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Simple Summary: This study aims to assess the reliability of using a core-needle biopsy (CNB) for
preoperative tumor characterization using gene expression analysis and conventional immunohisto-
chemistry (IHC) analysis for clinical biomarkers in early breast cancer. Obtaining a preoperative CNB
is a standard procedure in the evaluation of a primary breast cancer, with previous studies suggesting
that it can be considered trustworthy to perform immunohistochemical analysis on CNB samples.
However, little research has been carried out to evaluate whether gene expression-based biomarker
assessment can be carried out reliably on the preoperative CNB. This information is important as
genomic profiling is gaining ever-increasing importance in the treatment of early breast cancer.

Abstract: In early breast cancer, a preoperative core-needle biopsy (CNB) is vital to confirm the ma-
lignancy of suspected lesions and for assessing the expression of treatment predictive and prognostic
biomarkers in the tumor to choose the optimal treatments, emphasizing the importance of obtaining
reliable results when biomarker status is assessed on a CNB specimen. This study aims to determine
the concordance between biomarker status assessed as part of clinical workup on a CNB compared to
a medically untreated surgical specimen. Paired CNB and surgical specimens from 259 patients that
were part of the SCAN-B cohort were studied. The concordance between immunohistochemical (IHC)
and gene expression (GEX) based biomarker status was investigated. Biomarkers of interest included
estrogen receptor (ER; specifically, the alpha variant), progesterone receptor (PgR), Ki67, HER2, and
tumor molecular subtype. In general, moderate to very good correlation in biomarker status between
the paired CNB and surgical specimens was observed for both IHC assessment (83–99% agreement,
kappa range 0.474–0.917) and GEX assessment (70–97% agreement, kappa range 0.552–0.800), re-
spectively. However, using IHC, 52% of cases with low Ki67 status in the CNB shifted to high Ki67
status in the surgical specimen (McNemar’s p = 0.011). Similarly, when using GEX, a significant
shift from negative to positive ER (47%) and from low to high Ki67 (16%) was observed between
the CNB and surgical specimen (McNemar’s p = 0.027 and p = 0.002 respectively). When comparing
biomarker status between different techniques (IHC vs. GEX) performed on either CNBs or surgical
specimens, the agreement in ER, PgR, and HER2 status was generally over 80% in both CNBs and
surgical specimens (kappa range 0.395–0.708), but Ki67 and tumor molecular subtype showed lower
concordance levels between IHC and GEX (48–62% agreement, kappa range 0.152–0.398). These
results suggest that both the techniques used for collecting tissue samples and analyzing biomarker
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status have the potential to affect the results of biomarker assessment, potentially also impacting
treatment decisions and patient survival outcomes.

Keywords: genomic profiling; breast cancer; core-needle biopsy; immunohistochemistry

1. Introduction

Minimally invasive tumor biopsies are vital in the preoperative workup of breast
lesions. Obtaining a preoperative core-needle biopsy (CNB) on suspected breast lesions
is a standard procedure in the primary evaluation of breast cancer and can be used to
accurately differentiate invasive disease from in situ lesions with a high sensitivity and
specificity [1–7]. Neoadjuvant systemic treatment which is administered before definitive
breast surgery is also becoming more widely implemented for a significant number of
patients diagnosed with primary breast cancer since it offers the possibility of breast con-
servation by downsizing, without compromising prognosis [8,9]. In addition, preoperative
therapy offers the unique opportunity to evaluate tumor response allowing for rational
treatment modification, if necessary, following surgery [10–13].

The choice of systemic therapy in the preoperative setting is dependent on tumor
biomarker classification performed on the preoperative CNB together with clinical and
radiological tumor staging. Furthermore, the type of medical treatment offered to patients
unfit for surgical excision of the tumor is also based on the biomarker status classification
determined on a CNB. Although many local and international guidelines permit biomarker
assessment on either CNB or surgical specimens, variability in biomarker status between
paired CNB and surgical specimens, with the potential to impact choice of therapy have
been previously reported [14,15].

