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LETTER TO THE EDITOR

Prostate cancer multiparametric magnetic 
resonance imaging visibility is a tumor‑intrinsic 
phenomena
Amanda Khoo1,2, Lydia Y. Liu1,2,3,4,5, Taylor Y. Sadun6, Amirali Salmasi6, Aydin Pooli6, Ely Felker7, 
Kathleen E. Houlahan1,3,4,5, Vladimir Ignatchenko2, Steven S. Raman7, Anthony E. Sisk Jr.8, Robert E. Reiter5,6*, 
Paul C. Boutros1,3,4,5,6,9,10* and Thomas Kislinger1,2*    

Abstract 

Multiparametric magnetic resonance imaging (mpMRI) is an emerging standard for diagnosing and prognosing 
prostate cancer, but ~ 20% of clinically significant tumors are invisible to mpMRI, as defined by the Prostate Imaging 
Reporting and Data System version 2 (PI-RADSv2) score of one or two. To understand the biological underpinnings of 
tumor visibility on mpMRI, we examined the proteomes of forty clinically significant tumors (i.e., International Society 
of Urological Pathology (ISUP) Grade Group 2)—twenty mpMRI-visible and twenty mpMRI-invisible, with matched his-
tologically normal prostate. Normal prostate tissue was indistinguishable between patients with visible and invisible 
tumors, and invisible tumors closely resembled the normal prostate. These data indicate that mpMRI-visibility arises 
when tumor evolution leads to large-magnitude proteomic divergences from histologically normal prostate.
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To the Editor,
Multiparametric magnetic resonance imaging (mpMRI) 
has dramatically enhanced the management of localized 
prostate cancer, providing an opportunity to improve 
diagnosis and risk stratification while simultaneously 
reducing unnecessary and risky needle biopsies [1]. 
However, because ~ 20% of clinically significant tumors 
remain invisible to mpMRI [2], there is limited consen-
sus on when a biopsy can be safely avoided upon a nega-
tive mpMRI. The reasons for prostate cancer mpMRI 
invisibility are largely unknown, despite mpMRI-vis-
ible tumors harboring more adverse pathological and 

biological features [3–6]. Within  International Society 
of Urological Pathology (ISUP) Grade Group 2, mpMRI 
visibility is associated with increased genomic instabil-
ity, presence of intraductal carcinoma and/or cribriform 
architecture (IDC/CA) histology and hypoxia, a constel-
lation of features termed nimbosus [3, 7]. Given the role 
of cellular density and perfusion in mpMRI, differences 
in stromal organization in non-malignant tissue [4] are 
hypothesized to affect water diffusion and thus medi-
ate tumor microenvironmental influence on mpMRI 
visibility.

To understand the biological underpinnings of tumor 
visibility on mpMRI, we performed global proteomics 
on twenty mpMRI-invisible (Prostate Imaging Reporting 
and Data System version 2 [PI-RADSv2] 1–2) and twenty 
mpMRI-visible (PI-RADSv2 5) tumors, all from patients 
with a solitary pathological ISUP  Grade Group 2 lesion 
larger than 1.5 cm [3]. We analyzed both tumor and adja-
cent histologically normal tissue (NAT) from all patients, 
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leading to 81 proteomes (Fig.  1A, Additional file  3: 
Table S1). A detailed description of the methods can be 
found in Additional file 1: Methods (available online).

We quantified 4772 proteins (Additional file  4: 
Table S2), of which 2309 were detected in all 81 samples 
(Fig.  1B). Clustering by protein abundance yielded four 
protein subtypes and four sample subtypes (Additional 
file  2: Fig. S1A). The sample subtypes were driven by 
differences between tumors and NATs (Adjusted Rand 
Index [ARI] = 0.22, p = 0.001) and not mpMRI visibility 
(ARI = − 0.01, p = 0.64). The protein subtypes reflected 
specific biological pathways. For example, P1 genes 
were associated with immune response and extracellular 
matrix organization and were more abundant in tumors 
than NATs (Additional file 5: Table S3).

To test the important and widespread hypothesis 
that  the tumor microenvironment influences visibil-
ity on mpMRI [3, 8], we compared protein abundances 
between NATs from patients with mpMRI-visible and 
mpMRI-invisible tumors. To our surprise, not a single 
protein differed between the two groups (Fig. 1C). Simi-
larly, differences in the proteomes of mpMRI-visible and 
mpMRI-invisible tumors were also small and not sta-
tistically significant, albeit with larger effect sizes com-
pared to the result from NATs (Fig. 1D). In contrast, we 
observed the expected large, statistically significant dif-
ferences between the proteomes of tumors and NATs 
(Fig. 1E). Similarly, large differences were observed at the 
transcriptome level (Additional file  1: Methods, Addi-
tional file 2: Fig. S1B), where most tumor/NAT proteomic 
differences were corroborated (Spearman’s ρ = 0.57, 
p < 2.2 × 10–16, Fig. 1F).

