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Evidence of an application of a 
variable MEMS capacitive sensor 
for detecting shunt occlusions
David J. Apigo1, Philip L. Bartholomew2, Thomas Russell1, Alokik Kanwal1, 
Reginald C. Farrow1 & Gordon A. Thomas1

A sensor was tested subdural and in vitro, simulating a supine infant with a ventricular-peritoneal 
shunt and controlled occlusions. The variable MEMS capacitive device is able to detect and forecast 
blockages, similar to early detection procedures in cancer patients. For example, with gradual occlusion 
development over a year, the method forecasts a danger over one month ahead of blockage. The 
method also distinguishes between ventricular and peritoneal occlusions. Because the sensor provides 
quantitative data on the dynamics of the cerebrospinal fluid, it can help test new therapies and work 
toward understanding hydrocephalus as well as idiopathic normal pressure hydrocephalus. The sensor 
appears to be a substantial advance in treating brain injuries treated with shunts and has the potential 
to bring significant impact in a clinical setting.

The goal in previous work1,2 was to design a sensor that could detect minute pressure ranges and flow rates of flu-
ids such as those associated with cerebrospinal fluid (CSF). By utilizing such a device in-line with current existing 
shunt technology, it could be possible to reduce brain damage and unnecessary surgery in patients with brain 
shunts to treat hydrocephalus. Diagnosis of improper flow through a shunt has relied on patient symptoms and 
advanced medical imaging. In 1956, Spitz and Holter3,4 invented a shunt and valve system that successfully treated 
conditions that caused brain damage and death because of accumulated pressure and impaired flow of the CSF 
(a condition known as hydrocephalus). Hakim improved the shunt significantly with the invention of a variable 
pressure valve which is set externally to certain pressures4. Subsequent work5 has produced useful improvements 
in the valves. Two pervasive problems remain: first that the shunts develop blockages at times, over years, that are 
difficult to anticipate, and second, that the difficulty in monitoring the pressure and flow of the fluid have held 
back advancements in understanding the illnesses, including idiopathic normal pressure hydrocephalus6,7. The 
results reported here address the problem of how to supplement symptomatic analysis with quantitative measure-
ments of the fluid flow and pressure to assess progression of a patient’s condition.

The current diagnosis of this class of illnesses has been carefully reviewed by Gallia, et al.6 who state that 
diagnoses are given by monitoring the symptoms (gait impairment, dementia, and urinary incontinence) of the 
patient and by advanced imaging. Since the symptoms may be shared with other medical conditions, improved 
diagnosis is difficult. Commercial shunt valves assist the treatment of hydrocephalus by setting the pressure 
below which the valve will close and prevent back flow. A typical shunt is composed of a ventricular catheter, 
the shunt tube, and a peritoneal catheter. An external device fixes the pressure, commonly in a range from 1.5 to 
14.7 mmHg6. Based on a thorough study, Lutz, et al.8 state that a device that could determine the CSF flow rate and 
pressure in a shunt would be a great improvement to current designs, and is highly desirable. These smart shunts 
would add information about pressure and flow to the standard diagnostic and treatment protocol.

Regarding the causes of shunt blockage, Del Bigio9 carried out a careful, systematic review of the biological 
reactions to implanted shunt devices. His data indicated that a key mechanism of shunt failure is that vascularized 
pedicles of glial tissue or choroid plexus grow into ventricular catheters, primarily as a mechanical phenomenon. 
If this gradual growth of an occlusion could be observed before a blockage occurs, evidence of the growth would 
provide valuable information. Del Bigio also concludes: “Cellular debris or blood can cause dysfunction of valve 
components. Chronic inflammation, which is nonspecific, might contribute to degradation of the components. 
Care must be taken to prevent early entry of debris or blood into the shunt system. Ventricular collapse onto the 
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shunt must be avoided. Refinement of manufacturing methods or modification of shunt materials could reduce 
the susceptibility of shunts to infection and improve longevity of the apparatus.”

