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Abstract

Background: Rates of recombination can vary among genomic regions in eukaryotes, and this is
believed to have major effects on their genome organization in terms of base composition, DNA
repeat density, intron size, evolutionary rates and gene order. In highly self-fertilizing species such
as Arabidopsis thaliana, however, heterozygosity is expected to be strongly reduced and
recombination will be much less effective, so that its influence on genome organization should be
greatly reduced.

Results: Here we investigated theoretically the joint effects of recombination and self-fertilization
on base composition, and tested the predictions with genomic data from the complete A. thaliana
genome. We show that, in this species, both codon-usage bias and GC content do not correlate
with the local rates of crossing over, in agreement with our theoretical results.

Conclusions: We conclude that levels of inbreeding modulate the effect of recombination on base
composition, and possibly other genomic features (for example, transposable element dynamics).
We argue that inbreeding should be considered when interpreting patterns of molecular evolution.
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Background

Recombination is probably a key factor in the evolution of
genome organization in species such as yeast, mammals, Dro-
sophila and C. elegans. In these species, genomic features
such as nucleotide polymorphism [1-4], GC content [1,5-8],
codon bias [6,9], intron size [10,11], transposable element
density [12-14] substitution rates [15-17] and gene order [18]
vary widely within the genome, and are correlated with the
local rate of crossing over. These observations are often
explained as the result of various processes such as selective
sweeps, background selection and weak Hill-Robertson inter-
ference (wHR), which all cause a reduction in the efficacy of
natural selection in regions of reduced crossing over [19-21].

Rates of crossing over have been shown to correlate not only
with the GC content of synonymous sites, where weak natural
selection is expected to act on codon-usage bias, but also with
the GC content of noncoding sites [6,22]. This is unlikely to be
because GC bases are recombinogenic, as the correlation is far
stronger with silent DNA than with total DNA [8]; see also
[23]. This unexpected correlation may reflect the action of
weak selection on noncoding GC, which would be less effec-
tive in regions of reduced recombination [24]. Alternatively,
it could be an effect of biased gene conversion [8,25,26].
Biased gene conversion (BGC) is a process that preferentially
converts A/T into G/C at sites heterozygous for AT and GC.
The net effect of BGC is to increase the GC content of

Genome Biology 2004, 5:R45


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/gb-2004-5-7-r45
http://genomebiology.com/2004/5/7/R45
http://www.biomedcentral.com/info/about/charter/

R45.2 Genome Biology 2004,

Volume 5, Issue 7, Article R45 Marais et al.

recombining DNA sequences. Assuming that the rate of this
process is correlated with the rate of crossing over, BGC could
therefore generate the observed increase in GC content in
regions of high crossing over. An excess of AT—>GC mutations
in regions of high recombination could also lead to the
observed correlation between GC content and recombination
[27]. The relative importance of BGC, mutational biases, and
wHR in driving these patterns remains unresolved [22,28],
although BGC may be the most likely explanation, especially
in organisms such as yeast and mammals, where there is a
strong correlation between recombination and GC content

[71.

To date, most analyses of the role of recombination in deter-
mining genome structure have been done on outcrossing spe-
cies, with the notable exception of the presumably partial
selfer C. elegans [6], whose selfing rate is not precisely
known. In contrast, less attention has been given to Arabi-
dopsis thaliana, which is known to be an almost complete
selfer with a selfing rate of approximately 99% in the natural
populations that have been studied [29,30]. High levels of
inbreeding, as in A. thaliana, are expected to have important
effects on the genomic structuring of base composition.
Inbreeding leads to a strong increase in levels of homozygos-
ity, which reduces the effective rate of recombination [31].
Therefore, processes sensitive to recombination and homozy-
gosity, such as the effectiveness of selection on codon usage
and the strength of BGC, will be affected by the high level of
inbreeding apparently experienced by A. thaliana [7,32].