Given these modest differences between mpMRI-
visible and mpMRI-invisible tumor proteomes, we 
hypothesized that mpMRI-invisible tumors might reflect 
an intermediate state between NATs and mpMRI vis-
ibility. Consistent with this, protein abundance differ-
ences associated with  tumor mpMRI visibility were 

correlated with NAT-tumor differences (Spearman’s 
ρ = 0.46, p < 1 × 10–16, Fig.  1G). These associations were 
diminished in the NAT proteomes (Spearman’s ρ = 0.13, 
p = 7.01 × 10–11, Additional file  2: Fig. S1C), and in the 
matched tumor transcriptomes [3] (Spearman’s ρ = 0.00, 
p = 0.79, Additional file  2: Fig. S1D). The proteome of 
mpMRI-invisible tumors was more similar to that of 
NATs compared to the proteome of mpMRI-visible 
tumors (Fig.  1H), likely contributing to their invisibil-
ity. Consistently, normoxic tumors and tumors lacking 
IDC/CA histology were more similar to NATs (Fig. 1H). 
Altered pathways in mpMRI-visible tumors vs. mpMRI-
invisible tumors overlapped substantially with those 
distinguishing tumors from NATs (hypergeometric test 
p = 5.5 × 10–14, Fig.  1I). Epithelial-to-mesenchymal tran-
sition and myogenesis genes were enriched in mpMRI-
invisible tumors compared to mpMRI-visible tumors, 
consistent with reports that stromal and extracellular 
matrix genes were enriched in mpMRI-invisible tumors 
[4]. mpMRI-visible tumors were enriched in pathways 
associated with advanced disease, including androgen 
response, DNA repair, and MYC and TGF-β signaling 
[9]. Taken together, these data help explain the aggres-
sive clinical behavior of mpMRI-visible tumors, concord-
ant with increased PTEN loss [10], higher Oncotype and 
Decipher genomic classifier scores [5], and elevated nim-
bosus hallmarks [3].

To identify protein-coding RNAs and proteins asso-
ciated with mpMRI visibility and disease aggression, 
we next focused on the nimbosus hallmarks [3, 7] and 
small nucleolar RNAs (snoRNA) that are associated with 
mpMRI visibility [3, 7]. These hallmarks were previously 
shown to be associated with mpMRI visibility and dis-
ease aggression at the genomic and transcriptomic level 
[3]. An independent discovery cohort of 144 National 
Comprehensive Cancer Network (NCCN) intermediate-
risk tumors was used to discover associations between 
RNA abundance and each hallmark (Additional file  1: 

Fig. 1  Proteomics of mpMRI visibility. A Sample outline. B Summary of quantified proteins in various number of samples. Differentially abundant 
proteins in mpMRI-visible (n = 20) and mpMRI-invisible (n = 20) NATs (C), mpMRI-visible (n = 21) and mpMRI-invisible tumors (n = 20) (D), and tumor 
(n = 40) and NAT regions (n = 40) (E). Statistically significant (FDR < 0.05, Mann–Whitney U test) proteins colored in black. F Comparison of tumor/
NAT in the proteome (ntumor = 40, nNAT = 40) and transcriptome (ntumor = 499, nNAT = 53). Genes that were significantly associated with tumors or 
NATs at both the protein and RNA levels (FDR < 0.05) are colored in black. G Associations of protein abundance changes between tumor versus 
NAT and mpMRI-visible tumor versus mpMRI-invisible tumor, using proteins that were significantly differentially expressed in tumor versus NAT 
(n = 2540). Significant (FDR < 0.05) proteins from the tumor/NAT comparison that had the same directionality in the mpMRI-visible/invisible tumor 
comparison are colored in black. H Distribution of Euclidean distance between each group and median protein abundance in NATs. Only proteins 
that were quantified in all tumor and NAT samples were used (n = 2309). IDC/CA groups were determined based on the presence of intraductal 
carcinoma (IDC) or cribriform architecture (CA) histology (IDC/CA+, n = 11) or not (IDC/CA−, n = 29). Hypoxia groups (n = 20 per group) were 
determined by median dichotomization (median Ragnum score = −1). I Gene set enrichment analysis for 3 sets of comparisons (Tumor/NAT, 
mpMRI-visible/invisible tumor, and mpMRI-visible/invisible NAT) using the Hallmark gene set. The union of significant terms (FDR < 0.25) are shown. 
The size of the dot represents the magnitude of the effect, the color denotes the direction (positive: orange; negative: blue), and background 
shading the FDR-adjusted p-value. Only significant associations (FDR < 0.25) have gray background. mpMRI: multiparametric magnetic resonance 
imaging; PI-RADSv2: Prostate Imaging Reporting and Data System version 2; pISUP: pathological International Society of Urological Pathology Grade 
Group; CNA: Copy number abberation; NAT: normal tissue adjacent to the tumor; FDR: Benjamini–Hochberg false discovery rate; FC: fold change; ρ: 
Spearman’s rho; p: p-value; NES: normalized enrichment score; and IDC/CA: Intraductal carcinoma or cribriform architecture

