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A B S T R A C T   

Background and purpose: Magnetic resonance imaging (MRI) scans are highly sensitive to acquisition and 
reconstruction parameters which affect feature stability and model generalizability in radiomic research. This 
work aims to investigate the effect of image pre-processing and harmonization methods on the stability of brain 
MRI radiomic features and the prediction performance of radiomic models in patients with brain metastases 
(BMs). 
Materials and methods: Two T1 contrast enhanced brain MRI data-sets were used in this study. The first contained 
25 BMs patients with scans at two different time points and was used for features stability analysis. The effect of 
gray level discretization (GLD), intensity normalization (Z-score, Nyul, WhiteStripe, and in house-developed 
method named N-Peaks), and ComBat harmonization on features stability was investigated and features with 
intraclass correlation coefficient >0.8 were considered as stable. The second data-set containing 64 BMs patients 
was used for a classification task to investigate the informativeness of stable features and the effects of 
harmonization methods on radiomic model performance. 
Results: Applying fixed bin number (FBN) GLD, resulted in higher number of stable features compare to fixed bin 
size (FBS) discretization (10 ± 5.5 % higher). `Harmonization in feature domain improved the stability for non- 
normalized and normalized images with Z-score and WhiteStripe methods. For the classification task, keeping 
the stable features resulted in good performance only for normalized images with N-Peaks along with FBS 
discretization. 
Conclusions: To develop a robust MRI based radiomic model we recommend using an intensity normalization 
method based on a reference tissue (e.g N-Peaks) and then using FBS discretization.   

1. Introduction 

Radiomics is defined as high-throughput extraction of quantitative 
features from medical images using advanced mathematical algorithms 
to perform classification or prediction tasks [1]. The hypothesis is that 
radiomic features may capture subtle but relevant information invisible 
to naked eyes [1]. As a growing field of research, radiomics has been 
applied to many clinical problems in oncology and has demonstrated its 
great potential for diagnosis, prognosis, and treatment response pre-
diction [2–4]. However, model generalizability and reproducibility of 
results make the translation of this technique into clinical practice 
challenging [5]. Several studies have shown that radiomic feature values 
can be affected by differences in various parts of the radiomics workflow 
[6–11], such as centers, scanner manufacturers, imaging protocol, and 

reconstruction algorithms. These variabilities hamper data pooling from 
different sites and may result in biased and unreliable models. 

Magnetic resonance imaging (MRI), specifically T1-weighted 
contrast-enhanced, is widely used for diagnosis and management of 
patients with brain metastases (BMs) due to its excellent soft tissue 
contrast and spatial resolution [12]. However, a major issue in quanti-
tative MRI studies is the high sensitivity of MRI intensities to variations 
in acquisition and reconstruction parameters [13,14]. Moreover, in 
contrast to other imaging modalities, like CT and PET, MRI is measured 
in an arbitrary unit and image intensities do not have any clear physical 
interpretation. Consequently, there are large differences in MRI in-
tensities even between the images of the same patient scanned with the 
same scanner and the same protocol [15]. The aforementioned reasons 
make the quantitative analysis of MRI images and the reproducibility of 
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MRI based radiomics features challenging. 
In recent years, two main approaches were proposed to address the 

problem of incomparability among MRI images and reduction of the 
scanner effects, variability in the scanner, protocol, reconstruction al-
gorithms, etc; these are a) harmonization in the image domain, which 
mainly consists of image pre-processing and MRI intensity normaliza-
tion, and b) harmonization in the feature domain [5,15,16]. 

Several methods of MRI intensity normalization have been proposed, 
however, there is no consensus among studies about which method is 
optimal for a specific application. Some of these methods, such as Z- 
score normalization, histogram matching, and Nyul normalization [17] 
are general, tissue-nonspecific methods. On the other hand, methods 
such as White-Stripe normalization, is specifically applied to brain MRI 
and use white matter as reference tissue for normalization [15,18]. 

ComBat harmonization is one of the widely used methods of feature 
harmonization [19]. The effectiveness of ComBat harmonization in 
removing the imaging parameters and scanner-related variabilities and 
harmonizing radiomics features in different multicentric studies 
including PET/CT [20,21], CT [22], and MR [16] radiomics studies has 
been demonstrated. 