Previous work has provided evidence for a correlation
between gene expression and codon bias in Arabidopsis
[33,34], although the effect is weak. This suggests that trans-
lational selection is acting on codon bias in Arabidopsis.
However, on the basis of the genes studied so far, no striking
difference in codon bias between A. thaliana and its outcross-
ing congener A. lyrata has been observed, perhaps because of
the population history of these species obscuring the expected
patterns of molecular evolution [35]. Here we investigate the
effect of inbreeding on the evolution of base composition (GC
content and codon bias) within the A. thaliana genome, both
theoretically and by DNA sequence analysis. Our goal was to
test for an effect of recombination on GC content and codon
bias in A. thaliana, and to use models to examine the joint
effects of recombination and inbreeding on selection on
codon usage and BGC, in order to help us to interpret the
results from genome analysis. We show by computer simula-
tion and modeling that selection on codon usage is not
expected to vary with local recombination rate in a highly
inbred species and that BGC is expected to be ineffective com-
pared with an outcrossing species. We show that these predic-
tions are consistent with the results of our analysis of the A.
thaliana genome. We find no association between the local
rate of crossing over and either codon bias or GC content (for
both coding and noncoding regions).

http://genomebiology.com/2004/5/7/R45

Results

Recombination and codon usage

Previous simulation results have shown that, in outcrossing
species, weak selection on codon usage is expected to be sig-
nificantly reduced in genomic regions with low rates of cross-
ing over because of wHR effects [21,36,37]. We modified the
model of [21] by adding one additional parameter, the selfing
rate S (see Materials and methods). The results for S = 0%,
50% and 99% for several values of the population recombina-
tion rate 4N,r (where N, is effective population size and r is
the per base rate of recombination) and two values of the
strength of selection 4N,s (where s is the selection coefficient)
are presented in Figure 1. The effect of crossing over on the
efficacy of selection on codon usage decreases strongly with S.
For S = 99%, which is probably close to the true value for A.
thaliana [29,30], virtually no effect of crossing over is
observed. This result reflects the strong reduction in the
range of effective rates of recombination present in a selfing
genome; high levels of homozygosity dramatically reduce the
effective rate of recombination [31], and therefore a given dif-
ference in r between two genomic regions will produce much
greater differences in effective recombination rates in an out-
crosser than in a selfer. Therefore, the theory predicts very
weak or no associations between selection on codon usage
and the rate of crossing over in A. thaliana. Results with
intermediate selfing rates of 50% show a similar effect of
recombination to that with complete outcrossing, suggesting
the presence of a threshold level of inbreeding that leads to
uncoupling of recombination from codon bias evolution.

In A. thaliana, selection on codon usage seems to be relatively
weak [34]. Thus, it is quite hard to identify the so-called 'opti-
mal' codons, which are preferentially retained by transla-
tional selection. In other species such as Drosophila and C.
elegans, optimal codons have been shown to correspond to
the most abundant tRNAs in cells [38,39]. Using tRNA gene
number as a proxy for tRNA expression, we redefined the list
of optimal codons in A. thaliana as those corresponding to
major tRNAs (S.I.W, C.B.K.Yau, M. Looseley, and B. Meyers,
unpublished data). The frequency of these newly defined
optimal codons (hereafter denoted F,,) is more strongly cor-
related with the level of gene expression than was the case in
previous work (Spearman rank coefficient R, = 0.26 with p <
10-4). This is consistent with the idea that this new index bet-
ter captures translational selection on codon bias than do pre-
vious ones.

We then compared selection on codon usage measured by F,,
with the rate of crossing over estimated from the comparison
of genetic and physical maps for each chromosome arm (see
Materials and methods). Figure 2 shows that there is no rela-
tionship between these parameters, with F,, being equal to
approximately 0.49 throughout the genome. R, = -0.02 with
P < 1074. Although the p value is highly significant, the corre-
lation coefficient implies that only 0.04% of the variability in

F,, 1s explained by the rate of crossing over, and the p value
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Simulation results showing the effect of recombination on the
effectiveness of selection for codon usage under inbreeding. The figure
shows the relationship between the recombination parameter 4N,r and
the frequency of the optimal codon (F,,) for selfing rates (S) of 0 (black
bars), 0.5 (gray bars) and 0.99 (white bars). (a) Value of the strength of
selection 4N, s = |; (b) 4N,s = 4. All simulations involved 1,000 sites where
4N.u = 0.04.

