate the statistical indicators of the return series. In addition to common
indicators, such as mean value, extreme value, kurtosis and skewness, we also need to
compare the degree of volatility clustering in each stage. As early as 1963, the French
mathematician Mandelbrot proposed that the variance of financial asset prices has time-
varying characteristics, and the variation range is clustered [39]. Then Engle first proposed
Autoregressive Conditional Heteroskedasticity (ARCH) model to analyze the character-
istics of price fluctuation [40]. Many scholars have confirmed the reliability of the model
through empirical analysis [41–43]. In this paper, GARCH (1,1) model is used to measure
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volatility clustering. The model is as follows, and the sum of variable coefficients (β1 + δ1)
in the variance equation is between 0 and 1. The closer it is to 1, the greater the degree
of clustering:

rt = α + ut (2)

ht = β0 + β1(ut−1)
2 + δ1ht−1 (3)

Table 1 shows the descriptive statistics of the two stock index markets in the three
stages: before, during and after the first panic period of pandemic. The following conclu-
sions are obtained through analysis:

• For the Chinese stock market, represented by the CSI300 Index, at each stage of the
pandemic, the kurtosis of the return distribution is significantly greater than the
standard value of the standard normal, indicating that the phenomenon of spikes
and thick tails in the sequence always exists. Judging from the P-value of the Jarque-
Bera test, the hypothesis of the standard normal distribution is strongly rejected,
so, we concluded that the stock index market does not conform to the assumption
of the traditional financial market, and it is necessary to study market efficiency
from a fractal perspective. In addition, the pandemic has indeed had an impact
on the market: (1) The coefficient of variation increased significantly during the
pandemic, indicating the intensification of dispersion; (2) The skewness becomes
smaller, indicating the degree of leftward deviation of the return distribution has
increased; (3) kurtosis increases sharply, which indicates that the probability of extreme
situations has increased, and the degree of thick tails has deepened; (4) The sum of
GARCH (1,1) coefficients becomes larger, indicating that the volatility clustering effect
becomes stronger. Above all, it is reasonable to assume that some features of the
market have changed.

• For the US stock market, which is represented by the S&P500 Index, the spike and
thick tail phenomenon and the impact of the pandemic are basically the same as the
Chinese stock market, but with different degrees. There are two differences during
the pandemic period: (1) The coefficient of variation of S&P 500 index increased faster
and was much greater than that of CSI300 index; (2) The average return of the S&P500
index was positive, while that of the CSI300 index fell to negative.

Table 1. Specific descriptive statistics of CSI300 and S&P500 in three stages.

Stage Before the Pandemic During the Pandemic After the First Panic Period

market CSI300 S&P500 CSI300 S&P500 CSI300 S&P500

Mean −2.50 × 10−19 −4.11 × 10−19 −4.75 × 10−19 7.22 × 10−19 2.40 × 10−18 4.48 × 10−19

Max 0.43313 0.40504 0.20563 0.41758 0.48440 0.63640
Min −0.56687 −0.59450 −0.794374 −0.58241 −0.51560 −0.36360

C.V. 1 81.00000 84.00000 247.00000 380.00000 84.50000 57.50000
Skewness −0.912033 −0.942465 −11.88979 −3.37300 0.06833 1.38635
Kurtosis 49.79279 70.36161 365.45870 123.23470 16.13560 78.50269
p-value 2 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 *** 0.00000 ***

GARCH (1,1) 3 0.98075 *** 0.91218 *** 1.00000 *** 0.96622 *** 0.97298 *** 0.88691 ***
1 C. V. represents the coefficient of variation, which is the ratio of standard deviation to mean value. It is used to compare the dispersion of
two sets of data with different scales. 2 It is the p-value of Jarque-Bera test, which is used to judge the normal distribution. 3 GARCH (1,1)
represents the sum of coefficients in the GRACH (1,1) model. The value falls between the (0,1), which is used to measure the degree of
fluctuation aggregation. The closer it is to 1, the higher the degree of volatility clustering. *** Significant at the confidence level of 1%.