In an alternative discussion of the causes of shunt blockage, Kandel10 has carefully summarized information 
indicating that normal cerebrospinal fluid consists of water and smaller ions (i.e. glucose and salts) when the 
blood-brain barrier is effective. Di Rocco, et al.11 show evidence that this composition implies the fluid and its 
solutes are not occluding the shunt, but possibly fragments of bone or brain tissue left over from the surgery to 
implant the shunt. This finding is in agreement with a previous report by Brydon, et al.12 indicating that sufficient 
protein deposition does not occur in shunts to cause blockage. In this case, it would be difficult to forecast shunt 
blockage if the occlusion occurs suddenly. However, there may be a wide distribution of particle sizes, with the 
smaller ones being more mobile, and therefore a gradual build-up of occlusions. Nonetheless, it would be valuable 
to know the hydrodynamics, that is, how the changes in pressure and flow occur.

Standard shunts have demonstrated a substantial improvement in the survivability of patients with excess 
pressure in their brain compared to no treatment since the 1950’s13,14. In patients effected by idiopathic normal 
pressure hydrocephalus, improvement rates up to 96% have been reported6. But, occlusions (before or after the 
valve) are the most common cause of failure of current shunts6,15. In thorough studies performed by Stone, et al.16 
and Tuli, et al.17 it was shown that after approximately 24 months, over 50% of shunts need revisions. This requires 
the patient to undergo a second invasive surgery to remove the old shunt and insert a new one. In some cases, 
shunts were still viable, but in many, an occlusion had occurred. In a careful study, Simon, et al.18 demonstrated 
that these revisions increase the risk of infection.

Some fluid pressure measurements have been made. Arbour19 has presented a clear explanation of a current 
procedure to assess intracranial hypertension: invasive surgery that implants sensors via a catheter which is con-
nected to a transducer that can then read the intracranial pressure (ICP) of the patient. The pressure for a healthy 
individual ranges between 2 and 18 mmHg20–22. If the pressure is not found to be within this range, treatment is 
necessary. Clark, et al.23 have shown useful measurements of flow with a piezoresistive pressure transducer which 
depend on a differential in resistance, but this effective design requires an internal power source and thus the 
lifetime of the device is limited by the battery. A sensor that operates without any internal power could function 
for the lifetime of the shunt or of the patient.

These studies indicate that answers to key questions would benefit clinicians and caregivers:

1. Has an occlusion occurred?
2. If not, how great is the risk?
3. If so, is it towards the proximal or distal catheter?
4. After a shunt revision, is there an improvement?
5. If additional treatments become available, are they effective?

We have previously reported1,2 a capacitive microelectromechanical systems (MEMS) device that monitors 
milliliter dynamics of fluids, which we believe can be utilized to distinguish between open and occluded shunts. 
This sensor works on the principle that a change in flow rate or pressure results in a measurable shift in the sen-
sor’s capacitance as the plate spacing between membranes changes. The fluid flow begins in the brain and flows 
through the shunt tubing until it comes to this sensor, where it exerts a pressure on the first flexible membrane. 
The fluid continues flowing through the shunt tubing until it comes to the second membrane where it produces 
another deflection. Flow continues through more tubing for reabsorption in the peritoneum. Different flow rates 
produce different membrane deflections, and in turn, a different value of the capacitance of the sensor. Figure 1 
Demonstrates the flow path and basic operating principle of the sensor. The signal of the device is read wirelessly 

Figure 1. Not-to-scale schematic of fluid flow and operation of the reported MEMS sensor. As fluid 
flows from the brain through the shunt, it passes the sensor at one point and exerts a pressure that causes 
the membrane to flex. Flow continues through the shunt tubing and makes contact with the second flexible 
membrane, exerting a second pressure before flowing out to the peritoneum for reabsorption. The applied 
pressures produce a change in the capacitance of the device, which in turn produces a measurable shift in the 
device’s resonant frequency.
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via inductive coupling, thus requiring no internal power, and this signal can be directly related to pressure and 
flow rate. Our new result discussed in this paper is evidence that this sensitive device can predict shunt failure due 
to the gradual growth of an occlusion prior to blockage and its location in regards to the sensor.