reflects the large number of genes used in the analysis. There
is thus virtually no genome-wide correlation between F,, and
the rate of crossing over. It has been noted previously for
other species that the genome-wide correlation between
codon bias and recombination is weak, although large differ-
ences can be observed among chromosomes or chromosomal
regions with very different rates of crossing over [7]. This
effect may result from poor map-based point estimates of
recombination for any given locus, while global averages are
much more reliable, as well as other causes [7,22]. In A. thal-
iana, as in many species, crossovers are suppressed near cen-
tromeres [40]. If we compare the centromeric regions with
the remainder of the genome, we find at most a 1% difference:
in centromeric regions, F,, = 0.477 (n = 2005), and in the
other regions, F,,=0.486 (n = 13,243). In contrast, compari-
sons of centromeric regions with other genomic regions in
Drosophila show striking differences, which are larger than
20% [6]. Taken together, these observations suggest that
selection on codon usage does not vary with the rate of cross-
ing over in A. thaliana, in agreement with the theory.
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Figure 2

Genome-wide relationship between the frequency of optimal codons (F,,)
and the rate of crossing over in A. thaliana. Each crossing-over bin contains
approximately 10% of the genes of the dataset. See Materials and methods
section for details of the measurement of Fop and the rate of crossing over,
in centimorgans per megabase (cM/MB).

Recombination and GC content

BGC can be seen as a sort of meiotic drive, in which GC gam-
etes are favored over AT gametes [41]. As high levels of
inbreeding are associated with a strong decrease in heterozy-
gosity, the strength of BGC should be dramatically reduced in
inbreeders, because BGC can occur only in heterozygotes. The
expected change in GC content due to BGC in the case of
inbreeding can be derived straightforwardly from population
genetics theory (see Materials and methods for details). By
using standard diffusion equations modifed for inbreeding
one can obtain the GC content at equilibrium under BGC,
mutation, drift and inbreeding (see Materials and methods
for details). The GC content at equilibrium (p*) depends on
the effective population size (IV,), the mutational bias (o = u/
v, where u is the mutation rate from GC—AT and v the
reverse mutation rate), the coefficient of BGC (w), and the
selfing rate (S) (see Materials and methods).

In Figure 3, we plot the expected values of p* according to the
scaled measure of the strength of BGC (4N, with different
mutational biases (&) and selfing rates (S)). In Figure 3a, we
show that BGC has little effect on expected GC content in
highly selfing populations (S = 0.99) compared to outcrossing
populations (S = 0), regardless of the strength of BGC. This
means that, in a highly selfing population, genomic regions
with high recombination and thus high BGC (high ) are
expected to have a very similar GC content to genomic regions
with low recombination and thus little or no BGC (low or null
). Figure 3b shows that a slight difference between such
genomic regions can be observed in a partial selfer, with S =
50%, for example. In A. thaliana, where S has been estimated
to be approximately 0.99 [29,30], the average GC contents for
introns, 5' flanking regions and 3' flanking regions are 32.1%,
32.7% and 32.5%, respectively, with an overall mean of
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The effect of inbreeding on biased gene conversion (BGC). (a) The
consequences of BGC for GC content for outcrossing populations (S = 0)
and highly self-crossing populations (S = 0.99). The results are shown with
no mutational bias (u/v = ) or with a mutational bias towards AT (u/v = 2).
(b) The GC content expected for various selfing rates with no (4N.» = 0),
moderate (4N, = ) or strong (4N.@ = 5) BGC. The mutational bias was
set to 2. See Materials and methods for details of the model.

approximately 32%. Thus, a mutational bias of 2 (that is, u/v
= 2) describes well the average GC content of noncoding DNA
(see Materials and methods for details). This suggests that the
results obtained with S ~1 and « = 2, are probably the closest
to reality in A. thaliana. With these parameters, Figure 3
shows that no effect of BGC on GC content is expected.