In summary, descriptive statistics show us the market conditions at each stage of
the pandemic. The most important conclusion is that there are spikes and thick tails and
volatility clustering in the return series of the Chinese and American stock markets, which
lays the foundation for the following fractal analysis.
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2.3. Method of Testing Fractal: OSW-MF-DFA

The classic method of studying multifractal features is the multifractal detrended
fluctuation analysis (MF-DFA) proposed by Kantelhardt in 2002 [13]. This method is
extended by DFA and can be used to analyze the multifractal features of non-stationary
time series. Its principle is to eliminate the local trend by dividing the sub-intervals, then
fit the wave function of the residual series, and finally explore the power-law correlation
of the wave function. We can obtain the generalized Hurst exponent to characterize
the multifractal characteristics. However, the non-overlapping of the divided intervals
may cause false fluctuations. Therefore, this paper adopts the overlapping smoothing
window optimization method which has been verified by many scholars [23,24] and is
called OSW-MF-DFA method. The specific steps are as follows:

(1) Suppose R (i) (i = 1, 2, . . . , N) is a certain time series, and N is the length of the series.
First calculate the mean of the series, and construct the cumulative deviation series
Y(j) as follows:

Y(j) =
j

∑
i=1

(R(i)− R), i = 1 . . . N (4)

(2) Divide Y(j) into Ns = [(N − s)/(s− l)] subintervals with a unit length of s. The length
of the overlapping part of adjacent intervals is l, which is the only improvement to the
original method. Combined with previous experience, the value of l is usually s/3.

(3) For each subinterval, fit the univariate linear equation by the least square method.
Then eliminate the local trend of each subinterval v (v = 1,2, . . . Ns), and get the
detrending residual sequence Yv(k) pv(k) is the local polynomial fitted value and we
choose linear univariate polynomials:

yv(k) = C0 + C1vk + ek, k = 1, 2, . . . , s (5)

Yv(k) = yv(k)− pv(k), k = 1, 2, . . . , s (6)

(4) Calculate the square mean and q-order volatility function of the residual sequence of
Ns subintervals, respectively:

F2(s, v) =
1
s

s

∑
k=1

(Yv(k))
2 (7)

Fq(s) =


{

1
Ns

Ns
∑

v=1

[
F2(s, v)

] q
2

} 1
q

, i f q 6= 0

exp
{

1
2Ns

Ns
∑

v=1
ln
[
F2(s, v)

]}
, i f q = 0

(8)

(5) Determine the scale index of the volatility function, and get the relationship between
Fq (s) and s. If Fq (s) is a power-law distribution, the following formula is satisfied
when q is constant:

Fq(s) ∝ sh(q) (9)

The above formula is linearly fitted in the double logarithmic coordinate system, and
the slope h(q) can be obtained, which is called the generalized Hurst exponent. It is used to
describe the regional fractal changes of multifractals. Change the order q, repeat the above
operation, observe the change of h(q):

(a) h(q) does not change with the increase or decrease of q, it is a single fractal system,
otherwise it is multifractal.

(b) When q < 1, h(q) describes the fractal characteristics of small fluctuations; when q > 1,
h(q) describes the fractal characteristics of large fluctuations; when q = 2, h(2) is the
classical Hurst index, which measures long memory of the sequence as a whole.



Entropy 2021, 23, 1018 7 of 19

(c) h(q) > 0.5 indicates that the sequence is persistent, 0 < h(q) < 0.5 indicates anti-
persistence, h(q) = 0.5 indicates that the sequence is a random walk.

In addition to judging the multifractal by the change of the generalized Hurst index,
the multifractal spectrum can also be drawn to further study the sensitivity of the time
series to the large and small fluctuations. The multifractal spectrum characterizes the
relationship between f (α) and α, and its calculation formula is as follows:

α = h(q) + q
∂h(q)

∂q
− τ (q) (10)

τ (q) = qh(q)− 1 (11)

f (α) = qα− τ (q) (12)

Among them, α is the local Hölder index, which is used to describe the degree of
variation of the time series, so it is also called the singular index. τ (q) is called the Renyi
index, which is another manifestation of the generalized Hurst index. f (α) is multifractal
spectrum. The multifractal spectrum essentially reflects the same fractal characteristics as
the generalized Hurst exponent, and has correspondence. The spectrum shape indicates
the degree of fluctuation of the sequence. The wider the spectrum shape (that is the greater
∆α = αmax − αmin, the more intense the sequence fluctuation, the more uneven the internal
distribution, and the greater the slope of the corresponding Hurst exponent with the order.

