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Endothelial cells, which are important metabolic and endocrine cells, play an

important role in regulating vascular function. The occurrence and

development of various cardiovascular and cerebrovascular diseases are

associated with endothelial dysfunction. However, the underlying

mechanism of vascular endothelial injury is not fully understood. It has been

reported that themechanism of endothelial injury mainly involves inflammation

and oxidative stress. Moreover, endothelial progenitor cells are regarded as

important contributors in repairing damaged endothelium. Multiple

interventions (including chemical drugs and traditional Chinese medicines)

exert endothelial protection by decreasing the release of inducing factors,

suppressing inflammation and oxidative stress, and preventing endothelial

cell senescence.
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Introduction

Vascular endothelial cells are a single layer of flat epithelial cells located on the inner

surface of the vascular lumen. They are distributed throughout large blood vessels and

microvessels, and are important metabolic and endocrine organs. Vascular endothelial

cells maintain circulatory stability, regulate vascular tone, and play an important role in

anticoagulation and prevention of thrombosis (Bach, 2015). Vascular endothelial injury is

seen in a variety of cardiovascular and cerebrovascular diseases, such as atherosclerosis,

hypertension, and diabetic vascular disease, and is considered the initiating link of these

diseases. Therefore, it is important to explore the factors and mechanisms of damaged

endothelium, and to study the role and mechanism of changes in secreted active

substances (Gimbrone and Garcia-Cardena, 2016). Endothelial cells possess the ability

to proliferate and repair cell damage. Thus, endothelial cells are always in the dynamic

process of being damaged and resisting damage, i.e., being repaired (Mazini et al., 2020).

Considering the important role of vascular endothelium in the occurrence and

development of dilemmas, the idea of interventions (drugs and biologics) to prevent

and treat diseases is to facilitate the protection of endothelium and promote its repair

(Miyamoto et al., 2014; Meng et al., 2018).
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Endothelial injury and cardiovascular and
cerebrovascular diseases

Clinical studies and animal experiments have shown that a

variety of cardiovascular and cerebrovascular diseases (chronic

cardiac insufficiency, diabetic vascular complications, stroke) are

accompanied by endothelial cell dysfunction (Jara and Mezzano,

2008; Moon, 2021). In clinical studies, surface high-frequency

ultrasound may be used to detect brachial artery blood

flow–mediated endothelium-dependent dilation (FMD) and

non–endothelium-dependent diastolic function (nitroglycerin-

mediated dilation, NMD) to detect nitric oxide in blood (nitric

oxide, NO), von Willebrand factor (vWF), asymmetric

dimetylarginine (ADMA), and other indirect indicators of

endothelial function (Arslan et al., 2017; Mortensen et al.,

2019; Stepanova et al., 2019). The morphological changes of

endothelial injury have been observed and endothelial NO levels

and endothelial NO synthase (eNOS) activity were detected in

different experimental animal models (hypertension,

atherosclerosis, diabetes) (Kietadisorn et al., 2012).

It has been revealed that various factors, such as oxidized

low-density lipoprotein (ox-LDL), hyperglycemia,

homocysteine (Hcy), hypoxia, hydrogen peroxide (H2O2),

and reactive aldehydes, induce endothelial injury. This has

been confirmed by exogenous application of these factors in

animal experiments and cultured endothelial cells to directly

damage the endothelium (endothelial cells) (Li et al., 2016;

Caliceti et al., 2017; Nègre-Salvayre et al., 2017; Yang et al.,

2020).

Mechanism of endothelial cell injury

The mechanism of vascular endothelial cell injury is not fully

understood. During the process of vascular endothelial injury,

there are changes in vasodilation function, abnormal production

and secretion of active substances, energy metabolism disorders,

and morphological changes, and the underlying

pathophysiological mechanism mainly involves inflammatory

response and oxidative stress (Schinzari et al., 2017).

Inflammation and endothelial cell injury
A large number of studies have confirmed that the

underlying pathophysiological mechanism of cardiovascular

diseases, including atherosclerosis, involves inflammation

(Zhong et al., 2019). Literature reports have demonstrated

that atherosclerosis is a chronic inflammatory disease (Ross,

1999), with the characteristic of inflammatory cell infiltration

and secretion of various inflammatory factors, including TNF-

α, IL-6, and IL-1β (Fan et al., 2013; Jiang et al., 2019).

Uncontrolled inflammation is also found in other metabolic

diseases, including diabetes-induced vascular inflammation

(Stepanova et al., 2019).