Immunohistochemistry (IHC), including in situ hybridization (ISH) for equivocal
human epidermal growth receptor-2 (HER2) cases, is the method of choice for determining
the status of the conventional histopathological biomarkers in breast cancer including
estrogen receptor (ER), progesterone receptor (PgR), HER2, and the proliferation marker
Ki67 [16–18]. These four biomarkers carry prognostic and treatment predictive information
and are used in combination with other clinicopathological factors such as Nottingham
histologic grade (NHG), nodal status, and tumor size for risk stratification and therapy
selection. Other analytical methods including gene expression profiling (GEX) have been
developed for assessing these conventional biomarkers [19–23] and other novel multigene
prognostic and predictive signatures. In fact, some GEX-based tests are already approved
by regulatory agencies to support prognostic and treatment predictive decisions in routine
clinical practice [24–29]. However, it has not been well established whether these GEX-
based assays produce reliable or similar estimations of biomarkers when performed on a
CNB compared with a surgical specimen. A better understanding of the analytical validity
of gene expression-based assays is necessary considering their broad development for
routine clinical implementation and the common practice in research studies where missing
data for a biomarker is completed by supplementing with data collected using a different
technique, if available, e.g., IHC and GEX.

This study aimed to determine the concordance of biomarker status assessed using
IHC and mRNA sequencing (RNAseq) in paired, untreated preoperative CNB and surgical
specimens from a consecutive population-based cohort of 259 patients with early breast
cancer.

2. Materials and Methods
2.1. Study Population and Sample Collection

The study is based on the Sweden Cancerome Analysis Network-Breast (SCAN-
B) cohort which is an ongoing multicenter population-based observational study that
was initiated in September 2010 with the purpose of analyzing breast tumors using next
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generation genomic technologies to facilitate translational research (ClinicalTrials.gov
identifier NCT02306096). As of 30 June 2022, over 18,600 patients were enrolled in SCAN-
B, representing about 85% of eligible patients in the catchment area. Sample collection
and processing within SCAN-B has been described previously [30,31]. Briefly, for cases
included in this sub-study, the preoperative CNB sample was obtained by a radiologist
using ultrasound guidance and at least two separate cores were taken for histopathology
and GEX analyses by RNAseq respectively. At the subsequent surgical procedure, tumor
samples were again collected by the pathologist during the postoperative workup for
histopathological assessment and RNAseq. Written informed consent was collected from
all included patients. The SCAN-B study was approved by the Regional Ethical Review
Board of Lund (registration numbers 2009/658, 2010/383, 2012/58, 2013/459 2014/521,
2015/277, 2016/944), the county governmental biobank center and the Swedish Authority
for Privacy Protection (registration number 364-2010).

Selection of patients and tumors for this sub-study is presented in Figure 1. Women
presenting with early-stage breast cancer treated primarily with surgery, and who had
received no preoperative medical treatment were eligible. Patients with bilateral breast
cancers were excluded. Patients were further selected based on the availability of paired
CNBs and surgical specimens with the corresponding IHC and/or GEX data. In total,
259 patients were eligible for inclusion in our analyses to assess the concordance of the
biomarker status and differences in the transcriptome between CNBs and paired surgical
specimens as presented in this study.
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Figure 1. Flowchart showing the selection of the study specific cohort (n = 259) from the SCAN-B cohort.

2.2. Biomarker Assessment Using Immunohistochemistry (IHC)

IHC analyses of biomarkers were performed as per routine clinical practice at five
different local pathology departments (Malmö, Kristianstad, Helsingborg, Lund, and
Halmstad) and reported in the medical records of the patients. Study-specific re-assessment
of IHC biomarkers was not performed, to reflect the concordance levels in routine clinical
practice. Other patient and tumor characteristics were obtained from the Swedish National
Quality Register for Breast Cancer (NKBC) [8] and missing data were collected directly
from patient records, wherever possible.
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Dichotomized variables for the conventional IHC biomarkers were used in statistical
analyses as follows: positive vs. negative for ER, PgR, and HER2; high vs. low for Ki67.
The cutoff used for ER and PgR expression was ≥10% for positive tumors, consistent with
the national Swedish guidelines [32]. For HER2 interpretation, tumors with IHC scores
between 0–1+ and scores 3+ were classified as HER2-negative and HER2-positive respec-
tively. Tumors showing IHC staining scores of 2+ were further tested using fluorescence
in situ hybridization (FISH) or silver-enhanced in situ hybridization (SISH), and if HER2
gene amplification was detected, the tumor was classified as HER2-positive. Ki67 index
was determined by counting at least 200 cells within areas with the highest observed Ki67
expression, i.e., “hotspots”. Both standard microscopic examination and digital image anal-
ysis were acceptable methods. Surrogate molecular subtypes were determined following
the 2013 St. Gallen consensus with the slight modification of using a Ki67 low expression
cutoff of <20% instead of <14% as specified in the consensus [33]. At the time of this study,
before adopting the thresholds defined by the International Ki67 Working Group [34],
Swedish quality assurance program guidelines recommended that each laboratory calibrate
a Ki67 cutoff yearly such that one third of 100 consecutive cases are Ki67-high. The cutoffs
for high Ki67 expression range between 17–31% for the local pathology departments for
the SCAN-B study. A cutoff of 20% was selected for use in the current analyses based on
the expected ratio of luminal A-like/luminal B-like tumors in our cohort [32,33].