2.4. Price Prediction Model: GRU Neural Network

Summarizing the research conclusions of other scholars, it is found that nonlinear
neural networks have outstanding performance in prediction. In terms of predicting
financial time series, the most popular ones are Long Short-term Memory Neural Network
(LSTM) and Gated Recurrent Unit (GRU) [29–35]. The latter was proposed by Cho et al., in
2014 and it is a variant of LSTM [34]. The main change is that the “cell state” that transmits
information is removed, but it can also achieve the effect of transmitting long-term memory.
This paper selects GRU as the prediction model, and its unit structure diagram is shown
in Figure 3.
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In Figure 3, xt is the input value at the current moment. ht−1 is the output at the
previous moment. h̃t is the hidden state at the current moment. ht is the output at the
current moment. rt and zt are the reset gate and the update gate respectively, and the
former determines how much of the hidden state ht−1 at the previous moment needs to be
forgotten, the latter controls the extent to which the information of the previous state is
passed into the current state. tanh is the activation function to ensure that the output result
is between −1 and 1. W and U are the weights of information transmitted between each
node. The relationships between the variables are as follows:

zt = σ(Wzxt + Uzht−1) (13)
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rt = σ(Wrxt + Urht−1) (14)

h̃t = tanh[Wxt + U(rt ∗ ht−1)] (15)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (16)

3. Results
3.1. Multifractal Test

The multifractal testing method in this paper adopts OSW-MF-DFA and the proce-
dure is based on the research of Espen [44]. We test the multifractal behavior of 5-min’s
logarithmic return series.

Firstly, we draw the curves of the generalized Hurst index with order q, and the range
of q is (−10,10), which is used to measure degrees of volatility. The situations of the two
markets are as follows.

It can be observed from the Figure 4 that, there are two things in common for all three
stages of the two markets. On one hand, the generalized Hurst indices decrease as the order
q increases, which shows that the market always have multifractal characteristics. On the
other hand, there are obvious differences in the curves of the three stages, indicating that the
degree of fractal is not the same. In more detail, the Hurst curves before and after the first
panic period of pandemic are similar in shape. Especially when q < 1, the Hurst value of each
market is greater than 0.5, indicating that small fluctuations are persistent before and after the
first panic period of pandemic. But the curves change greatly of both markets during first
panic period of the pandemic. In terms of CSI300 index, when q > 2, the Hurst index during
the pandemic quickly fell below 0.5 and became the minimum one, which shows that super
large fluctuations have a strong anti-persistence. In terms of S&P500 index, Hurst curves
during the pandemic are in a reverse “S” shape, indicating that small fluctuations are strongly
persistent, while large fluctuations are strongly anti-persistent. From the changes in the Hq as
q > 4 of the S&P500 index before and after the panic period, we find that large fluctuations
have greater anti-persistence after the panic, but it’s the opposite in the Chinese market.
Which mean it is stronger risk aversion in S&P500 stock market.

Through the above Hurst curve, it is easier for us to compare the changes of a single
market in three stages. Next, by analyzing the multifractal spectrum and its parameters,
we can compare two markets better.

Figures 5 and 6 show the multifractal spectra of each stage of the markets. As we can
see in each figure, the three spectrum lines are single-peaked, which verifies the conclusion
that the market has multifractal characteristics. At the same time, it is also observed that
the spectrum shape and width are obviously different.

The main parameters for calculating the fractal spectrum are obtained from the
Tables 2 and 3. The greater ∆α (= αmax − αmin) indicates the deeper degree of multifractal.
∆ f (= f (αmax)− f (αmin)) measures the relative probability of the maximum and minimum
of the rate of return. If ∆ f > 0, it means that the probability of the maximum rate of return
is greater, otherwise the minimum is more likely. In this paper, we define the skewness
index R(= ∆αr − ∆αl) to measure the dominance of the larger and smaller rates of return.
If R > 0, the larger rate of return is more advantageous.

After comparing the spectrums and their parameters, we can reach three
main conclusions:

• For each market, ∆α is the largest of the three periods during the pandemic, indicates
that the pandemic has intensified the multifractal degree of the market. And ∆α of
S&P500 is correspondingly larger than that of CSI300, which means the higher fractal
degrees of US stock market (it also means more inefficient).

• The spectrum shape of S&P500 is more symmetrical with ∆ f and R closing to 0, while
those of CSI300 indicate an obvious tailing phenomenon. It shows the time variability
and imbalance of large and small returns in China’s stock market. Especially after
the first panic period of pandemic, the long right tail of CSI300 should be paid more
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attention, which indicating that the proportion of large yields has increased and
occupied a dominant position.