Besides the harmonization methods for removing the inconsistencies 
related to image acquisition and reconstruction, there are other addi-
tional critical pre-processing steps in MR radiomics studies including 
bias field correction to minimize the intensity inhomogeneity within a 
tissue [23] and gray-level discretization which clusters pixels into bins 
based on their intensity values in order to reduce noise and computa-
tional time [24]. Several studies have shown that MRI pre-processing 
has a considerable impact on the reliability and repeatability of radio-
mics texture features [21,24]. However, investigations of the combined 
effect of image pre-processing and harmonization on the whole pipeline 
of radiomics study including radiomics feature stability and model 
performance are limited. 

The main objective of this study is to assess the joint effect of MRI 
image pre-processing and harmonization methods on the stability of 
radiomics features based on a test–retest analysis of MRI images of a 
cohort of patients with BMs. We also evaluated the performance of 
radiomics models for the prediction of the primary site of cancer (lung 
vs. melanoma) in patients with BMs. 

2. Materials and methods 

2.1. Patient cohort 

In this study, we used two retrospective MRI datasets of BMs patients 
who were scanned and treated with radiosurgery for newly diagnosed 
BMs at the University Hospital Zurich (USZ). Dataset1 was used as a 
test–retest dataset for evaluating the stability of radiomics features and 
includes 25 patients with BMs (15 females and 10 males with an average 
age of 60.2 years). Each patient underwent two T1-contrast enhanced 
MRI scans, one standard diagnostic scan for screening/detection of BMs 
and another dedicated scan in treatment position for radiosurgery 
planning purposes [25]. These scans were performed using one of the 
following three different scanners: Philips Healthcare-Ingenia, GE-Dis-
covery, and GE-Signa Premier, all of which had a field strength of 3 T. 
The average time interval between the two scans was 17.3 ± 5.9 days. 
Only patients without tumor progression and tumor morphological 
changes were included in this dataset. 

Dataset2 was used for a proof-of-principle application for classifi-
cation of the primary site of cancer after applying the different 
normalization/harmonization methods and consisted of pre-treatment 
T1-weighted contrast-enhanced MRI scans of 64 patients (31 with 
melanoma and 33 with non-small cell lung cancer) with a total number 
of 104 BMs. The patients’ characteristics are provided in Supplemental 
data (Table S-1). The Study was approved by Local Ethic Committee 
(BASEC-Nr. 2018-01794) and consent for retrospective analysis was 
obtained for both Datase1 and Dataset2. 

2.2. Image preprocessing and segmentation 

We used the HD-BET brain extraction tool [26] to remove the skull 
from MR images; the provided brain masks were used for normalization. 
In order to correct the intensity non-uniformity in MR images, bias field 
correction was applied on skull striped images via the N4itk algorithm 
[27]. The tumor volumes were delineated by board certified radiation 
oncologists according to the institutional guidelines. In both datasets, 
the initial slice thickness and in-plane resolution were between 0.47–0.6 
mm. The images in both datasets were resized into isotropic voxel size of 
0.6 mm using linear interpolation. 

2.3. Image intensity normalization 

One of the aims of this study was to investigate the effect of MR 
intensity normalization and feature harmonization on the stability of 
radiomics features. To this end, we applied three commonly used 
normalization methods including Z-score, Nyul [17,28], White-Stripe 
[15], and an in-house developed normalization method named N-Peaks 
normalization. The detailed explanation about the normalization 
methods used in this study is provided in the Supplementary material. 

2.4. Gray-level discretization and feature extraction 

To assess the combined effect of GLD and MR intensity normaliza-
tion, we implemented two commonly used GLD approaches. One 
approach is relative GLD which clusters the intensities of pixels into a 
fixed number of bins (FBN). In this study, we applied five different 
numbers of bins which are commonly used in other studies (FBN = 16, 
32, 64, 128, 256). 