In Figure 4, we plot the GC content for third codon positions
of coding DNA (GC,) and intron DNA (GC;) against the rate of
crossing over in A. thaliana. No significant correlations
between GC, and GC; with recombination is observed. The
correlation coefficients are very weak for both GC, (R;=-0.03
with p = 0.0002) and GC; (R, = -0.04 with p = 0.01). In both
cases, less than 0.2% of the variability in GC content is
explained by recombination. Again, we checked for a differ-
ence between centromeric regions and the remainder of the
genome. In centromeric regions, GC, = 41.4% and GC; =
32.3%, and in the other regions GC, = 43.3% and GC; = 32.8%.
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Genome-wide relationship between GC content and the rate of crossing
Figure 3 over in A. thaliana. (a) Silent DNA (GG;); (b) intron DNA (GC). Each

crossing-over bin contains approximately 10% of the genes of the dataset.
See Materials and methods for details of the measurement of GC content
and the rate of crossing over, in centimorgans per megabase (cM/MB). The
results are the same if only genes with total intron size greater than 100
nucleotides (or with larger cutoff values) are included.

Thus, we observe a 2% difference for GC, and a 0.5% differ-
ence for GC;. Again these differences have a p value lower
than 0.05 (with a nonparametric Kolmogorov test) but these
minor differences may have no biological meaning. In con-
trast, the corresponding difference in GC content in Dro-
sophila is as large as 20% for coding and 5% for noncoding
DNA [6]. Our results from the genome analysis thus seem to
be in agreement with theory.

Discussion

Base composition in inbreeders versus outcrossers
Our genome analysis suggests that recombination has little
effect on base composition in A. thaliana. Neither codon
usage bias nor GC content are correlated with the local rate of
crossing over. Our theoretical work suggests that, first, selec-
tion on codon usage is not expected to vary with crossing over
in highly inbred species and, second, that BGC is inefficient in
highly inbred species. We also expect the global efficacy of
selection on codon usage to be lower in inbred than in outbred
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species (see Figure 1). Interestingly, the level of codon usage
is low in A. thaliana and high in Drosophila [34], in
agreement with the respective levels of outcrossing in these
species. Subsequent comparisons of selfing versus outcross-
ing Arabidopsis species have, however, shown a less clear
pattern [35].

The budding yeast Saccharomyces cerevisiae is thought to
have a high level of inbreeding in natural populations [42],
and recent high estimates of the inbreeding coefficient from a
population of the close relative S. paradoxus [43] suggest that
long-term rates of selfing may be high. One might therefore
expect a similar pattern in the genome of S. cerevisiae to that
observed in A. thaliana. Although there is no evidence for a
strong effect of recombination on the rate of protein evolution
once gene expression is controlled for [44], recombination
rates are strongly correlated with GC content in yeast [8].
However, in contrast to A. thaliana, yeast has exceptionally
high rates of recombination, approximately 100-fold higher
than the multicellular model systems Arabidopsis, Dro-
sophila and C. elegans [77]. This may counteract the reduction
in effective recombination rates caused by inbreeding, to such
a degree that the strength of BGC may be significant. Indeed,
a study of nucleotide variation at a prion-like gene in S. cere-
visiae estimated a similar effective rate of recombination to
that in Drosophila [45], despite possibly high rates of
inbreeding in budding yeast.

In C. elegans, the level of codon bias is intermediate between
that of A. thaliana and Drosophila [34], and there is also a
significant correlation between crossing over and GC content
in this species [6]. This is puzzling, in view of the low levels of
genetic diversity (suggesting a low effective population size)
[46,47] and the high levels of linkage disequilibrium (suggest-
ing very restricted recombination due to inbreeding) [46].
There are three possible explanations for this pattern: first, C.
elegans is in fact a fairly outcrossing species, and has recently
suffered a population bottleneck that reduced its levels of
genetic variability; second, it has only become a self-fertiliz-
ing hemaphrodite relatively recently (this possibility cannot
be excluded, since we lack knowledge of its close relatives)
[48]; and third, our models of the evolution of base composi-
tion are in error. Further information on the evolutionary
biology of C. elegans and its relatives is needed to solve this
problem.