• From the above analysis, we find that the US market was more deeply impacted by
the pandemic. After the first panic period of pandemic, the fractal degrees of both
markets have partially recovered, which indicates that the impacts of the pandemic
on the markets have not subsided, although the indices have rebounded.
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Table 2. Detailed parameter values of CSI300 multifractal spectrum.

Stage αmin αmax ∆α f(αmin) f(αmax) ∆f R

before 0.2214 0.7490 0.5276 −0.0599 0.3761 0.4360 −0.1852
during 0.1433 0.7210 0.5777 −0.0524 0.3508 0.4032 −0.3213
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Table 3. Detailed parameter values of S&P500 multifractal spectrum.

Stage αmin αmax ∆α f(αmin) f(αmax) ∆f R

before 0.2738 0.8271 0.5532 0.3364 0.3474 0.0110 −0.0719
during 0.0870 1.0660 0.9792 0.0615 −0.0248 −0.0863 −0.0610

after 0.1863 0.8948 0.7084 −0.0634 0.0228 0.0862 −0.0917
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3.2. Time-Varying Hurst Sequence

The fractal situation of the market return rate reflects the fluctuation characteristics
of the price, and it is expected to improve the accuracy of the forecast model as an input
feature. Multifractal originates from long-range correlation and thick-tailed distribution,
the latter can be eliminated by shuffling the sequence. This article assumes that long-range
correlation is more helpful for price prediction. Therefore, the overall Hurst index and
Hurstcorr caused by long-range correlation are calculated as follows:

Hurstcorr = Hurst− Hurstshu f f le (17)

In this paper, the DFA method with sliding window is used to calculate the time-varying
Hurst index sequence. DFA is used to measure the single fractal characteristics of the sequence
over a period of time. Since the time of the sliding window will not be too long, the fractal
situation of the samples in the window will not change too much. It is reasonable to use
this method. Drawing on the research experience of other scholars, the sliding window is
selected as 20 trading days, and the step size is 1. The time-varying Hurst index sequences of
the three stages of CSI300 and S&P500 are obtained as Figures 7 and 8. It is easy to find that
in the pre- and post-pandemic stages, the time-varying Hurst index roughly falls between
0.4 and 0.6, indicating that the trend or counter-trend of the sequence is small, while the
fluctuations during the pandemic have increased significantly and the fractal status is complex.
In addition, it can be seen from the decomposition that long-range correlation is the main
cause of multifractal, because Hurstcorr curve lies right below the Hurst curve.
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3.3. Price Forecast Analysis

On the basis of fractal research, we further explore its application in price prediction.
This paper uses the GRU neural network that performs well in the financial field, combined
with fractal features and other variables to construct price prediction model. Next, I will
focus on five problems: (1) the division of data sets; (2) the selection of optimal parameters;
(3) the selection of inputs; (4) the comparison of the pros and cons of models; (5) the analysis
of prediction results.

3.3.1. Divide the Data Sets

In terms of data set division, this article inherits the “80–20%” rule which is widely
used in kinds of scientific research [45,46]. That is, the first 80% of each interval is divided
into the training set for optimal model training, and the last 20% is the test set to test the
prediction performance. Although using sliding windows to calculate Hurst index and
volatility requires some loss of data, the total number of samples is large enough to not
affect the effect of model training.

3.3.2. Set Parameters

In the case of a given model structure, the main factors that affect the prediction effect
are parameter values and input variables. The optimal parameters are determined through
multiple attempts, and the input variables are selected by logical analysis. The parameters
to be adjusted in this article are as follows:
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History, that is, how long in the past data is used for prediction. Considering that the
price series is memorable, too short historical values may cause some information to be
lost, but too long historical values may also contain redundant information. In the case
of controlling other parameters unchanged, the sensitivity analysis of the historical value
found that it has a “U”-shaped relationship with the model error. And the error is the
smallest when the value is set to 20.

Units, that is, the number of unit nodes in the hidden layer, determines the dimension
of the data transferred to the next layer. The more the number of nodes, the more the
number of parameters to be fitted, and the longer the time required for model training.
After many attempts to change the number of units, it was found that this parameter has an
irregular relationship with the error. Finally, combining the experience of other scholars, we
tried between (10, 40) and determined that the optimal result was reached when units = 12.