Another approach is absolute GLD which clusters the pixels into a 
fixed bin size (FBS). Since ROIs have different ranges of intensities we 
defined the size of bins by calculating the following scaling factor: 

BS =
Mean ROI intensity Range

BN 

BS denotes bin size and BN denotes bin number. For each ROI the 
intensity range is the difference between maximum and minimum in-
tensities. Here we calculated the average intensity range of all ROIs and 
then divided it by the bin numbers. We tested five different bin sizes for 
BN = 16, 32, 64, 128, 256, denoted as FBS16, FBS32, …, FBS256. 

In total, 837 radiomics features were extracted from each ROI 
including first order intensity based, texture and wavelet features. 
Feature extraction was performed using PyRadiomics [29], a standard 
open source Python package for radiomic feature extraction with feature 
definition in compliance with the Image Biomarker Standardization 
Initiative (IBSI) [30]. The list of all extracted features are provided in 
Supplemental data (Table S-2). Since we used the same ROI mask for the 
test retest dataset we did not calculate shape features for test–retest 
analysis. However, for the classification task 14 additional shape fea-
tures were extracted from the ROI. 

For radiomic feature harmonization we applied the well-known 
ComBat harmonization [20] on our data. More explanation about 
ComBat harmonization is provided in Supplementary materials. 

2.5. Data analysis 

We used the intraclass correlation coefficient (ICC) to assess the 
stability of radiomics features in dataset1 and features with ICC ≥ 0.8 
were considered as stable features, as this is a commonly used value in 
published studies [31,32]. In order to compare the proportions of stable 
features before and after ComBat harmonization we used McNemar’s 
test. 

To evaluate the effects of MR intensity normalization and GLD on the 
classification task for primary cancer sites (lung or melanoma) of BMs, 
dataset2 was used and four different classifiers including Logistic 
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Regression (LR), Random Forest (RF), Support Vector Machine (SVM), 
and Gaussian Naive Bayes (GNB) were implemented. A nested cross- 
validation scheme with two 5-fold cross-validations as inner and outer 
loops was implemented to train, optimize, and test the model. Each 
inner and outer loop was repeated 10 times. 

To reduce data dimensionality and computation time, the Spearman 
correlation coefficient was calculated between each pair of features and 
for values above 0.9, one of the features was removed. Three feature 
selection methods including k-best (F-score), Lasso, and variance 
threshold were implemented to select the most informative features. The 
area under the receiver operating characteristic curve (AUC) was used as 
the evaluation metric and finally, the average test AUC for each com-
bination of classifier and feature selection was reported. 

In order to check if the effects of different normalization methods on 
radiomics feature stability and the predictive performance of radiomics 
models are significantly different, the Friedman test followed by Con-
over post hoc analysis were applied on ICCs and AUCs. 

3. Results 

3.1. Impact of intensity normalization, feature harmonization and gray- 
level discretization methods on the stability of radiomics features 

According to the results, increasing the bin number or decreasing the 
size of bins resulted in a higher percentage of stable features. For all 
normalization methods, images discretized with FBN had a higher per-
centage of stable features in comparison to images discretized with FBS. 
When using FBS, the Nyul method provided the highest percentage of 
stable features, followed by Z-score, N-Peaks, no normalization and WS. 
On the other hand, when using FBN, the Nyul method resulted in the 
lowest number of stable features, whereas the other methods provided a 
slightly higher percentage of stable features (Fig. 1). 

More detailed analysis of the effect of GLD on features stability shows 
that intensity features has the lowest average ICC (ICCs between 
0.21–0.48 for FBN and 0.18–0.49 for FBS) (Fig. 2). On the other hand, 
for all configurations, texture features category based on neighborhood 
gray tone difference matrix (NGTDM) are the most stable and had the 
highest average ICC (ICCs between 0.39–0.80 for FBN and 0.31–0.77 for 
FBS). The results for wavelet features are shown in Supplementary 
Figs. 1 and 2. A similar trend is evident for wavelet features. For 
different groups of wavelet features, HHL group has the most unstable 
features. In comparison to original features, wavelet features (specif-
ically LLH-with FBN discretization) have higher average ICCs. 

Although, none of the normalization methods could result in stable 
intensity based features, there is significant difference in average ICC of 
intensity based features between different normalization methods. Fig. 3 
represents the average ICC of first-order features versus different bin 

numbers and bin sizes. According to this figure, for both discretization 
methods, N-Peaks normalization could better improve the ICC of in-
tensity based features. 