Results
Occlusion Result. Since occlusions are the major issue with shunts, experiments were run with the sensor 
positioned prior to the shunt control valve under the assumption the valve was open. Any type of occlusion 
changes the cross-sectional diameter of the tubing; therefore, to test the effects of occlusions in a calibrated man-
ner in vitro, digital calipers were utilized to incrementally pinch the tubing. The result of such pinching is a change 
in cross-sectional area. This experimental data correlates to the case when gradual occlusions are forming in the 
shunt tubing over time. As debris accumulates within the shunt, the cross-sectional area changes in a similar way 
to that when the tube is pinched. Clearly, this method does not explore a sudden occlusion, which is unpredicta-
ble. However, in the case of sudden occlusions, a quantifiable signal is achieved.

Figure 2 Shows experimental and control data for a proximal occlusion. In the control, the size of the occlu-
sion is zero (that is, the shunt is fully open) and a series of measurements were made over a time period com-
parable to the variable cross-section experiment. The fluid flowed at 20 ± 1 mL/hr and constant pressure, with 
cross-sectional area of the tubing constant at 0.5 mm2. No significant shift in signal was measurable. For the varia-
ble cross-section experiment, the size of the simulated occlusion was increased by altering the cross-sectional area 
of the tube as described above. In the case of a proximal occlusion, the signal change at the onset of the occlusion 
is dominated by the flow rate decreasing (i.e. flow-dominated). This is determined by the fact that the change in 
signal has 3 possible origins:

1. When a proximal occlusion is present, the sensor measures primarily a change in flow. A pressure gradient 
becomes small in the shunt tube when an occlusion forms at the proximal end and concentrates the increased 
pressure in the brain. The pressure and flow throughout the tube decreases. The key functional dependence that is 
expected arises from the increase in flow resistance, R. For simple geometries this varies inversely with the average 
radius of the orifice, r, according to a prediction containing the following form24:

.~R
r
1

(1)4

So, this functional form is expected when the reading is dominated by flow.
2. When a distal occlusion is present, the sensor measures primarily a change in pressure, Δ P. The pressure 

increases along the shunt tube, while the flow decreases. The functional form of the reading from the sensor may 
indicate change, which could be dominated by pressure, and vary with r. The predicted form would involve the 
area of the shunt tube25:

∆ − .~P
r
1

(2)2

3. A possible hydrostatic pressure caused by any shift in the height of the source. This hydrostatic contribution 
is held constant in this experiment, where the conditions are equivalent to an implanted shunt with the patient in 
a constant, supine position. With additional sensors the hydrostatic pressure25 can be included:

ρ= .P gh (3)

Figure 2 Represents the life of a shunt from the time it is functioning to that when it becomes occluded 
near the ventricular catheter. When the occlusion is complete, the flow rate is 0 and the sensor provides a direct 

Figure 2. Proximal occlusion results. Data showing flow-dominated signal as a function of area for a 
simulated proximal occlusion. As the cross-sectional area decreases, it is possible to detect when an occlusion is 
forming at the proximal catheter in the shunt system. Once the tubing is completely blocked, the signal saturates 
at 0 mL/hr as the sensor feels no change.
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measurement of the peritoneal pressure. In between, the behavior shows a rapid change from a flat region in 
which the flow and pressure change very little to one where the signal drops quickly near 0.1 mm2, 80% occlusion 
of the tube area. This behavior is expected for flow-dominated lamellar behavior (see Statistics section).

If the formation of the occlusion proceeds linearly9, then it is possible to predict when the occlusion will 
occur based on the time since shunt implantation. In this case, an 80% point in the process of occlusion allows a 
prediction of the time when complete blockage will occur. For instance, if the shunt has been implanted for one 
year, then we can predict that complete blockage will occur in 1/5 of a year, or over 2 months. This substantial 
knowledge of the likely time of an occlusion may be very helpful to physicians.

Figure 3 Shows the relationship between the pressure-dominated signal and the cross-sectional area of the 
tube as it decreases from open to fully occluded at a distal point (near the peritoneal cavity). As the cross-sectional 
area decreases, the signal from the sensor increases. Simultaneously, the flow rate is decreasing. Since the signal 
trends downward with decreasing flow rate under constant pressure conditions (Fig. 1), the upward trend in 
signal for a distal occlusion must be due to a pressure change. In fact, when the flow is 0, the sensor provides a 
direct indication of the ICP. In between, the behavior rises at small changes in area with a statistically significant 
difference from P0 at 0.25 mm2, 50% occlusion of the tubing area. This behavior is expected for lamellar flow 
where the pressure dominates (see Statistics). As pressure levels in the brain increase, the trend will continue and 
not saturate as demonstrated in Fig. 3; however, this data represents the case when the pressure remains constant. 
For one year since implantation, this behavior allows forecasting of total blockage nearly one year in advance of 
occurrence. This is 6 times larger than the time for predicting the formation of a proximal occlusion.