2.3. Gene Expression Analysis (GEX)

The RNAseq workflow for all tumors included in the SCAN-B cohort has been de-
scribed in detail previously [30,31]. Briefly, a preoperative CNB is taken by a radiologist
using ultrasound guidance and placed directly in RNAlater reagent. Following surgery,
routine assessment of the surgical specimen is performed by a pathologist who selects
a piece of tumor-cell enriched fresh specimen(s) and preserves it directly in RNAlater
reagent. Fresh tumor specimens (CNBs and surgical specimens) in RNAlater are sent
directly after collection from all participating clinical sites to the SCAN-B laboratory for
central processing with handling standards that meet or exceed recommendations of the
Breast International Group (BIG). Each tumor specimen is weighed, and when possible,
partitioned into three parts as follows: one piece for isolation of nucleic acids and protein;
one adjacent piece to be fixed in formalin and used for construction of a tissue microar-
ray (TMA); and any remaining tissue is stored frozen for future use. The TMA is used
for histopathological assessment and estimation of tumor cellularity and the TMA also
serves as a research resource. Nucleic acid extraction for RNAseq is always prioritized.
Nucleic acids (and protein) are isolated from the tumor specimen using the AllPrep method
(Qiagen). RNA and DNA quality control is performed by NanoDrop spectrophotometry
and BioAnalyzer (Agilent) or Caliper LabChip XT (PerkinElmer) capillary gel analysis.
Customized protocols for RNA-seq using 1 µg of starting total RNA were developed and
automated for a high-throughput workflow. The complete methods and protocols are
described in the full details in [30]. For inclusion in this study, an RNA quality score (Rin)
≥7 was required for all samples.

The multi-gene RNAseq based classifiers for predicting the status of the standard
breast cancer biomarkers (ER, PgR, HER2, and Ki67) developed by the SCAN-B work group
were implemented in this study [23]. These gene expression-based classifiers were trained
on consensus histopathology labels and displayed substantial agreements to conventional
IHC in the validation cohort. PAM50 molecular subtypes were assigned by the nearest
centroid classification method as previously described [29]. Finally, an exploratory whole
transcriptome paired significance analysis of microarray (SAM) analysis [35] was imple-
mented to identify significant differentially expressed genes between paired CNBs and
surgical specimens (with significance parameters, FDR q-value = 0). This was followed
by gene set enrichment analyses (GSEA) [36] to identify statistically significant enriched
biological processes, pathways, and cancer hallmarks between the untreated paired CNBs
and surgical specimens.
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2.4. Statistical Analysis

The statistical significance for the concordance of biomarker expression between
the paired CNB and surgical specimen and between different analytical methods was
evaluated using both Cohen’s kappa and McNemar’s tests, wherever applicable. Two-
sided statistical analyses were performed and p < 0.05 was considered to be statistically
significant. Statistical analyses were performed using SPSS statistics version 27.