The results of the impact of ComBat harmonization on the stability of 
radiomic features are summarized in Table S3 and S4. Based on the 
results for both cases of using FBN and FBS discretization, ComBat 
harmonization could slightly improve the stability of radiomics features 
for non-normalized and normalized images with the WS and Z-score 
methods. In most of the cases the p-values are less than 0.05. 

3.2. Impact of normalization methods on the performance of different 
models for classification of primary site of cancer 

For the classification task, Lasso in combination with Logistic 
Regression, performed better than other models (Fig. 4.A). We report the 
results for FBN32 and FBS32 as these two discretization methods are 
frequently used in other studies. The Friedman test resulted in a p-value 
of 0.003 for the AUCs, suggesting presence of significant differences 
among normalization methods. Therefore, we further used the Conover 
post-hoc test for a deeper analysis of our data. The results of the Conover 
test are represented in Supplemental materials (Supplementary Fig. 3. 
A). According to the p-values, there are no significant differences be-
tween the normalization methods. However, the difference between no- 
normalized scans with FBS discretization and all other methods is sig-
nificant (Pvalue < 0.05). 

The critical difference plot of average score rank of different 
normalization methods based on AUCs of Fig. 4.A is presented in Fig. 4. 
B. In this plot the lower rank indicates the better performance of the 
normalization method and the horizontal lines connect the methods 
with similar performance. According to the results, WS-FBN32 
normalization has better rank in comparison to other methods. In gen-
eral normalization methods with FBN discretization have resulted in 
better ranks in comparison to FBS discretization. 

All the radiomics models were trained and tested using only the 
stable features. Average test AUCs of different methods are presented in 
Fig. 4.C. The preselection of stable features significantly decreased the 
performance of the models for all normalization methods except for N- 
Peaks and Nyul normalization The Friedman test on AUCs resulted in p- 
value < 0.05. The further analysis with the Conover post-hoc test is 
represented in Supplementary Fig. 3.B. According to the critical differ-
ence plot (Fig. 4.D) N-Peaks-FBS32 achieved the best rank in comparison 
to other methods which indicates this method is successful in normal-
izing the intensities while retaining useful biological information. 

4. Discussion 

The robustness and stability of a radiomic feature is a key factor to it 

Fig. 1. Percentage of stable features for different normalization methods and gray-level discretization.  
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as a potential imaging biomarker. However, large number of radiomic 
features are sensitive to the acquisition, reconstruction parameters, and 
preprocessing methods [5,33–35]. The overall aim of our study was to 
investigate the impact of image preprocessing and both image- and 
feature-level harmonization on the stability of radiomics features. 
Furthermore, we assessed the performance of radiomic-based models for 
the classification of the primary site of cancer in a cohort of patients with 
BMs. We found that FBN results in higher number of stable features 
however using FBS with a tissue-based normalization leads to better 
results for classification. 

Examination of GLD methods showed that increasing the number of 
bins and decreasing the bin sizes increased the percentage of stable 
features and, overall, using FBN resulted in more stable features in 
comparison to FBS. It should also be noted that the variance of the 
percentage of stable features between different normalization methods 
was higher for FBS discretization in comparison to FBN which means 
applying intensity normalization after FBN discretization does not have 

a strong benefit for radiomics features stability. Carré et al. [36] also 
investigated the effect of GLD and MR intensity normalization on the 
stability of radiomics features. They reported that using FBS dis-
cretization improved the number of robust features in all cases of 
applying MR intensity normalization compared to non-normalized 
which is consistent with the results of our study. Moreover, they re-
ported that a higher number of bins was associated with a higher 
number of robust features. Based on their results, using FBN dis-
cretization, White-Stripe, and Z-score normalization resulted in a similar 
percentage of robust features as non-normalized images which is in line 
with our results. In their study, they stated that FBN discretization 
makes the use of MR intensity normalization unnecessary for second 
order radiomics features. 

In another study, Li et al. [9] investigated the effect of MR intensity 
normalization, ComBat harmonization, and image resampling on 
radiomics features reproducibility. In that study, they used FBN = 32 for 
GLD. According to their results, the impact of intensity normalization on 

Fig. 2. Heatmap of average ICCs of original radiomics features for A) different intensity normalization methods and fixed bin number gray level discretization and B) 
fixed bin size gray level discretization method. 