The Optimizer is an algorithm that minimizes the loss function of the neural network
when fitting parameters, which is of great significance to the effect of machine learning.
In the pursuit of speed and accuracy, the optimization algorithm is constantly updated
and iterative, from the early simple but inefficient stochastic gradient descent (SGD) to
Adagrad, which efficiently distinguishes high and low frequency parameters. At present,
the most widely used optimizer is Adam. After testing, Adam’s optimization effect is the
best in all cases.

In addition to the above three most important parameters, there are also learning
rounds (epoch), batch size (batch size), activation function (activation), etc. We use the
same method to find the optimal value of each parameter in turn, and finally determines
Epoch = 500, Batch Size =100, and the activation function is Relu.

The optimal parameters are summarized in Table 4.

Table 4. Detailed parameter values of S&P500 multifractal spectrum.

Parameters History Units Optimizer Epoch Batch Size Activation

value 20 12 Adam 500 100 Relu

3.3.3. Select Input Variables

It has been mentioned that the price of an asset can be divided into volatility and trend,
so these two aspects of information should be considered when selecting characteristics.
Generally speaking, the general market indicators of the index basically contain trend and
volatility information, including opening price, closing price, highest price, and lowest
price. For example, the closing price at the previous moment is the reference for the opening
price at the next moment, reflecting the trend, and the spread between the opening and
closing prices also reflects fluctuations. In addition, volatility indicators such as the rate of
change in return and volatility can be easily calculated through the price. On this basis, this
paper innovatively adds two other volatility indicators: time-varying Hurst and Hurstcorr.

3.3.4. Forecast of CSI300 Index

After determining the parameters and variables to be input, this paper uses the GRU
neural network to predict the 5-min intraday prices of the two indices. The model is built
based on Python 3.6.4 with function libraries including keras, tensorflow, pandas, numpy,
matplotlib, etc. Among them, keras and tensorflow are used to build the main body of
GRU; pandas and numpy are used for data reading and writing; matplotlib is used to draw
prediction results graphs. The evaluation indicator of the model is the loss function. This
article selects the classic mean absolute error (MAE) and root mean square error (RMSE).
The calculation formulas for the two are as follows:

MAE = 1/n
n

∑
i=1
|h(xi)− yi| (18)
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RMSE = {1/n
n

∑
i=1

(h(xi)− yi)}
1
2

(19)

The purpose of prediction is to explore whether the time-varying Hurst index can
improve the prediction effect of the model whether it is better than traditional volatility
indicators, especially in the stage of volatility clustering.

Based on the above objectives, the combination of input variables is designed as
follows. Table 5 shows the prediction results.

• Num 1: closing price, opening price, highest price, lowest price, volatility
• Num 2: closing price, opening price, highest price, lowest price, Hurst
• Num 3: closing price, opening price, highest price, lowest price, Hurstcorr

Table 5. The prediction results of the CSI300 Index at each stage. The black italic font indicates the
best combination for each stage.

Stage Num MAE-Train RMSE-Train MAE-Test RMSE-Test

before
1 4.74 7.22 3.13 4.29
2 4.67 7.06 3.11 4.23
3 4.68 7.08 3.13 4.25

during
1 6.42 12.20 8.86 12.7
2 7.12 11.08 5.18 11.08
3 7.36 11.25 4.96 7.50

after
1 6.77 9.57 5.76 7.84
2 7.01 9.83 6.02 8.13
3 6.96 9.78 5.94 8.04

It can be seen from the results that at different stages, the best combination is not the
same. Before the pandemic, the prediction errors of three combinations were basically close,
Num 2 with the Hurst index won out with a slight advantage. During the pandemic, Hurst
and Hurstcorr outperformed the volatility rate. The best one is Num 3 with the Hurstcorr,
of which the MAE and RMSE of the test set were significantly smaller than the other two,
indicating that at this stage Hurstcorr contains the most effective information. After the first
panic period of pandemic, the prediction effects of the three combinations were close, and
the Num 1 with volatility was slightly dominant. Figure 9 shows the prediction diagrams
of price by neural network.

