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Abstract

Background: Two component systems (TCS) are signalling complexes manifested by a histidine kinase (receptor)
and a response regulator (effector). They are the most abundant signalling pathways in prokaryotes and control a
wide range of biological processes. The pairing of these two components is highly specific, often requiring costly
and time-consuming experimental characterisation. Therefore, there is considerable interest in developing
accurate prediction tools to lessen the burden of experimental work and cope with the ever-increasing
amount of genomic information.

Results: We present a novel meta-predictor, MetaPred2CS, which is based on a support vector machine.
MetaPred2CS integrates six sequence-based prediction methods: in-silico two-hybrid, mirror-tree, gene fusion,
phylogenetic profiling, gene neighbourhood, and gene operon. To benchmark MetaPred2CS, we also
compiled a novel high-quality training dataset of experimentally deduced TCS protein pairs for k-fold cross
validation, to act as a gold standard for TCS partnership predictions. Combining individual predictions using
MetaPred2CS improved performance when compared to the individual methods and in comparison with a
current state-of-the-art meta-predictor.

Conclusion: We have developed MetaPred2CS, a support vector machine-based metapredictor for prokaryotic
TCS protein pairings. Central to the success of MetaPred2CS is a strategy of integrating individual predictors
that improves the overall prediction accuracy, with the in-silico two-hybrid method contributing most to
performance. MetaPred2CS outperformed other available systems in our benchmark tests, and is available
online at http://metapred2cs.ibers.aber.ac.uk, along with our gold standard dataset of TCS interaction pairs.

Keywords: Two-component signalling system, Protein-protein interactions, Protein-protein interaction
predictions, Meta-predictor, Support vector machine, Web server, Genome context, Co-evolution

Background
A wide range of critical functions in prokaryotes such as
antibiotic resistance, stationary phase transition, compe-
tence, sporulation, chemotaxis, nitrogen regulation,
virulence, and phosphate regulation are mediated by a
particular type of signalling pathway known as a two-
component system (TCS) [1]. TCS typically operate
through the transfer of phosphoryl groups from a His
residue of a histidine kinase (HK) to an Asp residue of a
response regulator (RR), in response to an extracellular

stimulus. A variant of the TCS, known as a phosphore-
lay, includes extra receiver and phosphotransfer domains
relaying the phosphoryl group between the HK and RR
proteins [2].
Genome-wide identification of HK and RR proteins is

relatively straightforward [3], with a variety of TCS data-
bases and prediction servers available [4–6]. However
the identification of HK-RR pairs is challenging as TCS
pairs are highly specific [7], there are multiple HK and
RRs in most genomes, and their genes are often
unpaired (orphan HKs and RRs). Several experimental
approaches have been used to identify HK-RR pairs,
including phosphotransfer profiling [8–10] and yeast
two-hybrid assays [11–14]. Such approaches are costly
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and labour intensive, therefore it is important to develop
computational tools to lessen the burden and comple-
ment experimental approaches.
The use of meta-predictors, predictors that combine

predictions from individual methods using machine
learning algorithms, is a common approach in bioinfor-
matics [15–21]. The advantage of meta-predictors is that
they do not rely on single methods, but can integrate a
wide range of information under a common probabilistic
umbrella without relying on complex scoring functions
[22]. In doing so, the strengths and weaknesses of indi-
vidual predictions are combined to achieve higher levels
of accuracy [21]. Examples of meta-predictors include
those developed for the prediction of functional sites in
proteins [23] or prediction of critical residues in protein
interfaces [24].
In this work we present MetaPred2CS, a sequence-based

meta-predictor designed specifically to predict protein pairs
in TCS. MetaPred2CS is based on a Support Vector
Machine (SVM) [25, 26] and combines six independent
and orthologous protein-protein interaction prediction
methods: in-silico two-hybrid (i2h) [27], mirror tree (MT)
[28], phylogenetic profiling (PP) [29], gene fusion (GF) [30],
gene neighbourhood (GN) and gene operon (GO) [31]. The
i2h and MT methods are based on co-evolution theory,
and rely on high quality and complete multiple sequence
alignments (MSAs), while PP, GF, GN and GO, are genome
context methods, utilising different genomic information
such as chromosomal proximity (GN), operons (GO),
fusion events (GF) and inter-genomic profiles (PP) between
fully sequenced genomes.
The identification performance of MetaPred2CS was

tested using validated experimental data and it achieved
a higher accuracy compared to individual prediction
methods such as i2h, MT, GF, PP, GN and GO. Meta-
Pred2CS also compared favourably against a Bayesian
meta-predictor benchmarked on TCS pairs [32] and a
database of protein-protein interactions: STRING [33].