3. Results
3.1. Distribution of Patient and Tumor Characteristics

The distribution of patient and tumor characteristics among the 259 patients is pre-
sented in Table 1 and Supplementary Table S1. The median age at diagnosis was 63 years
(range 27–88 years). 46%, 12%, and 81% of patients presented with T1 tumors, NHG I
tumors, and negative lymph nodes, respectively. The majority (68%) of patients were
postmenopausal women. The distribution of biomarkers assessed by IHC and GEX for
CNBs and surgical specimens is presented in Supplementary Table S1. One hundred and
eighty (69%) paired CNBs and surgical specimens had complete data for all biomarkers by
IHC, whilst 176 (68%) pairs had complete GEX classification for all biomarkers.

Table 1. Distribution of patient and tumor characteristics.

Characteristic N (%)

Age Years 63 (27–88) *

Tumor Stage (T)
T1 Tumor ≤ 20 mm 120 (46%)
T2 Tumor > 20 mm but ≤ 50 mm 122 (47%)
T3 Tumor > 50 mm 12 (5%)
T4 Tumor of any size with direct extension to chest wall or skin 1 (0.4%)
Missing 4 (2%)

Nodal Status
N0 No cancer in regional nodes 210 (81%)
N+ Cancer in regional nodes 49 (19%)

Nottingham
Histological Grade
(NHG)
Grade 1 Well differentiated 31 (12%)
Grade 2 Moderately differentiated 128 (49%)
Grade 3 Poorly differentiated 91 (35%)
Missing 9 (3%)

* Median (range).

3.2. Concordance of Biomarker Status Analysed Using the Same Method (IHC or GEX) in Paired
Core-Needle Biopsy and Surgical Specimen

First, the biomarker status of the paired CNB and surgical specimen were compared
for each analytical method as reported in Table 2. The RNA yield and quality obtained from
CNBs in our study were excellent as sufficient RNA and of good quality was achieved for
more than 98% of the samples. Note that cases for which different library protocols were
used for RNAseq for the paired CNB and surgical specimen were excluded from the GEX
concordance analysis presented herein. The pairwise agreements for IHC evaluation were
high: ER 98.9% (kappa 0.92), PgR 92.3% (kappa 0.78), HER2 97.2% (kappa 0.79), Ki67 82.9%
(kappa 0.47), and St. Gallen subtype 82.8% (kappa 0.61). The pairwise agreements of the
GEX biomarkers were relatively lower compared to IHC, except for Ki67, which displayed
a higher agreement by GEX: ER 88.1% (kappa 0.61), PgR 85.2% (kappa 0.59), HER2 97.2%
(kappa 0.80), Ki67 86.4% (kappa 0.70), and PAM50 subtype 69.9% (kappa 0.55). However,
we observed interesting trends in the discordance of some biomarkers between the CNB and
the paired surgical specimen. Using IHC, 31 out of 181 tumors (17.1%) displayed discordant
Ki67 status with 23/31 (72%) shifting from low expression in the CNB to high expression
in the surgical specimen (Table 2, McNemar’s p = 0.011). This shift in Ki67 corresponded
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to 60% (19/34) Luminal A-like to Luminal B-like subtype conversions between CNB vs.
surgical specimens (Figure 2A); however, the overall shift in St. Gallen subtypes between
CNBs and surgical specimens was not statistically significant (McNemar’s p = 0.067).
Similarly, using GEX, 16 out of the 21 (76%) ER discordant cases shifted from negative ER
status in the CNB to positive ER status in the surgical specimen (McNemar’s p = 0.027).
Ki67 status was discordant in 24 cases, 20 (83%) of which shifted from low expression in
the CNB to high expression in the surgical specimen (McNemar’s p = 0.002). Interestingly,
9/10 (90%) tumors which were unclassifiable into any molecular subtype using GEX in
the CNB were successfully classified into one of the five intrinsic molecular subtypes in
the surgical specimen and Luminal A to Luminal B shifts were more prevalent (Figure 2B,
McNemar´s p = 0.168).
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Figure 2. Concordance of St Gallen subtypes (A) and PAM50 subtypes (B) between paired core-needle
biopsies and surgical specimens.

Table 2. Concordance of biomarker status between paired preoperative CNB and surgical specimen
assessed using IHC and GEX, respectively.