How to explain variation in base composition

Base composition is fairly variable across the A. thaliana
genome, both for codon bias and GC content (see Figure 5).
Recombination does not seem to be a determinant of this var-
iation in A. thaliana. What could be the other possible deter-
minants? It is well known that codon bias has multiple
determinants: gene expression and protein length, for
instance [34]. Here, we find that a total of approximately 20%
of the variability in F,,, is explained by gene expression (meas-
ured by expressed sequence tag (EST) or massively parallel
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signature sequencing (MPSS) data) and protein length
(S.ILW., C.B.K. Yau, M. Looseley, and B. Meyers, unpublished
data), leaving 80% to be explained. The rate of nonsynony-
mous substitutions per site (dy) seems to be another strong
determinant of codon bias in Drosophila [16]. However, no
large-scale dataset of orthologous pairs between A. thaliana
and its close relatives (required to estimate dy) is currently
available, so we cannot assess the contribution of dj to varia-
bility in F,,. Both the GC content at synonymous sites and at
introns are likely to be influenced by genetic drift [49]. The
cumulative effects of mutation, selection (in the case of syn-
onymous sites) and drift should generate random variation in
GC content across the genome. This can be explored by look-
ing whether the distribution of GC content over genes (see
Figure 5) follows a binomial distribution. However, the differ-
ences between the expected values (estimated using the mean
GC content) and the observed values were statistically signif-
icant for both GC, and GC; (data not shown). Variation in GC
content does not seem to be fully explained by the effects of
genetic drift.

This suggests that other factors, such as local differences in
level of mutational bias, may contribute to the patterns of
base composition in A. thaliana. If there are strong local
effects driving the variation in GC, we would expect a strong
positive correlation between GC,; and GC; across genes, as
observed in humans [26,50] and Drosophila [51]. In contrast,
we find a weak but significant negative correlation between
GC,and GC; (R, = -0.115; p < 1074); this is the case even when
the correlation between GC,and codon bias is factored out (R
= -0.115; p < 1074). This suggests that local heterogeneity in
mutational bias does not explain the variation in GC, and pro-
vides further evidence against a major effect of BGC in local
GC variation in this species. The uncoupling of GC,and GC,,
and the residual variation in GC content, may result from the
action of selective constraint on some intron sequences, and
differences in the mutational context of introns and synony-
mous sites.

One important assumption of our analysis is that A. thaliana
has been self-fertilizing for a sufficiently long time to remove
any historical effects of recombination on base composition.
This is questionable, given the fact that its closest known rel-
atives are all obligate outcrosssers, including A. lyrata [52].
The most extreme case is complete cessation of outcrossing
and complete relaxation of selection or BGC since the
divergence of A. thaliana from A. lyrata. Under this assump-
tion, Equation (4) given in Materials and methods implies
that the present-day deviation of GC content of a genomic
region of A. thaliana from the completely neutral value is
equal to the initial deviation multiplied by exp(-(u + v)t),
where t is the time since divergence. This can be related to the
expected DNA sequence divergence at completely uncon-
strained sites (after a Poisson correction for multiple hits),
which is equal to 4avt/(1 + @) [49]. From the base composi-
tion of A. thaliana centromeric DNA (see Results), we can

Genome Biology 2004, 5:R45

Marais et al. R45.5

-
o
®
e
I
o
o
-
I
14
0
8
8
[o]
>




R45.6 Genome Biology 2004,

Volume 5, Issue 7, Article R45 Marais et al.