Methods
Datasets: training and testing
A variety of datasets, described in detail below, were
used during the development of the predictor to bench-
mark its performance under different scenarios and to
compare to an independent, competing, method and pre
computed scores in the STRING [33] database. File1.xls
and File2.pdf in the Additional files 1 and 2 provide
complete details and a diagrammatic representation of
the all sets described below.

The P+ and P- datasets
The P+ and P- sets contain 113 interacting and 1134
non-interacting experimentally validated TCS pairs re-
spectively, and were compiled and manually curated

from the current literature. These sets were used to train
and test the MetaPred2CS using a k-fold cross validation
strategy. Specifically, the P+ set was compiled by mining
protein-protein interaction databases, including BioGriD
[34], DIP [35], IntAct [36], PSI-MI [37], UniProtKB [38]
and MINT [39] using the RefSeq identifiers extracted
from the P2CS database [4]. To create P-, experimentally
validated non-interacting pairs were mined from publi-
cations describing high-throughput, systematic, yeast
two-hybrid or phosphotransfer profiling experiments,
from a number of organisms including: Caulobacter
crescentus, Escherichia coli, Mycobacterium tuberculosis,
Myxococcus xanthus, Synechocystis sp. and Mesorhizo-
bium loti [8–14].
To test the performance of MetaPred2CS under

different scenarios and to compare it to an independent,
competing, methods, we derived interdependent testing
sets as described below (NP+, OP+, species-specific, T,
SP+ and SP- sets). In each test, MetaPred2CS was
trained with the corresponding, orthogonal, version of
P+ and P- (i.e. removing any proteins present in the
testing subset).

NP+ and OP+ and Species-specific datasets
The NP+ set (for Neighbouring Pairs) contains 56
pairs of TCS that are encoded by neighbouring genes,
while the OP+ set (for Orphan Pairs) is composed of
57 pairs that are encoded by genes, which are not
adjacent in the genome. This distinction is important,
as predictions of orphan pairs are usually more chal-
lenging [40–42]. In order to further clarify species-
specific and positive-to-negative class ratio bias in the
predictions, we also produced four different species-
specific testing sets: Escherichia coli, Myxococcus
xanthus, Synechocytis sp, and Mesorhizobim lotis.

T, SP+ and SP- datasets
Datasets T, SP+ and SP- were extracted from the work
by Burger and van Nimwegen [32] as testing sets to
compare MetaPred2CS performance. For all these three
testing sets, MetaPred2CS was trained with an orthog-
onal version of P+ and P- sets, i.e. any pair present in
either of the testing sets was removed from P+ or P-
prior to training. The T dataset is composed of 16
experimentally validated interacting pairs and 5 non-
interacting pairs while the SP+ and SP- sets are
composed of pairs of TCS extracted from the SwissRe-
gulon database [32]. In addition, The SP+ and SP- was
also used to compare to STRING [33] database.

The MetaPred2CS prediction method
Individual prediction methods
The selection of individual methodologies was based
on their orthogonalitynature, i.e. sequence-based,
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performance and availability. MetaPred2CS integrates
the prediction of six different methods: i2h, MT, PP,
GF, GN and GO. Briefly, the i2h method scans for
correlated (compensatory) mutations between residues
of the two proteins of interest, where a high-
correlation implies high-probability that given pair in-
teracts [27]. The MT method relies on similarity be-
tween phylogenetic trees to infer the likelihood of
interactions between pairs of proteins [28]. The GN
and GO methods are based on the observation that
proteins that are functionally related tend to be tran-
scribed and expressed concurrently, i.e. are encoded
by adjacent genes, particularly in prokaryotes [31].
The PP method is based on the idea that functionally
related genes under strong selective pressure appear
or disappear together as units during speciation
events [29]. Finally, the GF method is based on fusion
events, i.e. if two proteins appear as independent

units in one organism but as a joint entity in another
organism, then it is likely that the individual units are
actually an interacting pair [30]. Detailed information
about these methods as well as their technical aspects
can be found in the individual references indicated
above.