Biomarker (IHC) CNB/Surgical
Specimen N % Agreement Kappa McNemar’s p

ER (n = 183)

Pos/Pos 169

98.91% 0.917 1.000
Neg/Neg 12
Pos/Neg 1
Neg/Pos 1

PgR (n = 181)

Pos/Pos 134

92.27% 0.776 0.057
Neg/Neg 33
Pos/Neg 3
Neg/Pos 11

HER2 (n = 181)

Pos/Pos 10

97.24% 0.785 1.000
Neg/Neg 166
Pos/Neg 3
Neg/Pos 2

Ki67 (n = 181)

High/High 129

82.87% 0.474 0.011
Low/Low 21
High/Low 8
Low/High 23

St Gallen Subtype
(n = 180) LumA/LumA 15

82.78% 0.612 0.067
LumB/LumB 116
HER2/HER2 10
TNBC/TNBC 8

Discordant subtype 31
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Table 2. Cont.

Biomarker (GEX) CNB/Surgical
Specimen N % Agreement Kappa McNemar’s p

ER (n = 176)

Pos/Pos 133

88.07% 0.606 0.027
Neg/Neg 22
Pos/Neg 5
Neg/Pos 16

PgR (n = 176)

Pos/Pos 122

85.23% 0.588 0.076
Neg/Neg 28
Pos/Neg 8
Neg/Pos 18

HER2 (n = 176)

Pos/Pos 11

97.16% 0.800 0.063
Neg/Neg 160
Pos/Neg 0
Neg/Pos 5

Ki67 (n = 176)

High/High 48

86.36 0.699 0.002
Low/Low 104
High/Low 4
Low/High 20

Pam50 Subtype
(n = 176) LumA/LumA 56

69.89% 0.552 0.168

LumB/LumB 49
HER2/HER2 7
Basal/Basal 9

Normal-
like/Normal-like 1

Unclassified/Unclassified 1
Discordant subtype 53

3.3. Concordance between Biomarker Status Analyzed by GEX versus IHC for CNB or Surgical
Specimens, Respectively

Next, we investigated the agreement between IHC and GEX biomarker status sep-
arately for CNBs and surgical specimens (Table 3). The respective pairwise agreements
for IHC vs. GEX performed on CNBs were ER 85.7% (kappa 0.40), PgR 80.8% (kappa
0.48), HER2 96.6% (kappa 0.71), Ki67 47.6% (kappa 0.15), and subtype 57.3% (kappa 0.26).
Similarly, the respective pairwise agreements for IHC vs. GEX performed on surgical
specimens were ER 91.5% (kappa 0.64), PgR 86.3% (kappa 0.59), HER2 93.5% (kappa 0.63),
Ki67 55.3% (kappa 0.21), and subtype 61.6% (kappa 0. 40). Notably, a tendency to switch
classification from positive to negative ER, high to low Ki67 and from Luminal B to Luminal
A subtype was consistently observed when comparing IHC with GEX classification for both
CNBs and surgical specimens (Table 3). Specifically, 23/24 (96%) CNBs showing discordant
ER status were classified as ER positive by IHC and ER negative by GEX, 84/87 (97%) of
CNBs were discordant for Ki67; classified as high by IHC and low by GEX, and 48/105
(45.7%) of samples classified as Luminal B-like by IHC were classified as Luminal A by GEX.
Likewise, 18/18 (100%) surgical specimens showing discordant ER status were all classified
as ER positive by IHC and ER negative by GEX, 99/99 (100%) of surgical specimens were
discordant for Ki67 being classified as high by IHC and low by GEX, and 63/149 (42.3%) of
samples classified as Luminal B-like by IHC were classified as Luminal A by GEX.
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Table 3. Concordance of biomarker status assessed by IHC compared to GEX for CNBs and surgical
specimens, respectively.

Biomarker (CNBs) IHC/GEX N % Agreement Kappa

ER (n = 168)

Pos/Pos 134

85.71% 0.395
Neg/Neg 10
Pos/Neg 23
Neg/Pos 1

PgR (n = 167)

Pos/Pos 110

80.83% 0.484
Neg/Neg 25
Pos/Neg 19
Neg/Pos 13

HER2 (n = 166)

Pos/Pos 8

96.64% 0.708
Neg/Neg 152
Pos/Neg 3
Neg/Pos 3

Ki67 (n = 166)