Three conclusions can be drawn: First, in the period of large volatility clustering, the
time-varying Hurst index can indeed improve the prediction accuracy. Hurstcorr caused
by the long-range correlation performed best. Second, in the period when the volatility
clustering effect is relatively not obvious or dispersion is small, the volatility, Hurst and
Hurstcorr contribute almost the same to the forecast. Third, during the pandemic, the
prediction effect is the worst. This is consistent with common sense, that is, the greater
the market volatility, the more difficult it is to predict. For the prediction of the CSI300
Index, the assumption that the Hurst Index can improve the forecasting efficiency has been
proved to be correct.

3.3.5. Forecast of S&P500 Index

Similarly, applying the above three combinations to the prediction model of S&P500,
the prediction errors at each stage are shown in Table 6.

The analysis shows that one thing is consistent with the conclusion of CSI300: dur-
ing the pandemic, adding Hurstcorr can significantly improve the forecasting effect, and
outperforms the volatility and the overall Hurst index. In addition, there are two different
conclusions: First, for the S&P500 index, before and after the first panic period of pan-
demic, the volatility index has obvious advantages in forecasting. Second, comparing
the minimum forecast errors of the three stages, the results are generally larger than the
corresponding CSI300 forecast errors. This shows that the US market is more difficult
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to predict. There may be differences in the characteristics of the Chinese and US stock
markets, and more new indicators are needed to characterize them. Figure 10 shows the
prediction diagrams of price by neural network.
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the assumption that the Hurst Index can improve the forecasting efficiency has been 
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Table 6. The prediction results of the S&P500 Index at each stage. The black italic font indicates the
best combination for each stage.

Stage Num MAE-Train RMSE-Train MAE-Test RMSE-Test

before
1 1.51 2.60 8.36 9.85
2 1.65 2.69 11.55 13.68
3 1.61 2.66 12.39 14.69

during
1 5.94 11.05 18.13 22.76
2 6.98 11.88 8.32 11.56
3 6.94 11.89 6.13 9.55

after
1 3.00 4.72 7.10 8.43
2 2.73 4.49 19.49 21.04
3 2.72 4.48 24.28 25.76
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demic, the volatility index has obvious advantages in forecasting. Second, comparing the 
minimum forecast errors of the three stages, the results are generally larger than the cor-
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Figure 10. The prediction results of the S&P500 Index, the green part is the training set, and the red
part is the test set. (a–c) are before, during and after the first panic period of pandemic, respectively.
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4. Conclusions and Discussion

In this paper we take CSI300 and S&P500 as examples to study the fractal properties
of 5 min stock indices under the impact of the pandemic and add the fractal features to
the GRU neural network for price prediction. The research period is from 1 January 2019
to 9 June 2021. According to the development of the pandemic, it is further divided into
three stages before, during and after the first panic period of pandemic. Our study has the
following important conclusions: In terms of fractal research, we use OSW-MF-DFA to test
the multifractal properties of the market return time series. We find that: (1) Multifractals
are always present in all three stages of the two markets, but there are differences in the
fractal characteristics of different markets and different stages. Our results show that the
multifractals of the two markets have increased significantly during the pandemic, and
the US market has been more affected by the pandemic. (2) After the first panic period
of pandemic, the fractal degrees of two markets have declined, but they are still higher
than the ones before the pandemic. In terms of price prediction, we set three sets of inputs
to study the prediction effect of Hurst index and Hurstcorr compared to volatility. The
research found that: (1) For CSI300 and S&P500, Hurstcorr can significantly reduce the
forecast error during the large volatility clustering period (during the pandemic), especially
for the S&P500 market. (2) The forecast error of S&P500 is significantly greater than that
of CSI300, indicating that there are differences in the characteristics of the Chinese and
American stock markets.

This study also has some suggestions for market agents. For market participants,
it provides a way to judge the current market efficiency through fractal analysis. This
study shows that Hurst index may be a good timing index and adding fractals can make
predictions more accurate during the panic period of market. For policy makers, it has
become a new method to study the intervention degree of fiscal and monetary policy on
the market through fractal situation. For regulators, such as exchanges and CSRC, they can
supervise the operation of the current market from the perspective of multifractal. When
the efficiency of the market is reduced due to a major impact such as the pandemic, the
trading rules could be modified appropriately to improve the stability of the market.

Our work is a study on the fractal and forecast of the market under the impact of the
pandemic. By adding Hurst index as an input element in the GRU neural network, we
improved the forecast accuracy during the panic period. But before and after that it is not
contribute to the prediction accuracy, so the future research can join a dynamic system to
determine whether to add the Hurst index when forecasting.
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