Fig. 1 Schematic representation of MetaPred2CS. Individual predictions are performed for given pairs of HK and RR (a). The prediction scores are
then used as the input vector for the SVM (b) trained in the P+ and P- sets (c). Finally, prediction scores are scaled from 0 to 1 (d)

Table 1 AUC values of predictions by individual methods for
the P+/P-, NP+/P- and OP+/P- datasets. GN and GO methods
were not included the AUC comparison given the large
genomic distance between pairs on the P- dataset that made
the predictions unfeasible

Datasets AUC Values of Individual Methods

i2h MT GF PP GN GO

P+/P- 0.84 0.66 0.58 0.57 N/A N/A

NP+/P- 0.90 0.69 0.60 0.55 N/A N/A

OP+/P- 0.78 0.63 0.55 0.59 N/A N/A
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Reference genome dataset
The GN, GO, GF, and PP methods rely on a reference
genome dataset, the quality of which, in the form of size
and diversity, is central to their performance [29]. To
that end, and to maximize the prediction performance
of these methodologies, we compiled a diverse, yet rela-
tively small (as a compromise between performance and
calculation speed), reference genome dataset based on
the most successful genome combinations proposed by
Muley and Ranjan [43]. Our dataset comprised 243 indi-
vidual genomes, belonging to 22 different classes (for
further details see Table S1 in the Additional file 3).
Genome annotations were downloaded from the NCBI
database [44] and operon data from annotated genomes
using Moreno-Hagelsieb and Collado-Vides' approach
[45] available at http://microbiome.wlu.ca/public/TUpre-
dictions/Predictions/ .

Implementation of individual prediction methods
All methods were implemented as described in their
original publications. Co-evolutionary-based methods
(i2h and MT) rely on the quality of MSAs, i.e. their
completeness and diversity. We generated MSAs follow-
ing the approach described in our previous work [46],
using UniprotKB [38]. ParseBlast generates complete
and diverse MSAs by filtering both highly identical and
highly dissimilar sequence homologs, considering also

the coverage of the alignment between query and hit
proteins [46]. With the exception of the minimum and
maximum number of species represented in the MSAs,
25 and 50 respectively, the rest of the prediction param-
eters were set to default values as described in the
original works [27, 28]. These two parameters set the
number of sequences shared between both MSAs, which
include the sequences of common species in both align-
ments selecting the ones with the highest sequence iden-
tity to the corresponding pair. Thus, the minimum and
maximum number in common between the two MSAs
is an important aspect on these methodologies as its
performance is highly influenced by these two parame-
ters, i.e. the diversity of alignment.
We used InPrePPI [47], which implements all the

genome context based methods (GF, PP, GN and GO),
which requires a reference genome dataset and genome
annotation (e.g. operon units) as described above.
Among the parameters required for prediction are: (i)
the evolutionary distances between target and reference
organisms, which was calculated using 16S RNA data as
described previously [47]; (ii) an e-value cut-off of 1e-5
for BLASTP [48] searches; (iii) a cut-off of 0.35 for
mutual information values (required for PP); and (iv) a
distance cut-off of 200 bp for the GN/GO predictions,
as suggested previously [45, 49, 50]. The GF method
identified fusions events, which in the case of TCS result
in hybrid proteins combining a HK and RR in single
coding unit, by using local alignments based on the
Smith-Waterman algorithm [51], implemented in the
ssearch36 program using default parameters [52].

Integration of individual prediction methods using a SVM:
MetaPred2CS
MetaPred2CS is based on a support vector machine
(SVM), implemented using the LIBSVM package [53].
The individual prediction methods described above form
a six-dimensional vector representing the prediction
scores for a given pair of proteins of interest, i.e. a HK
and RR pair. The vector is then inputted into a SVM
trained using the same training set. The -w option in
LIBSVM was used to account for the imbalance between
positive and negative classes. Also, the optimal values
for the error cost (c) and the gamma value (g), were

Table 2 Combinations of prediction methods and prediction
performance at 10-fold cross-validation. 1: i2h not included, 2: MT
not included, 3: GF not included, 4: PP not included, 5: GN not
included, 6: GO not included, 7: GN and GO not included, 8: all
methods included. AUC and MCC represent the area under the
ROC curved and Matthew’s correlation coefficient respectively

Combinations AUC Values MCC Values

1 : i2h method excluded 88.86 0.401

2 : MT method excluded 94.69 0.500

3 : GF method excluded 94.45 0.484

4 : PP method excluded 91.89 0.414

5 : GN method excluded 94.04 0.454

6 : GO method excluded 94.76 0.504

7 : GN/GO methods excluded 90.15 0.408

8 : all methods included 94.79 0.508

Table 3 Performance of default predictor on species-specific gene sets. Sensitivity, specificity, accuracy and MCC values are
presented, as defined in the text

Species used as test data Performance of Classifier

Sensitivity Specificity Accuracy MCC

Escherichia coli K-12 MG1655 0.82 0.86 0.85 0.607

Myxococcus xanthus DK1622 0.92 0.87 0.87 0.582

Synechocystis sp. PCC6803 0.81 0.86 0.77 0.477

Mesorhizobium loti MAFF303099 0.75 0.89 0.88 0.476
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explored using a grid search on a 10-fold cross valid-
ation with the radial basis kernel function [54] (see Table
S2 in the Additional file 3). Finally, decision values were
normalized in a range between 0 and 1 (Fig. 1).