In addition to directly attacking vascular endothelium,

oxidative stress contributes to inducing inflammation

(Domingueti et al., 2016; Bai et al., 2020), which has been

confirmed in a variety of cardio- and cerebrovascular diseases,

such as atherosclerosis (e.g., ox-LDL), diabetes (e.g., high

glucose and glycosylation end products), and hypertension

(angiotensin II [Ang II]) (Pleskovič et al., 2017; Solis et al.,

2021). Further research has shown that the mechanism of

inflammatory response involves a variety of microRNAs

(miR-126, miR-155, miR-221/222, miR-31, miR-17-3p, miR-

10a, miR-663, miR-125a-5p, and miR-125b-5p) by regulating

downstream target proteins (such as VCAM-1, RGS16, Ets-1,

AT1R, E-selectin, ICAM-1, MAP3K7, and βTRC)
(Forouzanfar and Asgharzade, 2020; Wu et al., 2020; Luan

et al., 2022).

Atherosclerosis and other cardiovascular and

cerebrovascular diseases show endothelial cell aging, and

endothelial cells can secrete a series of inflammatory factors

(such as TNF-α, IL-1β, IL-2, IL-6, IL- 8, RANTES, ICAM,

VCAM), known as “aging inflammation,” which further

aggravates endothelial injury (Montgolfier, 2019).

The following functional proteins have been investigated

in the context of inflammatory response: ① NF-κB: It is the
central link and common pathway of inflammatory response

during endothelial injury. Many stimuli can activate the NF-

κB signal transduction pathway and induce upregulation of

the gene expression of inflammation-related cytokines. Recent

studies have shown that NF-κB activity is regulated by

epigenetics, such as PCB upregulation through epigenetics

NF-κB subunit p65 expression induces endothelial

inflammation (Zhu and Hou, 2021). ② High-mobility

group protein 1 (HMGB1): It is a new type of

inflammatory mediators and is associated with

cardiovascular diseases (atherosclerosis, acute coronary

syndrome, pulmonary hypertension) and closely related

diseases (Jeong et al., 2019; Wahid et al., 2021). In the

development of atherosclerosis, HMGB1 mediates the

expression of proinflammatory mediators of endothelial

cells during the initial stage of plaque formation, including

TNF-α, IL-8, MCP-1, adhesion molecules (ICAM-1, VCAM-

1), MIP-1α, and MIP-1β (Hebbel et al., 2020). In vitro

experiments have shown that HMGB1 induces

inflammatory responses through the TLR4 and

IRF3 pathways (Florim et al., 2020). ③ Inflammasome: It is

a newly discovered large molecular multiprotein complex with

a molecular weight of 100 kDa, which is involved in

atherosclerosis, ischemia–reperfusion injury, and type

2 diabetes. IL-1β is regarded as a pivotal inflammatory

mediator, and its activation and secretion are regulated by

inflammasomes (Palomo et al., 2015; Yu, 2016). In the process

of inflammatory response, IL-1β induces the binding of

intracellular Pro-IL-1β and inflammasome-related protein

nucleotides. Increased synthesis of nucleotide-binding
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NLRP3 induces inflammasome assembly and activates

Caspase-1, which cleaves Pro-IL-1β to generate activated

IL-1β (Dinarello, 2011; Fahey and Doyle, 2019).

Oxidative stress and endothelial cell injury
It has been demonstrated that oxidative stress is an

important mechanism involved in endothelial injury in

atherosclerosis, diabetes, hypertension, and myocardial

infarction (Ungvári et al., 2005; Husain et al., 2015).

Various factors such as ox-LDL, Ang II, ADMA, hypoxia,

high glucose, and reactive aldehydes can induce the

generation of reactive oxygen species (ROS) (superoxide

anion (O2−), H2O2, hydroxyl free (OH), hypochlorous acid

(HOCl), and peroxynitrite (ONOOO-)), through direct or

indirect injury to endothelial cells (Shaw et al., 2014). It is

worth mentioning that the eNOS inhibitor ADMA

competitively inhibits NOS and decouples it, so that it no

longer catalyzes the production of NO by L-arginine, but

induces O2− production to promote oxidative stress (Jiang

et al., 2006; Tan et al., 2007; Yuan et al., 2015). There is

accumulating evidence that the causes of ROS accumulation

are associated with the following elements: ① decreased

activity of ROS-scavenging enzymes, such as superoxide

dismutase, catalase, and glutathione peroxidase (O’Flaherty,

2019); ② increased activity of enzymes that catalyze the

generation of ROS, such as peroxidase, xanthine oxidase,

monoamine oxidase, and NADPH oxidase. Among them,

peroxidase is a class of heme-containing enzymes that

catalyzes H2O2 (weak oxidant) into HOCl (Awad et al.,

2018). Previous studies on peroxidase have focused on

myeloperoxidase (MPO), which is expresses in neutrophils

and monocytes. In recent years, an isoenzyme of MPO has

been discovered, which is 44.5% identical to MPO. In addition

to being present in the heart, liver, and pancreas, it is highly

expressed in vascular endothelial cells and vascular smooth

muscle cells, which is why it is also known as vascular

peroxide. Changes in the activity of vascular peroxidase

(VPO) are closely related to endothelial injury in

atherosclerosis, diabetes, and myocardial I/R injury (Bai

et al., 2011; Awad et al., 2018).