Discussion
Our sensor works in concert with existing pressure control valves and can be positioned before or after said valve. 
Studies have not yet been performed to determine the optimal location for the sensor in a shunt system. For this 
discussion, it is assumed that the sensor is placed before the valve. At low pressures, the valve remains closed and 
no fluid will flow through the shunt, resulting in an increase in pressure if CSF is accumulating in the ventricles. 
The sensor’s signal will appear to increase as the center deflection of the capacitor membranes decreases. In this 
configuration, as long as the pressure valve remains closed and the patient remains in a constant supine position, 
the sensor directly measures the ICP of the individual. However, when the valve opens, this is no longer the 
case. Once the pressure exceeds the set value of the regulatory valve, fluid flow occurs. At this point, the sensor 
will function normally. Further study into the dynamics of the sensor with a pressure control valve is necessary. 
The results presented here represent the condition where the shunt control valve is set to be open at the time 
of the measurement (to the minimum pressure setting). The result when there is a complete distal occlusion 
corresponds to the case where the valve is closed (or set to a sufficiently high pressure) and provides a valuable 
calibration point.

Figure 4 Shows a schematic summary of the method studied here. The method checks a calibration, measures 
the fluid condition, compares with the previous data and allows an assessment of the need for further tests.

The method can be summarized as follows using Fig. 4:

1. First, the normal behavior may be measured with the pressure control valve set to a standard pressure at 
which it would be open as much as possible. The normal condition is given by the crosshatched band at a 
constant value.

2. Second, a check on a calibration of the sensor could be made by preventing flow through the system. In this 
case, a stoppage upstream of the sensor is equivalent to a blockage such as in a ventricular cavity. When the 
sensor calibration is a constant, the control measurement is a straight line.

Figure 3. Distal occlusion results. Data showing pressure-dominated signal as a function of area for a distal 
occlusion. The signal has in it a small correction due to decreasing flow. As cross-sectional area decreases, it is 
possible to forecast when an occlusion is forming at the distal end of the shunt.
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3. When a ventricular occlusion becomes significant, the indication begins to decrease, as shown by the 
yellow area and when the occlusion nears complete blockage, the indication is red, following the data in 
Fig. 2. When a peritoneal (distal) occlusion occurs, the data in Fig. 3 show an indication of the opposite 
sign following a similar growth.

4. The estimated time to blockage can be estimated from the time-axis of the figure, which shows the % of 
the time since implantation. For instance, if the danger of a proximal occlusion is indicated in the danger-
ous (red) region for a shunt that was implanted about a year ago, the time to blockage is about 20% of full 
blockage or over a month. At this point, there is time for confirmation, further tests, and scheduling a shunt 
revision before serious brain damage occurs.

Tests show that this method presents the promise of early warning of blockage in shunt systems. Such a device 
has been sought since the invention of the shunt in 1956 because shunts are needed by patients for periods of 
decades and occlusions frequently form. An implanted shunt with an effective sensor opens up new fields of 
information about brain illnesses, such as idiopathic normal pressure hydrocephalus.

Methods
The smart shunt studied here addresses the challenges of monitoring CSF using conventional principles of hydro-
dynamics, and uses state-of-the-art MEMS fabrication technology and electronics. A cross-sectional schematic of 
the chip and its materials can be seen in Fig. 5b, and a more detailed process flow can be seen in a previous pub-
lication1. The main features of the sensor are two circular flexible membranes 500 μ m in diameter with a nominal 
spacing of < 1 μ m forming a capacitor (Fig. 5). The double-membrane sensor reported in this paper is formed by 
sandwiching two chips with flexible membranes together. Said sensor is housed in a package that allows compati-
bility with a fluid environment. Chen, et al.26 previously reported a capacitive pressure sensor capable of detecting 
pressures as low as 3 Pa. Utilizing the method presented in the Discussion section, any similarly well-designed 
sensor may be utilized as long as it is compatible with a fluid environment.