Fig. 3. Comparison the average ICC of intensity-based features between different normalization methods with A) FBS gray level discretization and B) FBN gray level 
discretization. 
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radiomics features reproducibility was not obvious compared to the case 
of non-normalized images. However, they showed that intensity 
normalization brings the images’ intensities into the same scale and 
therefore makes the MR images more comparable. 

In our study, N-Peaks intensity normalization could effectively 
improve the average ICC for first-order intensity features (from an 
average ICC of 0.21 to 0.48 for FBN and from 0.18 to 0.49 for FBS dis-
cretization (Fig. 3) however, none of the intensity-based features were 
stable and the average ICCs were lower in comparison to other feature 
categories. The results of Carré et al. [36] regarding the stability of 
intensity-based features were not consistent with our results. According 
to their results, applying intensity normalization increased the number 
of stable features (with ICC > 0.8) and the Nyul method resulted in the 
highest number of stable intensity-based features (16 out of 18 features 
were stable). One possible explanation is that the scanner variation in 
our study had a severe effect on image intensity ranges so that intensity 
normalization could significantly improve the average ICC of intensity- 
based features but did not make the feature stable. 

Evaluation of the effect of ComBat harmonization on radiomics 
features stability showed that it could improve features stability for non- 
normalized, normalized images with WS, and Z-score normalization by a 
maximum of 3.4 %, and in the case of Nyul and N-Peaks normalization, 
it could not improve features stability in most of the cases. A study by 
Orlhac et al. [16] showed that applying ComBat harmonization in 
combination with WS normalization could significantly improve the 
similarity of distribution of radiomics features acquired from two 
different MRI scanners. In another study by Li et al. [9], the results show 
that ComBat harmonization can effectively improve the reproducibility 
of features extracted from T1-weighted MR images and remove the 
scanner effect. Based on their results, MR intensity normalization could 
make the images comparable, however, at the radiomics feature level it 
could not improve features reproducibility. More studies should be 

conducted regarding the joint effect of Intensity normalization and 
ComBat harmonization. 

One possible approach for building robust and generalizable radio-
mic models is the preselection of stable and reliable features, which have 
the robustness to variabilities in image acquisition and reconstruction 
[5,37]. A significant reduction of radiomic features to be analyzed is one 
of the main advantages of this approach. However, there is the potential 
for information loss and the stable features might not necessarily contain 
clinically relevant information. In our study the pre-selection of stable 
radiomic features decreased the performance of the models however, 
using only stable features based on N-Peaks normalization did not 
decrease the performance of models which means our developed 
method is successful in keeping the clinical information. Compared to 
the other normalization techniques, this N-Peak method attempts to 
connect the intensity units to the tissue types more strongly. Using two 
normal tissue landmarks for the intensity normalization, the relation-
ship of the intensity values with normal tissues should be stronger than 
when using only one tissue, as is the case for White Stripe. Furthermore, 
the fact that no width (or standard deviation) of an intensity distribution 
is used means that the technique is less subject to heterogeneity or noise 
in the region of interest, which would affect the standard deviations of 
intensity used for the Z-Score and White Stripe normalization 
techniques. 

While IBSI recommends FBN discretization as preprocessing for MRI 
images, it should be considered that this method detached the relation 
between image intensities and physiological information while FBS 
discretization preserves it [30]. Therefore, using MRI intensity 
normalization with FBS gray level discretization seems to be a more 
reasonable pre-processing method. 

The findings of our study show the effectiveness of harmonization 
methods in increasing the stability of contrast-enhanced T1-weighted 
radiomic features in patients with brain metastases. In the case of using 

Fig. 4. Heatmap and critical difference plot of the performance of different classifiers based on extracted features from different intensity normalization methods. A) 
Heatmap of average test AUCs of different classifiers performance based on all radiomic features. B) Critical difference plot of average rank of different normalization 
methods based on section (A). C) Heatmap of average test AUCs of the performance of different classifiers based on preselection of stable features. D) Critical 
difference plot of average rank of different normalization methods based on the AUCs of section (C). 
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FBS discretization, applying MR intensity normalization is mandatory. 
In order to develop a generalizable radiomic model we recommend 
using FBS discretization with a tissue-based intensity normalization 
method which can preserve the biological information. 