Vascular aging often occurs in atherosclerosis, diabetes,

coronary heart disease, and other cardiovascular and

cerebrovascular diseases (Ma et al., 2013; Ishii et al., 2020).

Hypoxia, ox-LDL, high glucose, and other factors can increase

the expression of aging-related proteins such as p53, thereby

resulting in endothelial cell aging (Tian and Li, 2014).

Recently, it has been shown in diabetic rats and endothelial

cells in a high glucose–induced injury model that the

expression of VPO1 is upregulated, and that endothelial

cells are senescent (Liu et al., 2015). Silencing the VPO1

gene could significantly attenuate endothelial senescence.

The exogenous application of HOCl could directly induce

endothelial senescence, which suggests that the VPO1/HOCl

pathway plays an important role in oxidative stress–induced

endothelial cell aging (Yang et al., 2017). There are several

lines of evidence that various factors, including oxidative

stress, DNA damage, and genotoxic drugs, could induce

cell senescence (Shokrzadeh et al., 2021). The mechanism

involves regulating senescence-related miRNAs, which in

turn regulate the expression of downstream target proteins

and promote ROS generation, thereby leading to vascular

aging. Overexpression of miR-146a in endothelial cells

could significantly inhibit the expression of NADPH

oxidase 4, and reduce the generation of ROS and

endothelial senescence (Xiao et al., 2021). miR217 and

miR-34a could cause downregulation on silent information

regulator 1 (SIRT1) mRNA and protein, weaken antioxidant

capacity, and deteriorate vascular endothelial aging (Zhang

et al., 2020; Matacchione et al., 2021).

Previous studies have confirmed that ROS can promote

endothelial cell morphological damage and induce apoptosis

(Strilic et al., 2016). Necroptosis (also known as programmed

necrosis) is a newly discovered type of cell death, which is found

in the pathological process of I/R injury in the heart, kidney,

brain, and retina. The main mechanism involves the interaction

of TNF-α with TNF receptor 1 on the cell surface, which is

mediated by the RIP1/RIP3/MLKL necrosis complex. Recent

studies have shown that a variety of tumor cells (human lung

adenocarcinoma cell line A549, human neuroblastoma cell SH-

SY5Y) co-cultured with endothelial cells can induce endothelial

cell necroptosis (Lubrano and Balzan, 2014; Chen et al., 2016).

Repair and mechanism of damaged
vascular endothelium

Endothelial cells possess the ability to self-proliferate and

repair. Vascular endothelial injury not only affects the function of

the vascular barrier and the regulatory function and secretory

function of the vasodilator response, but also weakens the repair

ability. Endothelial cells can slow down or even stop their own

natural aging process by reducing or preventing the damage of

endothelial cells and facilitating the repair of the damaged

endothelial cells.

Endothelial progenitor cells and endothelial
repair

Endothelial progenitor cells (EPCs) are stem cells that are

homed to angiogenesis tissues. They can differentiate and

proliferate into mature endothelial cells, and exert an

important role in endothelial repair and angiogenesis. Several

studies have demonstrated that the pathogenesis of various

cardiovascular diseases (such as atherosclerosis and

pulmonary hypertension) is associated with EPCs aging (Zhou

et al., 2010a; Zhou et al., 2010b). After EPCs aging, their

migration, adhesion function, and blood vessel formation
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ability are all reduced, resulting in weakened endothelial repair

ability.