The capacitive sensor forms part of a resonant circuit in which an increase in the fluid pressure next to the 
flexible membrane decreases the distance between the membranes and increases the capacitance, C, in the circuit 
which also contains an inductor, L. An external reader couples inductively through the skin to the implanted 
circuit and measures its resonant frequency, =

π
f

LC
1

2
27. Utilizing a custom LabVIEW program to perform a 

high-speed averaging technique, a highly repeatable reading of the resonant frequency is achieved. The high 
repeatability of the frequency measurement allows the user to calculate the capacitance, and in turn, determine 
the small changes in the distance between the membranes via the equation:

∫πε=
−

C r
d w r

dr2
( )

,
(4)

a
0

0

where r is the radius of the circular membrane, and w(r) is the membrane center deflection.
In careful studies carried out on wireless capacitive pressure sensors by Chen, et al.26, there was emphasis 

on the electronic loss in the environment of human tissue. By design, this sensor is to be sealed in a package 
to couple to the fluid flow and then encapsulated with the standard packaging used for variable pressure shunt 
control valves. No statistically significant shift between this in vitro simulation under artificial skin and a control 
measurement in air was observed.

The experimental set up is shown in Fig. 6. The fluid flows from the ventricular cavity (simulated by the 
syringe) into a standard sized shunt (0.8 mm internal diameter). Wells within the packaging house the capacitors 
out of the way of the flow. Rather than obstructing the flow, the wells ease the flow by increasing the diameter of 

Figure 4. A method for forecasting shunt occlusions. Schematic graph of the method to assess the effects of 
occlusions or treatments on the flow and pressure of the cerebrospinal fluid in a smart shunt system. The picture 
is based on the data in Figs 2 and 3.
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the flow passage. The pressure differences at points along a calibrated length of the shunt tube allow a calculation 
of the flow if pressure remains constant. The fluid flows out of the system into the peritoneal cavity (simulated by 
a Petri dish).

Physiologically, flow of CSF is driven by the pressure gradient between the ventricular cavity and the blood 
brain barrier28 as fluid crosses during the production of CSF in the ventricles. In a patient with a shunt implant, 
the fluid flows through the tubing and into the peritoneal cavity where a lower pressure exists. In the reported 
measurements, a syringe pump with computer control of the flow rate is used to simulate the ventricular cavity 
and its production of CSF. The output flows into a conventional shunt tube. The fluid flows past one side of a 
double membrane sensor and is returned symmetrically to the other side. It is then drained to a digital scale at 
atmospheric pressure to simulate the peritoneal cavity29.

Figure 6 Also demonstrates how the sensor is read. The sensor is designed such that when a reading is taken, 
the user touches the surface of the skin with the reader’s coupling coil. As long as the reader is in place over the 
location of the sensor, the signal is very stable. If the user’s hand moves while holding the reader, it is possible that 
the signal could change. If the user is not touching the skin, but is positioned directly above the sensor, the read-
ing will provide an accurate indication of the resonant frequency of the sensor, but the quality factor (Q-factor) 
of the signal will decrease. A substantial decrease in this signal makes it more difficult to distinguish the resonant 

Figure 5. Smart shunt sensor. (a) Image of Side A of half a sensor. A complete sensor consists of two chips 
sandwiched together to construct a capacitor with Side A of both chips touching each other. The main feature 
is the 500 μ m circular membrane that is attached to a 2 mm x 2 mm gold contact pad. Also visible is a 100 μm 
wide channel to act as a vent for air when chips are sandwiched together. Side B of the sensor is not shown, 
but has a through hole, which allows the fluid to make contact with the backside of the sensor. (b) Schematic 
demonstrating the cross sectional view and the various materials utilized making a smart shunt sensor. All 
materials for the sensor are biocompatible. (c) Not-to-scale cartoon schematic of a cross-sectional view 
through the hole of a complete sensor composed of two chips. As pressure gets exerted on the membranes, the 
membrane spacing decreases. Side B of both chips makes contact with the fluid environment, while Side A of 
each chips makes contact with one another.