Benchmarking and comparison of MetaPred2CS
performance
MetaPred2CS was benchmarked and assessed using
different datasets (described above). Firstly, to assess the
contribution of each individual prediction method to the
final classifier, we trained and test 8 different classifiers
with different combinations of individual prediction
methods (Table 1). Each of these different classifiers was

assessed using 5-, 10- and 20-fold cross-validation using
the P+ and P- datasets. Furthermore, MetaPred2CS, was
benchmarked against NP+, OP+, and specie-specific
testing sets were used to further discern the per-
formance of predictions in orphans and neighbouring
genes and specie-specific sets. Finally, MetaPredCS was
compared against the work by Burger and van Nimwegen
[32] (T, SP+ and SP- datasets) and STRING [33] database
(SP+ and SP- datasets).

Assessing MetaPred2CS performance
The performance of each classifier was evaluated accord-
ing to sensitivity (1), specificity (2), accuracy (3), Math-
ew’s correlation coefficient MCC [55] (4) and Area
Under the ROC Curve (AUC) [56] values. Formally,

Sensitivity ¼ TP
TP þ FN

ð1Þ

Specificity ¼ TN
TN þ FP

ð2Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð3Þ

Table 4 Prediction performance of default predictor on
neighbouring and orphan pairs. AUC and MCC values for
MetaPred2CS trained on the NP+/P- and OP+/P- datasets at
different level of K-fold cross-validation

Dataset Performance of Classifier According to Cross-validation Levels

5-fold 10-fold 20-fold

AUC MCC AUC MCC AUC MCC

NP+/P- 98.79 0.639 98.40 0.639 98.75 0.634

OP+/P- 90.28 0.409 89.36 0.407 90.31 0.410

Fig. 2 ROC curves of predictions on the NP+/P-, P+/P- and OP+/P- datasets using default predictor. Blue, black and red ROC curves represent the
performance on the NP+/P-, P+/P- and OP+/P- datasets, respectively
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MCC ¼ TP � TN−FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð4Þ
Where TP, FP, TN, and FN represent true positives,

false positives, true negatives and false negatives,
respectively. Particularly important are the MCC values,
given the disequilibrium of positive and negative classes,
i.e. the difference in size of interacting and non-
interacting pairs. The statistical analysis of ROC curves
was performed using STAR [57].

Results and Discussion
Evaluation of individual prediction methods
Individual methods were tested on the P+/P-, NP+/P-,
and OP+/P- datasets. Prediction performance metrics of
each method are presented and compared using AUC
values (Table 1). Co-evolutionary methods (i2h and MT)
performed better than the genomic context methods,
and the i2h method outperformed all other methods for
each dataset, with MT being the next best method for
each dataset.
With the exception of the PP, the best performance

was on the NP+/P- dataset. This was expected because
predicting orphan pairs is usually more challenging than
neighboring pairs. PP however rely on comparison
across genomes where interacting pairs either appear or
disappear concurrently, hence genomic context does not
play a unique contribution. Consequently, PP achieved
the best performance on the OP+/P- dataset of the
genomic context methods. It also performed similarly to
the GF method on the P+/P- dataset. In the case of GN
and GO, intrinsic limitations of these methodologies,
i.e. rely on genomic distance, prevented its use on the
P- and OP+ dataset, hence AUC and MCC could not
be calculated, hence not presented in Table 1. None-
theless, GN and GO are valid strategies in the predic-
tion of pairing in neighboring genes (51 pairs out of
57 on the NP+ were predicted correctly), hence GH
and GO predictions were considered as part input
vector for the meta-predictor (see next).

Contribution of individual methods to MetaPred2CS
To understand the contribution of individual methods,
several meta-predictors were trained and tested using
different K-fold cross-validation strategies on the P+/P-
sets. The different combinations of individual predictors
are listed in Table 2. The meta-predictor combining all
six-prediction methods, hereinafter referred to as the
default predictor or MetaPred2CS, achieved the highest
performance (AUC: 94.79; MCC: 0.51). The largest drop
in performance resulted when the i2h method was
removed from the input features vector (AUC: 88.87;
MCC: 0.401). Omitting a method had a minimal effect if

another method(s) based on similar principles, e.g.
genomic-context, was retained. For example, when GO
was excluded but GN was kept, the decreases in AUC
and MCC were very small (AUC: 94.76; MCC: 0.46).
However, when excluding both GN and GO methods
together, the decrease in AUC and MCC was larger
(AUC: 89.83; MCC: 0.41). Tests performed at different
cross-validation levels also showed that the different
sizes of the training and test datasets did not result in a
large differences in the performance of SVM classi-
fiers with our training dataset and the best results
were obtained at 10-fold cross-validation (Table S2
Additional file 3).