4,000

3,500-] Optimal _
30004 codons T

n=15,248

2,500-
2,000-
1,500+
1,000-
500
0+

G+C
3rd position

| n=15,248
2,500+

2,000+
1500 1

Number of genes

1,000 1
O T T ' T

1G+C -
4,000 Introns

T T T

n=12,116
3,000
2,000 A

1,000

L

T T T T T T T T
01 02 03 04 05 06 O
Base composition

(frequency)

O P

™
7 08

Figure 5
Distribution of base composition among genes in A. thaliana.

estimate « as 2.12, assuming that this reflects mutational
equilibrium. Given that the maximum silent-site divergence
between the two species is about 0.2 [35], this implies that (u
+ v)t = 0.23, so that the current deviation of A. thaliana GC
content from the mutational equilibrium value is expected to
be at least 80% of the value in A. lyrata. Conversely, this
means that the maximal departure of GC content in a
genomic region of A. lyrata from mutational equilibrium is at
most a factor of exp((u + v)t) times that for the corresponding
region of A. thaliana, that is, about 25% greater. If A. thaliana
has only been highly selfing for a proportion of the time since
divergence, the value will be proportionately lower. This sug-
gests that regional variation in GC content in A. lyrata should
be relatively modest, a prediction which can be tested when
more genomic information on A. lyrata is available.

http://genomebiology.com/2004/5/7/R45

The influence of population subdivision

Our theoretical model of drift, selection and mutation consid-
ered only a single population, but it is known that A. thaliana
has strong population structure [29,53]. In addition, within-
population silent nucleotide site diversity is very low com-
pared with A. lyrata, but the diversity when pooled over sam-
ples from different localities is similar for the two species
[53]. This indicates that the effective population sizes of local
populations are very low in A. thaliana, that migration among
populations is limited, and that the effective population size
determining the diversity among alleles randomly chosen
from the species as a whole is not greatly reduced. The rela-
tively high total diversity also suggests that local extinction
and recolonization of populations does not play a major part
in controlling genetic diversity [54].

This raises the question of what measure of effective popula-
tion size is appropriate for determining the base composition
under BGC or weak selection. In addition to mutational bias,
theory shows that base composition is controlled by the rela-
tive fixation probabilities of new mutations from GC to AT
and vice versa [21,55]. If migration is conservative (that is, the
number of migrants entering each population equals the
number leaving), with selection of the form of Equation (1) in
Materials and methods, these fixation probabilities are con-
trolled by the same N, as is appropriate for the mean level of
neutral diversity within demes, which is the same as for a
population lacking any subdivision [56-58]. With noncon-
servative migration, rigorous theoretical results are not
available, but heuristic models and computer simulations
suggest that fixation probabilities will be usually be lower
than with conservative migration [59-61]. These considera-
tions imply that our conclusion, that fixation probabilities in
A. thaliana will be closer to the neutral values than in A. lyr-
ata for sites affected by BGC or weak selection, is either unaf-
fected by population structure, or is a conservative one.

Conclusions

We have shown that inbreeding affects base composition by
modulating the effectiveness of recombination. Inbreeding
has also been shown to affect the dynamics of transposable
elements [32,62-64]. Taken together, these studies suggest
that mating system can have a major effect on genome organ-
ization, particularly when the levels of inbreeding are high,
and should be taken into account when interpreting patterns
of molecular evolution. Other population parameters such as
demographic history [35,65,66] and population subdivision
[64], should also be considered when analyzing patterns of
genome evolution.
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Materials and methods

Genomic approach

Sequence data

We wanted to build an ACNUC database for the A. thaliana
complete genome, because this allows the user to make com-
plex queries [67]. We required the A. thaliana complete
genome to be in GenBank format to do this. As far as we
know, the only release available in this format is release 1 (see
[68]). However, the gene predictions in this release may con-
tain some errors. To circumvent this problem, we used 15,248
genes for which we had evidence for gene expression (EST or
MPSS, see below) and whose intron-exon structure has not
changed from release 1 to release 3, increasing the chance that
they correspond to true genes with accurate annotations.
Coding sequences and intron sequences of these genes were
used for further analysis.

Recombination data

We used the rates of crossing over from a previous study [64].
These were obtained by comparisons of genetic and physical
maps for each chromosome arm. A polynomial was fitted to
the data and the derivative of this polynomial curve was used
to estimate the local rate of crossing over as a function of the
position in the chromosome arm (for details and data see [64]
and [69]). We could not use a sliding window approach to
estimate the local rate of crossing over because of the scarcity
of genetic markers.