Figure 6. Experimental apparatus of simulated CSF flow path. The syringe pump (not shown) simulates the 
ventricles of the brain and standard shunt tubing is used as it flows into the smart shunt. Fluid drains into the 
artificial peritoneal cavity simulated by a Petri dish (not shown). Points at which occlusions occur are indicated 
in both directions.
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peak from the rest of the signal. As long as the user touches their skin directly above the sensor, this issue does not 
arise. Another way the signal is effected is if the sensor’s coil and the reader’s coil are not aligned. In this case, the 
signal varies in Q and can vary in resonant frequency. Once the coils are misaligned enough, no signal is acquired. 
The design of the sensor is such that as long as the reader touches the skin at a stable point, the signal is quiet and 
only slight differences are present from one device to another (i.e. base capacitance). As long as the schematic 
presented in Fig. 4 is followed, it does not matter what the baseline reading is, since the changes in the signal are 
the data of interest.

All experiments were performed at room temperature with deionized water flowing through the system. In 
order to minimize the effect of stray electrical signals, the reader is calibrated prior to acquiring data by removing 
the sensor from the proximity of the reader and running a custom LabVIEW program. In addition, to minimize 
the effect of any vibrations present in the system, a high-speed averaging technique is utilized. This technique is 
expanded upon in the Statistics section. These two methods help to minimize stray signals. However, any stray 
signal in the 150 to 350 MHz range could potentially interfere with the reading once it is implanted.

Statistics. The cerebrospinal fluid in the brain has dynamics associated with the blood brain barrier with 
slow, typical flow rates of 0.35 mL/min, or about 21 mL/hr10,28. Multiple reports of ICP have been given spanning 
ranges of 2 to 16 mmHg22 and 5 to 15 mmHg20. In one report, it spans as high as 18 mmHg21. In order to detect the 
hydrodynamics of the fluid, devices with significant sensitivity are needed. In designing our capacitive sensors, 
we estimated that a sensitivity of approximately 20 Å in the motion of the membrane would be needed to indicate 
that there was blockage or not. This corresponds to changes in pressure of about 0.13 mmHg (17 Pa).

The sensor detects pressure and derives flow from a pressure difference through a path that imparts a resist-
ance to the flow. Before an occlusion upstream from the sensor, the maximum pressure will be the intracranial 
pressure. When the path is fully occluded, the minimum pressure will be that of the peritoneum, which for our 
experiments was set to the atmospheric pressure. Assuming that 5 mmHg is normal for a patient (below 10 mmHg 
is considered clearly normal30), then the sensor will detect the pressure drop from this to 0 mmHg when the shunt 
is proximally occluded. This is a more stringent case due to the steeper decline in signal. If we arbitrarily set a 10% 
decline as the requirement for early detection, then the sensor must be able to detect a change of 0.5 mmHg. We 
further impose that the variation in the signal be such that the 95% confidence limit separates the measurements 
of Δ P of 0.5 mmHg. That is, 1.96σ =  0.5 Δ P or 0.25 mmHg. This gives a required σ = = ..

.
0 130 25

1 96
 mmHg or 

17 Pa. The reported sensor is 17 times more sensitive.
The resonant circuit reader is coupled to inductors in the sensor circuits wirelessly, allowing measurements to 

be made through artificial skin simulating an implanted sensor. The position of the reader is fixed and a resonant 
sweep of 1,000 data points is acquired. In order to minimize stray vibration signals, a sample size of 15–30 trials 
per physiological parameter were performed, allowing over 15,000 data points per parameter. From this amount 
of data, the peak of the averaged values is determined through a custom Python code. Therefore, the results 
demonstrate the average of these many points. Over an entire experiment, as many as 270,000 data points were 
acquired, taking 2.5 to 5 minutes to run. This high-speed averaging enhances the sensitivity of the device.

All data presented passed the chi-squared test for normality. Statistics were performed on the data presented 
in Fig. 1 with standard deviations given above. The p-value for the control experiment was 0.0942, suggesting that 
the null hypothesis of no measurable shift in signal is upheld. For variable flow, it was less than 0.0001.