Species-specific predictions
To further characterise the performance of MetaPred2CS,
we performed species-specific predictions. Four inde-
pendent testing sets representing Escherichia coli,
Myxococcus xanthus, Synechocytis sp, and Mesorhizo-
bim loti were created, due to the number of TCS
proteins encoded in their genomes and the resulting
ratio between interacting and non-interacting pairs.
As shown in several works (e.g. [58, 59]) the ratio
between positive and negative cases has an important

Table 5 Prediction of the T dataset by the Bayesian approach
[32] and MetaPred2CSc. Non-interacting protein pairs are marked
with an asterisk and best predictions are highlighted in bold

Type(a) Protein Pairs Bayesian Approach MetaPred2CS

IT CC0248 - CC0247 1.000 0.894

IT CC0289 - CC0294 0.995 0.633

IT CC2755 - CC2757 0.851 0.164

IT CC2765 - CC2766 1.000 0.852

IT CC2932 - CC2931 0.945 1.000

IT CenK - CenR 0.917 0.491

IT CckN - DivK 0.306 0.649

IT ChpT - CtrA 0.197 0.786

IT ChpT - CpdR 0.001 0.650

IT DivJ - CtrA 0.461 0.559

IT DivJ - PleD 0.385 0.723

IT DivJ - DivK 0.041 0.756

IT DivL - DivK 0.537 0.559

IT DivL - CtrA 0.130 0.721

IT PleC - DivK 0.080 0.477

IT PleC - PleD 0.001 0.600

NI ChpT - CC3477* 0.607 0.231

NI ChpT - CC2757* 0.128 0.000

NI ChpT - CenR* 0.067 0.000

NI PleC - CtrA* 0.002 0.022

NI PleC - CC3477* 0.001 0.000
(a)IT: interacting pair; NI: non-interacting pair
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impact in the performance of predictors of protein-
protein interactions. Escherichia coli represents the
organism with the lowest number of TCS proteins
(62) and the lowest interacting (22) to non-interacting
(64) pairs ratio (approximately 1:3) while Myxococcus
xanthus had the 236 pairs and a ratio of 20:216 inter-
actiong:non-interacting pairs. The most challenging
cases were Synechocystis sp. and Mesorhizobium loti
with 20 interacting to 319 non-interacting pairs and
20 interacting to 364 non-interacting pairs, respectively.
Overall and as expected, the best prediction performance
was achieved for Escherichia coli, although predictions
were still accurate even for Synechocystis sp. and Mesorhi-
zobium loti (Table 3).

Predictions of neighbouring and orphan pairs
(NP+/P- and OP+/P- sets)
The genes encoding a TCS pairs can be located in adja-
cent (neighbouring) or separate (orphan) positions
within the genome. The prediction of interacting pairs
would be expected to be more challenging for orphans
than for neighbouring proteins. Therefore, to test the
capacity and performance of MetaPred2CS under these
different scenarios, the P+ dataset was divided into two
subsets: NP+ (neighbouring pairs) and OP+ (orphan
pairs), and assessed at different K-fold cross validations.

As expected, MetaPred2CS performed better on the
NP+/P- than on the OP+/P- set at any K-fold valid-
ation values (Table 4). The best performance was
achieved at the 10-fold cross-validation level. ROC
curves of NP+/P- (AUC = 0.98), P+/P- (AUC = 0.95)
and OP+/P- (AUC = 0.89) datasets at 10-fold cross-
validation are shown in Fig. 2.

Comparison of MetaPred2CS and a competing
machine-learning method and STRING database
MetaPred2CS was compared to a competing machined
learning method publicly available using common testing
sets [32] and STRING [33] database. On the first
instance, both methods were compared using the T set
compiled in Burger and van Nimwegen’s original work
[32]. The T set is composed of 16 interacting and 5 non-
interacting protein pairs. As shown in Table 5, out of 21
pairs, 16 were predicted more accurately by Meta-
Pred2CS (4 cases both methods performed at the same
level). Moreover, MetaPred2CS correctly predicted all
non-interacting pairs, assigning low prediction scores
for all cases. The T dataset is however a small set
composed of protein pairs from a single specie:
Caulobacter crescentus.
A more comprehensive comparison was carried out

on the SP+/SP- dataset, also compiled Burger and van

Fig. 3 ROC curves of predictions on the SP+/SP- datasets. Red, blue and green ROC curves represent predictions by MetaPred2CS, STRING
[33], and the Bayesian approach of Burger and van Nimwegen [21], respectively
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Nimwegen’s original work [32], which is considerably
larger and more diverse, comparing also to STRING [33]
database. These datasets include protein pairs from 6
different species: Escherichia coli, Bacillus subtilis,
Caulobacter crescentus, Mesorhizobium loti, Myxococcus
xanthus, and Synechocystis sp. As shown in Fig. 3, Meta-
Pred2CS performed better than the Bayesian approach
(AUC: 92.8 vs. 83.5) and STRING [33] database (AUC:
92.8 vs 88.4). Statistical analysis of the ROC curves
showed that there was a significant improvement of
MetaPred2CS performance both over that of the
Bayesian approach and STRING (p-value < 0.05).