(See figure on next page.)
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Methods) [11, 12]. We identified 14,044 protein-coding 
RNAs and 1,622 proteins associated with at least one 
nimbosus hallmark in this cohort (Fig.  2A, Additional 
file  1: Methods). Proportion of the genome with a copy 
number aberration (PGA) and IDC/CA status showed 
the largest effects on the transcriptome and proteome. 
Proteins more abundant in mpMRI-invisible tumors 
were also negatively correlated with these hallmarks 

(Fig. 2B). Proteins associated with high PGA were pref-
erentially associated with mpMRI visibility (hypergeo-
metric test p = 3.3 × 10–2; Fig. 2C). mpMRI visibility was 
also strongly associated with aggressive hallmarks such 
as hypoxia, presence of IDC/CA, and SChLAP1 expres-
sion through proteins, rather than protein-coding RNAs 
(Fig. 2D).
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Fig. 2  Protein associations with genomic, transcriptomic, and pathological hallmarks of mpMRI visibility. A Protein-coding RNAs (left) and proteins 
(right) associated with hallmarks of mpMRI visibility, colored by positive (orange) or negative (purple) associations. Top barplot shows the number 
of hallmarks each RNA or protein was associated with. Side barplot shows the number of validated RNAs or proteins associated with each hallmark 
(Additional file 1: Methods). Bottom covariate bar indicates significant RNAs or proteins associated with visible (green) or invisible (black) tumors 
(FDR < 0.05). B Genes that were associated with three or more hallmarks or mpMRI visibility at the protein level. Left barplot shows the number of 
hallmarks each gene is associated with at the RNA (pink) or protein (blue) level. Dot maps show the effect size of the association between gene 
expression and each hallmark. The size of the dot represents the magnitude of the effect, the color denotes the direction (positive: orange; negative: 
purple), and background shading the FDR. Only significant associations have a gray background. Right barplot shows the log2 fold change between 
mpMRI-visible and invisible tumors for RNA and protein. C Spearman’s correlation between tumor protein/PGA and protein/mpMRI visibility 
associations. Validated proteins with abundance significantly correlated with PGA (FDR < 0.2) are colored in black. D Summary of the correlation 
between associations with each hallmark and mpMRI visibility in protein-coding RNAs and proteins. E A 3-protein model classified mpMRI-visible 
tumors with an area under the curve (AUC) of 88%. AUC confidence intervals in parentheses and shaded in blue. Inset: The protein signature was 
associated with worse biochemical recurrence (BCR)-free survival in an independent cohort (n = 76 patients) [11]. Low: n = 49, 20 events; High: 
n = 26, 15 events. PGA: proportion of the genome with a copy number abberation; IDC/CA: intraductal carcinoma or cribriform architecture; mpMRI: 
multiparametric magnetic resonance imaging; FDR: false discovery rate; ρ: Spearman’s rho; FC: fold change; HR: hazard ratio
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Finally, we employed a machine learning approach 
to find proteins that best differentiate mpMRI-visible 
and mpMRI-invisible tumors in our cohort. Follow-
ing feature selection, we created a three-protein logis-
tic regression model (LDHB, GNA11, SRD5A2) that 
classified mpMRI visibility status with an AUC of 0.88 
(95% CI = 0.77–0.98, Fig.  2E, Additional file  1:  Meth-
ods). This model was associated with worse biochemi-
cal recurrence-free survival in an independent cohort 
of 76 predominantly NCCN intermediate-risk tumors 
(HR = 1.79, 95% CI = 0.92–3.51, p = 0.089, median fol-
low-up 6.02 years, Fig. 2E, inset) [11], further support-
ing the association between proteomic determinants of 
mpMRI visibility and tumor aggressiveness.

These data establish that mpMRI visibility is largely 
independent of the molecular features of tumor-adja-
cent stromal cells in the prostate. Rather, the proteome 
of mpMRI-invisible tumors is more similar to that of 
normal tissues [4, 10], suggesting that mpMRI visibility 
reflects the degree of proteomic dysregulation. Caveats 
of this study include uncertain generalization beyond 
ISUP Grade Group 2 tumors, the Caucasian ancestry of 
most patients, and study of only PI-RADSv2 scores of 
1–2 and 5. These data suggest that tumors are invisible 
to mpMRI because their proteome does not differ suf-
ficiently from normal prostate.
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