High/High 43

47.59% 0.152
Low/Low 36
High/Low 84
Low/High 3

Subtype (n = 150) LumA/LumA 23

57.33% 0.264
LumB/LumB 52
HER2/HER2 6
TNBC/Basal 5

Discordant subtype 64

Biomarker
(Surgical) IHC/GEX N % Agreement Kappa

ER (n = 213)

Pos/Pos 176

91.54% 0.636
Neg/Neg 19
Pos/Neg 18
Neg/Pos 0

PgR (n = 212)

Pos/Pos 153

86.32% 0.588
Neg/Neg 30
Pos/Neg 16
Neg/Pos 13

HER2 (n = 216)

Pos/Pos 14

93.52% 0.632
Neg/Neg 188
Pos/Neg 3
Neg/Pos 11

Ki67 (n = 215)

High/High 83

55.34% 0.205
Low/Low 36
High/Low 99
Low/High 0

Subtype (n = 203) LumA/LumA 24

61.58% 0.398
LumB/LumB 79
HER2/HER2 11
TNBC/Basal 11

Discordant subtype 78

3.4. Differential Global Gene Expression Profiles of Paired CNBs and Surgical Specimens

Three hundred and eleven (311) genes were significantly differentially expressed between
paired CNB and surgical specimens; 172 with higher and 139 with lower relative expression
in CNBs compared with the paired surgical specimens (FDR = 0, Supplementary Table S2).
Significantly enriched hallmark of cancer genesets among the genes showing higher ex-
pression among CNBs included DNA repair, cell cycle, TNF-alpha signaling, hypoxia,
p53 pathway, mTOR signaling, mitotic spindle, estrogen response, notch signaling, and
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apoptosis, among others (Figure 3 and Supplementary Tables S3 and S4). Gene sets associ-
ated with myogenesis, KRAS signaling, angiogenesis, IL6 JAK STAT3 signaling, epithelial
mesenchymal transition, and fatty acid metabolism were found to be enriched among genes
with decreased expression among CNBs (Figure 4 and Supplementary Tables S3 and S4).
The GSEA results were consistent for the genesets included in the hallmark of cancer and
Reactome databases (Supplementary Tables S3 and S4).
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enriched among genes showing significantly lower expression in CNBs compared with the paired
surgical specimens. Refer to Supplementary Table S3 for the full list of the enriched Hallmark of cancer
pathways among the genes with lower expression in CNBs compared with surgical specimens.

4. Discussion

Several factors can impact the accuracy of analyses performed on preoperative CNBs,
such as the size of the core-needle used, the number of samples taken, tumor size, and the
experience and expertise of the radiologist performing the procedure. In this real-life study,
these factors may have varied for the different patients, and the analyses presented herein
focus instead on investigating how reliable a preoperative CNB is in routine clinical prac-
tice when determining the status of conventional breast cancer prognostic and treatment
predictive biomarkers using IHC and GEX respectively.

The surgical specimen is usually considered as the gold standard to obtain information
about the status of different biomarkers for a breast cancer. The surgical specimen allows
for an overview of the whole tumor area of that tissue section, which is essential for the
assessment of the surgical margin. It also allows for the estimation of invasive areas, presence
of in situ cancer, and the spatial expression of biomarkers in the tumor. The area of the tumor
that is represented in a tissue section is limited but is nevertheless larger compared to the
area represented by a CNB, where there is a greater risk that the material taken does not fully
represent the entire nature of the tumor, e.g., in terms of tumor heterogeneity.
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In this study, we observed moderate to very good concordance of biomarkers between
paired preoperative CNB and surgical specimen when the same technique (IHC or GEX)
was used for biomarker assessment. The concordance for IHC biomarkers observed in this
study is similar to results reported in previous studies; ER (68–100%), PgR (71–89%), HER2
(60–100%), Ki67 (80–82%) [37–45]. Recent research also suggests modest to strong correla-
tion of the gene expression patterns between paired CNBs and surgical specimen [46,47],
in line with our results. A reassuring finding in this study was the consistently high level of
agreement in the HER2 status between CNB and surgical specimens for both IHC and GEX
(97.24% and 97.16%, respectively). HER2 status is essential in deciding whether to provide
anti-HER2 targeted treatments in breast cancer [48,49]. It must be highlighted that because
the multigene classifiers for the conventional breast cancer biomarkers (ER, PgR, Ki67, and
HER2) used in this study are trained on histopathological labels, it is not surprising that
tumors assigned a positive HER2GEX status are not necessarily classified as HER2-enriched
by the conventional PAM50 molecular subtype classifier.