Conclusion
In this work we present a novel sequence-based predic-
tion method designed specifically for TCS signalling
networks: MetaPred2CS. The method was systematically
assessed under different benchmarking scenarios, and
performed well in all conditions, including using species-
specific gene sets and TCS with different genome archi-
tecture features (i.e. neighbouring proteins vs. orphans).
We show that integration of individual prediction meth-
odologies improves the performance of the predictions,
and that MetaPred2CS prediction performance compared
favourably to existing methodologies. MetaPred2CS is
accessible through a dedicated web-server at http://
metapred2cs.ibers.aber.ac.uk.
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SP- datasets. The experimental source of interaction data, organisms,
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Additional file 2: Diagrammatic representation of P+, P-, NP+, OP+,
SP+ and SP- datasets. (PDF 76 kb)
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S1 represents the content and organism distribution of the reference
genome database and in Table S2 employed error cost (c) and gamma
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and combination of independent methods. (DOCX 23 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AK: design and execution of the research, collection, analysis and interpretation
of data, implementation of the web-server and writing of the manuscript. MV:
implementation of the web-server and writing of the manuscript. MS, DEW and
NFF: conception, design, supervision, analysis and interpretation of data, and
writing of the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We thank the P2CS team for help extracting information from the P2CS
database. We also thank all the authors of the methods and data used in
this work for making them freely available to the scientific community.
Authors thank anonymous reviewers for constructive and insightful
comments and suggestions to this work.

Received: 29 March 2015 Accepted: 16 September 2015

References
1. Whitworth DE. Two-component regulatory systems in prokaryotes. In:

Filloux A, editor. Bacterial Regulatory Networks. Norfolk: Horizon Scientific
Press; 2012. p. 191–222.

2. Appleby JL, Parkinson JS, Bourret RB. Signal transduction via the multi-step
phosphorelay: not necessarily a road less traveled. Cell. 1996;86:845–8.

3. Whitworth DE. Classification and organization of two-component systems.
In: Gross R, Beier D, editors. Two-component Systems in Bacteria. Norfolk:
Horizon Scientific Press; 2012. p. 1–20.

4. Ortet P, Whitworth DE, Santaella C, Achouak W, Barakat M. P2CS: updates of
the prokaryotic two-component systems database. Nucleic Acids Res.
2015;43:D536–41. doi:10.1093/nar/gku968.

5. Barakat M, Ortet P, Whitworth DE. P2RP: a Web-based framework for the
identification and analysis of regulatory proteins in prokaryotic genomes.
BMC Genomics. 2013;14:269. doi:10.1186/1471-2164-14-269.

6. Ulrich LE, Zhulin IB. The MiST2 database: a comprehensive genomics
resource on microbial signal transduction. Nucleic Acids Res.
2010;38:D401–7. doi:10.1093/nar/gkp940.

7. Laub MT, Goulian M. Specificity in two-component signal transduction
pathways. Annu Rev Genet. 2007;41:121–45. doi:10.1146/
annurev.genet.41.042007.170548.

8. Willett JW, Tiwari N, Müller S, Hummels KR, Houtman JCD, Fuentes EJ,
et al. Specificity residues determine binding affinity for two-component
signal transduction systems. mBio. 2013;4:e00420–00413. doi:10.1128/
mBio.00420-13.

9. Laub MT, Biondi EG, Skerker JM. Phosphotransfer profiling: systematic
mapping of two-component signal transduction pathways and
phosphorelays. Methods Enzymol. 2007;423:531–48. doi:10.1016/S0076-
6879(07)23026-5.

10. Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT. Two-component
signal transduction pathways regulating growth and cell cycle progression
in a bacterium: a system-level analysis. PLoS Biol. 2005;3:e334. doi:10.1371/
journal.pbio.0030334.

11. Lee H-N, Jung K-E, Ko I-J, Baik HS, Oh J-I. Protein-protein interactions
between histidine kinases and response regulators of Mycobacterium
tuberculosis H37Rv. J Microbiol Seoul Korea. 2012;50:270–7. doi:10.1007/
s12275-012-2050-4.