There are now three basic ways to treat endothelial damage with

EPC: ①Transplantation of EPCs to endothelial injury sites to

promote endothelial tissue regeneration and repair. It has been

confirmed that the injection of EPCs into mice could significantly

improve the damage of hepatic sinusoidal endothelial cells and

hepatocytes while reducing the secretion of IL-6 and TNF-α,
inhibiting platelet activation, and improving liver function (Qiao

et al., 2015).② The introduction of certain genes, such as calcitonin

gene–related peptide (CGRP), into EPCs to enhance the protective

effect of EPCs on endothelial cells. In animal experiments, EPCs

transfected with CGRP in rats with pulmonary arterial hypertension

can significantly improve pulmonary hypertension and reverse

pulmonary vascular remodeling (Zhao et al., 2007). As shown

in vitro, transfection of damaged EPCs into β2 adrenergic

receptors could significantly improve the repair ability of EPCs

on vascular endothelium (Ke et al., 2016). ③ Some drugs such as

low-dose aspirin, resveratrol, rosiglitazone, pyrrolizone, and

evodiamine can delay EPCs aging. For example, resveratrol-based

derivative BTM-0512 inhibits EPCs aging in diabetic rats, and its

mechanism of action involves the SIRTl-DDAH2/ADMA pathway

(Yuan et al., 2015). CGRP mediates evodiamine and inhibits AngⅡ-
induced EPC aging, and its mechanism is related to the upregulation

of Klotho gene (Ming et al., 2016). Cisceral lipin delays ox-

LDL–induced EPCs aging and upregulation of SIRT1 is involved,

and the underlying mechanism involves the PI3K/Akt/ERK

pathway (Xu et al., 2021).

Drugs and endothelial protection
Clinical studies and animal experiments have shown that

many drugs, including chemical drugs and traditional Chinese

medicines, have protective effects on endothelial cells, but the

underlying mechanisms are not yet fully understood (Yang et al.,

2005). This is because different studies have discussed the various

entrance points of the mechanism of pharmacological protection

of vascular endothelium, apart from the complexity of the

pathological mechanism of vascular endothelial injury (Figure

1). There are various mechanisms by which drugs may protect

the vascular endothelium: ① Reducing the generation of factors

that induce endothelial cell damage: For example, lipid-lowering

drugs, hypoglycemic drugs, and anti-myocardial ischemia drugs

can reduce the production of blood sugar, ox-LDL, ROS, and

inflammatory factors. Folic acid can inhibit Hcy production,

which is an adjunct therapy for hyperhomocysteinemia-type

hypertension, helps protect vascular endothelium, and reduces

the incidence of stroke (Haklar et al., 1998). L-arginine can

competitively prevent ADMA from inhibiting eNOS. Vascular

tension invertase inhibitors can reduce the production of Ang II.

② Reducing the formation of ROS by oxidative stress inhibitors

such probucol, vitamin E, and tanshinone IIA (Tang et al., 2011;

Jia et al., 2012; Tsai et al., 2014). ③Inhibiting the inflammatory

response: For example, aspirin, fibrate lipid-lowering drugs, and

resveratrol methyl derivatives may inhibit the production of

inflammatory factors (Price et al., 2012; Wang et al., 2014;

Jeong et al., 2015; Pan et al., 2016; Han et al., 2020). ④

Delaying aging of endothelial cells and EPCs: For example,

rosiglitazone, evodiamine, and simvastatin can inhibit

endothelial aging (Fraineau et al., 2015). EPC-based

transcription is regulated by epigenetic regulation, including

noncoding RNA (microRNA and IncRNA), DNA

methylation, histone modification (histone methylation,

acetylation, and deacetylation), and some compounds (such as

peptide compound inhibitor 5-azacytidine). Epigenetics

increases the proliferation and migration of EPCs and

enhances the ability to repair blood vessels (Fraineau et al., 2015).

Conclusion

Vascular endothelial injury is the initiating link of various

cardiovascular and cerebrovascular diseases. In addition to

the changes in its own morphology and function, endothelial

injury causes endothelial cells to secrete endogenous active

substances and affect vascular smooth muscle, which affects

vasodilation. It has also been demonstrated that a number of

variables, including hypoxia and others, can cause endothelial

interstitial change and promote vascular remodeling (Tian

and Li, 2014). The exact mechanism of endothelial cell injury

is not fully understood. Inflammation and oxidative stress are

known as important pathophysiological mechanisms of

endothelial injury. It is known that there is an interaction

between inflammation and oxidative stress, but the network

relationship of their interaction and its key molecules are yet

to be elucidated. The aging and regulation mechanisms of

endothelial cells and EPCs also need to be further explored.

FIGURE 1
Main vascular risk factors and their involvement in endothelial
dysfunction and intervention.
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With the deepening of research on endothelial injury

and repair, new targets for protecting vascular endothelium

may be discovered, which will provide new ideas to find

drugs to protect damaged endothelium. It has been proven

that a variety of traditional Chinese medicines have

protective effects on vascular endothelium, and the

separation and purification of active ingredients and

monomers in traditional Chinese medicine will be an

important way to develop drugs for vascular endothelial

protection.
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