Our study results also show that for most of the biomarkers, the concordance of GEX-
based classifiers between the CNBs and surgical specimen were inferior to the concordance
observed for the standard IHC. Tumor heterogeneity and sampling error are factors which
can be accounted for when a biomarker is assessed using IHC by a trained pathologist.
On the other hand, results of transcriptional profiling of tumors using techniques like
bulk RNAseq represent the average gene expression levels in the sample, including non-
malignant cells found in the sample, which may impact the classification of samples. The
development of methods which ensure that the CNB collected for biomarker analyses is
indeed rich in tumor cells can potentially improve the analytical validity of GEX profiling in
CNBs. An example of a method under experimentation at our local pathology department
is obtaining a punch biopsy from the surgical specimen and studying the tumor cellularity
in the borders of the punch by H&E staining to ensure that the punch biopsy was taken
from a section of the tumor with sufficient malignant cells, prior to extracting RNA for gene
expression analysis. Tumor cellularity in the borders of CNBs will also be investigated,
although this will be a more complex process.

The multigene classifiers have been shown to provide valuable added clinical informa-
tion, particularly for IHC ER-positive tumors which were predicted to display ER-negative
properties according to the GEX classifier [23]. Specifically, tumors which were classified
discordantly as ERIHC positive and ERGEX negative by this multigene classifier showed an
inferior survival compared to tumors concordantly classified as ER positive [23]. In this
sub-cohort, we observed similar trends in the concordance levels between the histopatho-
logical labels (IHC) and multigene signatures for ER, PgR, HER2, and Ki67; with the highest
agreement observed for ER expression and the lowest agreement for Ki67, regardless of
the sample type (CNBs or surgical specimens). Interestingly, a pattern for the discordance
overwhelmingly favoring a change from positive ER-status by IHC to negative ER status
by GEX in both the CNBs (23/24) and surgical specimen (18/18), respectively was noted.
Moreover, in this study, the majority of the IHC ER positive cases discordantly classified as
ER negative by GEX (18/23 on CNB, 12/18 on the surgical specimen) also had a high (>50%)
percentage for ER-staining on IHC. This suggests that the ER status determined by GEX
might better reflect the endocrine responsiveness of the tumor, adding clinically relevant
information for the management of some tumors immunohistochemically classified into
the luminal subtype.

Despite GEX-based biomarkers being incorporated into Swedish and international
guidelines to help predict the benefit from adjuvant chemotherapy, current guidelines on
neoadjuvant chemotherapy suggest that there is insufficient evidence for using genomic
profiles in a neoadjuvant setting [50,51]. Remarkably, in this study, the GEX-classifier
for Ki67 showed better concordance between the CNB and the surgical specimen when
estimating the proliferative activity of the tumor, a marker where the immunohistochemical
assessment is notoriously troublesome. This finding suggests that GEX may serve as a
companion assay to help differentiate the more highly proliferative luminal B-like tumors
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from luminal A-like tumors in CNBs. This consideration is particularly interesting for
ER positive tumors when IHC yields ambiguous results for risk prediction [52]. The
significant discordance between CNB and surgical specimen in Ki67IHC status when a
similar technique was used for biomarker analysis (IHC or gene expression) reported in
this study is in line with previous research on this biomarker [44]. However, we observed
that when comparing Ki67 determined by IHC with Ki67 determined using GEX, almost all
(>97%) discordant cases were classified as low Ki67 by GEX, suggesting a less aggressive
tumor phenotype with the possibility of treatment de-escalation. The International Ki67
in Breast Cancer Working Group (IKWG) has suggested that the clinical utility of this
biomarker should be limited to prognosis assessment in early-stage breast cancer which is
ER-positive and HER2-negative. The report also raises the issue of lacking reproducibility
of this biomarker [52]. Our results continue to shine light on the limitation of only using
IHC for biomarker assessment in the preoperative setting which may not be sufficient
to distinguish the more highly proliferative luminal B-like tumors from the luminal A-
like tumors, a distinction which may change the recommendation on whether to pursue
neoadjuvant chemotherapy or not. In the clinical setting, NHG is sometimes included as
an adjunct in unclear cases of proliferation. In our study, the large extent of discordance
between GEX and IHC when evaluating Ki67 status and molecular subtype may partly
be explained by the fact that the IHC assessment for Ki67 was performed in different
pathology labs, with different Ki67 cutoffs, whilst a single cutoff was used in this study to
dichotomize Ki67 status. This does however only emphasize the poor analytical validity
of this biomarker, and the lack of standardization in the analysis of this biomarker as
previously suggested by the International Ki67 working group [34]. Recent efforts by the
IKWG suggests that digital solutions may be required to address this issue. Using digital
image analysis, 30 paired CNB and surgical breast cancer specimens were compared, and
no significant difference was observed in the digitally assessed Ki67 index between serial
sections. However, a systematic discrepancy between CNB and corresponding whole
sections was observed—CNBs yield higher Ki67 scores (possibly due to pre-analytical
factors including more standard and prompt tissue handling, fixation time, etc.). Based
on these results, IKWG suggests that Ki67 IHC tested on a CNB should be preferred to
excision specimens in clinical decision-making, because doing so will preclude many pre-
analytical factors [52]. However, this will require that the CNB specimen collected is truly
representative of the tumor. New studies comparing Ki67 status between GEX and IHC
with standardized immunohistochemical Ki67 analysis are therefore recommended, and
alternative ways of assessing tumor proliferation should be considered.