In Fig. 2, a p-value of 0.81 exists, suggesting that the null hypothesis of no measurable effect on the signal due 
to the changes in flow and pressure is upheld for the control. The p-value from no occlusion to an area reduced 
by 70% is 0.9999 showing that the null hypothesis of no measurable change in signal is appears to be upheld 
with a 99.99% probability over that range. For the formation of proximal occlusion data, the p-value is less than 
0.0001, which suggests that the null hypothesis is violated. The p-value is so small because it is a comparison with 
the average value of the signal. This occurs when considering the region beyond 70% occlusion and we predict a 
measurable shift in signal in this range.

In Fig. 3, the case of distal occlusion formation, the p-value for the control is once again 0.81. However, in a 
region from no occlusion to an area reduced by 20% it is 0.9999 suggesting that the null hypothesis is upheld. 
Beyond that, the p-value is less than 0.0001, which leads to the conclusion that the null hypothesis of no meas-
urable shift in signal is violated when a distal occlusion is forming. As in the case of the proximal occlusion, the 
p-value is small because it is a comparison with the average value of the signal. Further discussion on the statistics 
for simulated occlusions follow.

The occlusion study was performed by systematically changing the cross-sectional area of the shunt tubing. 
Digital calipers were used to alter the shape of the circular tubing to that of an ellipse with smaller cross-sectional 
area over a range of 0.5 mm2 (unobstructed) to 0 mm2 (completely occluded). The experiment was performed 
simulating proximal and distal occlusions.

Data in Fig. 2 demonstrates a logistic fit. In Fig. 2, the flow rate, V, decreased consistently with the function:

=
+





( )( )
V V2

1
,

(5)
r
r

p
0

0

where, V 0 is the initial value of V  and r0 is the initial radius of the tube. The analysis shows the best fit for 
p =  4.02 ±  0.1, consistent with the expectation for lamellar behavior where the flow resistance varies as, 

r
1
4
. The 

agreement of the expected and observed exponent suggests that the behavior is determined primarily by flow in 
the balanced, calibrated flow path, with indication that flow dominates the pressure differences that occur in the 
entire shunt along with occlusion formation.
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The functional form for Fig. 3 is given by a logistic fit:

=



+



( )

P P2

1
,

(6)
r
r

n
0

0

where, P0 is the initial value of P and r0 is the initial radius of the tube. When the occlusion is complete, r goes to 
0 and V =  0. The analysis shows the best fit for n =  1.67 ±  0.1, which is not a rapid as ,

r
1
2 or dominated by pressure, 

but is probably also affected by the change in flow rate which is of the opposite sign. It is therefore considered 
consistent with the expectation for lamellar flow dominated by pressure as it rises approximately as the occluded 
area, 

r
1
2
. That is, the behavior is primarily a pressure increase between the occlusion and the ventricles.

Figure 2 Suggests that the pressure saturates; however, as long as the ICP continues to increase, the 
pressure-dominated signal will continue to increase. This holds true until a point where the membranes can no 
longer flex, but is unlikely to occur at the pressure levels being monitored. The data in Fig. 3 represents constant 
pressure. This explains why we see the data appearing to saturate. If the pressure remains constant, it will level off 
as demonstrated by the data; however, if it varies, the trend will continue.

Supplementary Figure 1 Demonstrates the statistics for Figs 2 and 3. Standard deviations for the variation in 
flow/pressure-dominated signal indicate the sensitivity of the signal when an occlusion is forming. In the case, 
when no occlusion is present, the standard deviation is 0.013. Once an occlusion is forming, standard deviation 
is 0.039 (proximal) and 0.026 (distal).

In order to further test repeatability of the results, multiple experiments were run over the course of one 
month. Three in vitro tests were performed in the proximal case, while four were performed for the distal case. 
The same trends were observed for both proximal and distal occlusions with minor changes due to fluctuations 
in atmospheric pressure. Since the peritoneal end is kept at the atmospheric pressure of the room, starting signal 
shifts were observable. This can be summarized as observing a different starting frequency before experimenta-
tion of 1 to 4 MHz depending on atmospheric pressure.

Conclusions
The tests presented here demonstrate that it is possible to utilize an ultra-sensitive MEMS capacitor for moni-
toring the dynamics of CSF in shunt systems. Not only is the sensor able to monitor occlusions in shunt systems 
non-invasively, it can also predict when occlusions are forming months in advance. These predictions can aid in 
limiting the amount of brain damage patients with occluded shunts experience and improve their quality of life. 
This is a significant advance in shunt technology.
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