Codon bias

This was estimated using the frequency of optimal codons
(Fop). The list of optimal codons for A. thaliana was revised
(S.I.W, C.B.K.Yau, M. Looseley, and B. Meyers, unpublished
data) by identifying the optimal codons as those correspond-
ing to the major tRNAs, whose cellular concentration was
estimated from tRNA gene number following [39,70,71]. To
check for a correlation between F,, and gene expression, we
used EST data (as in [34]) and MPSS data (see [72]) as esti-
mates of the level of gene expression. F,, was computed with
a modified version of a previously described program [34].

Theoretical approach

Hill-Robertson interference and inbreeding

Computer simulations were run following the reversible
mutation, selection and drift multilocus model of [20]. The
model assumes equal rates of forward and back mutation,
with a population mutation rate (4N,u) of 0.04. Simulations
were run assuming a scaled selection intensity 4N,s of 1 and
4, with 1,000 mutable sites, and a population size of N, = 100.
Although this effective size is likely to be an underestimate of
the true value for A. thaliana, the most important determi-
nants of the level of interference are the product of the scaled
mutation parameter 4N,u and the number of mutable sites,
and the scaled selection coefficient 4N,s [20]. We modified
the program to include the selfing rate S, where gametes are
formed by random mating with probability (1 - S), and by self-
fertilization with probability S. As in [20], selection was addi-
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tive, with codominant heterozygous effects at individual sites
(that is, the relative fitness at an individual locus is 1 + s for
the heterozygote, and 1 and 1 + 2s for the alternative
homozygotes).

Biased gene conversion and inbreeding

BGC favours GC over AT in the context of recombination
between polymorphic DNA sequences [7,8,26]. It is formally
equivalent to meiotic drive, which acts only in heterozygtes to
cause a departure from 1:1 Mendelian segregation of alleles
[73]. Assume that alternative GC and AT alleles at a site are
neutral and that the ratio of GC:AT gametes from GC/AT het-
erozygotes is k:k - 1. In a random-mating population, the
change in frequency p after one generation of an allele with
GC at a given site is [74]:

Ap =2p(1-p)(2k-1) (1)

If the population is inbred, the frequency of heterozygotes is
reduced to 2p(1 - p)(1 - F), where F is the inbreeding
coefficient [73]. At equilibrium under a mixture of selfing
with probability S and random mating with probability 1 - S,
F=8/(2-S) [31]. After taking selfing into account, Equation
(1) becomes:

Ap=awp(1-p)a-F) (2)
where k = 0.5(1 + ).

We must also consider the effects of genetic drift on finite
inbred populations. The effect of genetic drift in a single iso-
lated population is inversely proportional to the effective pop-
ulation size (IV,). Under a wide range of conditions, N, for an
inbred population is approximately equivalent to that for a
random mating population with otherwise similar demogra-
phy, divided by (1 + F) [31,75,76]. When BGC, mutation and
genetic drift are weak, their effects are additive and we can
work directly with the Li-Bulmer formula for equilibrium,
which is derived from diffusion theory [21,49,55]. The GC
content at equilibrium is given by the approximate equation:

_ exp(4Nea)(1—S))
u/v+exp(4Neco(1—S))

(3)

where u is the rate of mutation from GC—AT and v is the
reverse mutation rate.

If selection or BGC is completely relaxed after reaching an
equilibrium (as the one given by Equation (3) for BGC), the
process of change in GC content is described by the standard
linear expression for change under mutation pressure [77].
The new equilibrium GC content, p**, is equal to v/(u + v),
and the GC content at time ¢, p, is given by:

De-p** = (p*-p*) exp(-(u + v)). (4)
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Additional data files

Additional data available with this article online, show the
codon bias and base composition in Arabidopsis thaliana
(Additional data file 1). It lists all genes analyzed in our anal-
ysis of base composition, combined with point estimates of
recombination rate and base composition for each gene.
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