Our study also bears some inherent limitations. First, only contrast- 
enhanced T1-weighted scans have been considered. However, the joint 
effect of image preprocessing and normalization on other sequences 
such as T2-weighted and T2 FLAIR may be different. Secondly, we had a 
relatively small dataset for the classification performance evaluation. 
However, we used nested cross-validation, which yields an unbiased 
estimate of a model’s generalization performance [38]. 

Acknowledgment 

This study was supported by the Clinical Research Priority Program 
(CRPP) Grant on "Artificial Intelligence in Oncological Imaging", Uni-
versity of Zurich. 

CRediT authorship contribution statement 

Zahra Khodabakhshi: Investigation, Data curation, Methodology, 
Formal analysis, Writing – original draft. Hubert Gabrys: Supervision, 
Methodology, Writing – review & editing. Philipp Wallimann: Data 
curation, Methodology, Writing – review & editing. Matthias Guck-
enberger: Resources, Writing – review & editing. Nicolaus 
Andratschke: Resources, Conceptualization, Supervision, Writing – 
review & editing. Stephanie Tanadini-Lang: Conceptualization, Su-
pervision, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.phro.2024.100585. 

References 

[1] Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they 
are data. Radiology 2016;278(2):563–77. https://doi.org/10.1148/ 
radiol.2015151169. 

[2] Shur JD, Doran SJ, Kumar S, Ap Dafydd D, Downey K, O’Connor JPB. Radiomics in 
oncology: a practical guide. Radiographics 2021;41(6):1717–32. https://doi.org/ 
10.1148/rg.2021210037. 

[3] Khodabakhshi Z, Amini M, Mostafaei S, Haddadi Avval A, Nazari M, Oveisi M, et al. 
Overall survival prediction in renal cell carcinoma patients using computed 
tomography radiomic and clinical information. J Digit Imaging 2021;34(5): 
1086–98. https://doi.org/10.1007/s10278-021-00500-y. 

[4] Zhu X, Dong D, Chen Z, Fang M, Zhang L, Song J, et al. Radiomic signature as a 
diagnostic factor for histologic subtype classification of non-small cell lung cancer. 
Eur Radiol 2018;28(7):2772–8. https://doi.org/10.1007/s00330-017-5221-1. 

[5] Da-Ano R, Visvikis D, Hatt M. Harmonization strategies for multicenter radiomics 
investigations. Phys Med Biol 2020;65(24):24TR02. https://doi.org/10.1088/ 
1361-6560/aba798. 

[6] Shiri I., Hajianfar G., Sohrabi A.Abdollahi H, P Shayesteh S, Geramifar P, et al. 
Repeatability of radiomic features in magnetic resonance imaging of glioblastoma: 
test-retest and image registration analyses. Med Phys 2020;47(9):4265–4280. doi:1 
0.1002/mp.14368. 

[7] Larue RTHM, van Timmeren JE, de Jong EEC, Feliciani G, Leijenaar RTH, 
Schreurs WMJ, et al. Influence of gray level discretization on radiomic feature 
stability for different CT scanners, tube currents and slice thicknesses: a 
comprehensive phantom study. Acta Oncol 2017;56(11):1544–53. https://doi.org/ 
10.1080/0284186X.2017.1351624. 

[8] Saltybaeva N., Tanadini-Lang S., Vuong D. Burgermeister S, Mayinger M, Bink A, 
et al. Robustness of radiomic features in magnetic resonance imaging for patients 
with glioblastoma: multi-center study. Phys Imaging Radiat Oncol 2022;22: 
131–136. doi:10.1016/j.phro.2022.05.006. 

[9] Li Y, Ammari S, Balleyguier C, Lassau N, Chouzenoux E. Impact of preprocessing 
and harmonization methods on the removal of scanner effects in brain MRI 

radiomic features. Cancers (Basel) 2021;13(12):3000. https://doi.org/10.3390/ 
cancers13123000. 
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