A further consideration regarding Ki67 is the use of this biomarker to assess treatment
response, where a relative reduction of Ki67 expression levels of the tumors after brief ex-
posure to treatment may be interpreted as a good treatment response and is associated with
a favorable long-term outcome. The results of the clinical trial POETIC aiming to assess the
benefit of pre- and perioperative aromatase inhibitor (AI) treatment on the clinical outcome
in operable breast cancer are strongly indicative of a prognostic value of the relative Ki67
reduction [53]. In the POETIC trial, the Ki67 levels were measured on baseline, and 2 weeks
after the initiation of treatment with an Aromatase Inhibitor to correlate Ki67 changes
to clinical outcome. By performing comparison on the global transcriptome level in the
present study, we observed significant differences in several prognostic and cancer treat-
ment predictive genes and gene sets in this treatment naïve cohort. These results illustrate
that substantial variation in the expression of genes associated with important biological
processes/pathways likely related to both tumor intrinsic factors, differences in the compo-
sition of the tumor microenvironment, and the time between tissue sampling to fixation in
preservative solution (RNAlater) exists even when comparing treatment-naïve CNB vs. sur-
gical specimens. The observation that technical variations can potentially impact decisions
regarding choice of therapy continues to emphasize the importance of robust validation for
every step in the clinical diagnostic process. Caution must also be exercised when interpret-
ing treatment-induced changes in genes/biomarkers. Ideally, the analytical reproducibility
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should be investigated for each biomarker wherever possible and differences associated
with sample heterogeneity and technical variation should be taken into consideration when
interpreting data about treatment-induced changes in biomarkers, especially for neoad-
juvant studies and particularly in the so called window-of-opportunity studies where a
baseline CNB is often compared with either an on-treatment CNB or surgical specimen and
may actually be the only biomarker used to assess a potential treatment effect.

5. Conclusions

When using a preoperative CNB to determine the biomarker status of a tumor using
IHC or GEX, the limitations of both methods should be acknowledged to correctly reflect
the nature of the tumor, and if possible, investigated for new/uncharacterized biomarkers.
The proliferative status of the tumor should be interpreted with caution when determined
immunohistochemically using Ki67 expression, especially in the ER+/HER2− group. More-
over, the endocrine responsiveness of a tumor as determined by its immunohistochemical
ER status is an aspect where complementing with a GEX-based assay may add relevant
clinical value. Future studies should determine ways to improve the quality of sample
collection and the reproducibility of the results of biomarkers assessed in CNBs in the clinic
to ensure that patients are always provided the best treatments and spared the toxicities of
ineffective treatments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14164000/s1, Table S1: Distribution of biomarker expression
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