12. Sato S, Shimoda Y, Muraki A, Kohara M, Nakamura Y, Tabata S. A large-scale
protein protein interaction analysis in Synechocystis sp. PCC6803. DNA
Res Int J Rapid Publ Rep Genes Genomes. 2007;14:207–16. doi:10.1093/
dnares/dsm021.

13. Shimoda Y, Shinpo S, Kohara M, Nakamura Y, Tabata S, Sato S. A large scale
analysis of protein-protein interactions in the nitrogen-fixing bacterium
Mesorhizobium loti. DNA Res Int J Rapid Publ Rep Genes Genomes.
2008;15:13–23. doi:10.1093/dnares/dsm028.

14. Whitworth DE, Millard A, Hodgson DA, Hawkins PF. Protein-protein
interactions between two-component system transmitter and receiver
domains of Myxococcus xanthus. Proteomics. 2008;8:1839–42. doi:10.1002/
pmic.200700544.

15. Friedberg I, Harder T, Godzik A. JAFA: a protein function annotation
meta-server. Nucleic Acids Res. 2006;34:W379–81. doi:10.1093/nar/gkl045.

16. Ishida T, Kinoshita K. Prediction of disordered regions in proteins based on
the meta approach. Bioinforma Oxf Engl. 2008;24:1344–8. doi:10.1093/
bioinformatics/btn195.

17. Kurowski MA, Bujnicki JM. GeneSilico protein structure prediction meta-server.
Nucleic Acids Res. 2003;31:3305–7.

18. Pawlowski M, Gajda MJ, Matlak R, Bujnicki JM. MetaMQAP: a meta-server for
the quality assessment of protein models. BMC Bioinformatics. 2008;9:403.
doi:10.1186/1471-2105-9-403.

19. Saini HK, Fischer D. Meta-DP: domain prediction meta-server. Bioinforma Oxf
Engl. 2005;21:2917–20. doi:10.1093/bioinformatics/bti445.

20. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a
meta-predictor of intrinsically disordered amino acids. Biochim Biophys
Acta. 1804;2010:996–1010. doi:10.1016/j.bbapap.2010.01.011.

21. Schlessinger A, Punta M, Yachdav G, Kajan L, Rost B. Improved disorder
prediction by combination of orthogonal approaches. PloS One.
2009;4:e4433. doi:10.1371/journal.pone.0004433.

Kara et al. BMC Bioinformatics  (2015) 16:297 Page 8 of 9

http://metapred2cs.ibers.aber.ac.uk
http://metapred2cs.ibers.aber.ac.uk
http://www.biomedcentral.com/content/supplementary/s12859-015-0741-7-s1.xlsx
http://www.biomedcentral.com/content/supplementary/s12859-015-0741-7-s2.pdf
http://www.biomedcentral.com/content/supplementary/s12859-015-0741-7-s3.docx
http://dx.doi.org/10.1093/nar/gku968
http://dx.doi.org/10.1186/1471-2164-14-269
http://dx.doi.org/10.1093/nar/gkp940
http://dx.doi.org/10.1146/annurev.genet.41.042007.170548
http://dx.doi.org/10.1146/annurev.genet.41.042007.170548
http://dx.doi.org/10.1128/mBio.00420-13
http://dx.doi.org/10.1128/mBio.00420-13
http://dx.doi.org/10.1016/S0076-6879(07)23026-5
http://dx.doi.org/10.1016/S0076-6879(07)23026-5
http://dx.doi.org/10.1371/journal.pbio.0030334
http://dx.doi.org/10.1371/journal.pbio.0030334
http://dx.doi.org/10.1007/s12275-012-2050-4
http://dx.doi.org/10.1007/s12275-012-2050-4
http://dx.doi.org/10.1093/dnares/dsm021
http://dx.doi.org/10.1093/dnares/dsm021
http://dx.doi.org/10.1093/dnares/dsm028
http://dx.doi.org/10.1002/pmic.200700544
http://dx.doi.org/10.1002/pmic.200700544
http://dx.doi.org/10.1093/nar/gkl045
http://dx.doi.org/10.1093/bioinformatics/btn195
http://dx.doi.org/10.1093/bioinformatics/btn195
http://dx.doi.org/10.1186/1471-2105-9-403
http://dx.doi.org/10.1093/bioinformatics/bti445
http://dx.doi.org/10.1016/j.bbapap.2010.01.011
http://dx.doi.org/10.1371/journal.pone.0004433


22. Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. Inference in Bayesian
networks. Nat Biotechnol. 2006;24:51–3. doi:10.1038/nbt0106-51.

23. Segura J, Jones PF, Fernandez-Fuentes N. A holistic in silico approach to
predict functional sites in protein structures. Bioinforma Oxf Engl.
2012;28:1845–50. doi:10.1093/bioinformatics/bts269.

24. Assi SA, Tanaka T, Rabbitts TH, Fernandez-Fuentes N. PCRPi: Presaging
Critical Residues in Protein interfaces, a new computational tool to chart
hot spots in protein interfaces. Nucleic Acids Res. 2010;38:e86. doi:10.1093/
nar/gkp1158.

25. Noble WS. What is a support vector machine? Nat Biotechnol.
2006;24:1565–7. doi:10.1038/nbt1206-1565.

26. Yang ZR. Biological applications of support vector machines. Brief Bioinform.
2004;5:328–38.

27. Pazos F, Valencia A. In silico two-hybrid system for the selection of
physically interacting protein pairs. Proteins. 2002;47:219–27.

28. Pazos F, Valencia A. Similarity of phylogenetic trees as indicator of
protein-protein interaction. Protein Eng. 2001;14:609–14.

29. Sun J, Xu J, Liu Z, Liu Q, Zhao A, Shi T, et al. Refined phylogenetic profiles
method for predicting protein-protein interactions. Bioinforma Oxf Engl.
2005;21:3409–15. doi:10.1093/bioinformatics/bti532.

30. Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. Protein interaction
maps for complete genomes based on gene fusion events. Nature.
1999;402:86–90. doi:10.1038/47056.

31. Shoemaker BA, Panchenko AR. Deciphering protein-protein interactions.
Part II. Computational methods to predict protein and domain interaction
partners. PLoS Comput Biol. 2007;3:e43. doi:10.1371/journal.pcbi.0030043.

32. Burger L, van Nimwegen E. Accurate prediction of protein-protein
interactions from sequence alignments using a Bayesian method. Mol Syst
Biol. 2008;4:165. doi:10.1038/msb4100203.

33. Von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a
database of predicted functional associations between proteins. Nucleic
Acids Res. 2003;31:258–61.

34. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID:
a general repository for interaction datasets. Nucleic Acids Res.
2006;34:D535–9. doi:10.1093/nar/gkj109.

35. Xenarios I, Salwínski L, Duan XJ, Higney P, Kim S-M, Eisenberg D. DIP, the
Database of Interacting Proteins: a research tool for studying cellular
networks of protein interactions. Nucleic Acids Res. 2002;30:303–5.

36. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S,
Orchard S, et al. IntAct: an open source molecular interaction database.
Nucleic Acids Res. 2004;32:D452–5. doi:10.1093/nar/gkh052.

37. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, et
al. The HUPO PSI’s molecular interaction format–a community standard for
the representation of protein interaction data. Nat Biotechnol. 2004;22:177–
83. doi:10.1038/nbt926.

38. Magrane M, Consortium U. UniProt Knowledgebase: a hub of integrated
protein data. Database J Biol Databases Curation. 2011;2011:bar009.
doi:10.1093/database/bar009.

39. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M,
Cesareni G. MINT: a Molecular INTeraction database. FEBS Lett.
2002;513:135–40.

40. Cock PJA, Whitworth DE. Evolution of gene overlaps: relative reading frame
bias in prokaryotic two-component system genes. J Mol Evol. 2007;64:457–62.
doi:10.1007/s00239-006-0180-1.

41. Cock PJA, Whitworth DE. Evolution of prokaryotic two-component system
signaling pathways: gene fusions and fissions. Mol Biol Evol. 2007;24:2355–7.
doi:10.1093/molbev/msm170.

42. Williams RHN, Whitworth DE. The genetic organisation of prokaryotic
two-component system signalling pathways. BMC Genomics.
2010;11:720. doi:10.1186/1471-2164-11-720.

43. Muley VY, Ranjan A. Effect of reference genome selection on the
performance of computational methods for genome-wide protein-protein
interaction prediction. PloS One. 2012;7:e42057. doi:10.1371/
journal.pone.0042057.

44. Tatusova T, Ciufo S, Fedorov B, O’Neill K. Tolstoy I. About Prokaryotic
Genome Processing and Tools: Zaslavsky L; 2014.

45. Moreno-Hagelsieb G, Collado-Vides J. A powerful non-homology method for
the prediction of operons in prokaryotes. Bioinformatics. 2002;18:S329–36.
doi:10.1093/bioinformatics/18.suppl_1.S329.

46. Fernandez-Fuentes N, Rai BK, Madrid-Aliste CJ, Fajardo JE, Fiser A.
Comparative protein structure modeling by combining multiple templates

and optimizing sequence-to-structure alignments. Bioinforma Oxf Engl.
2007;23:2558–65. doi:10.1093/bioinformatics/btm377.

47. Sun J, Sun Y, Ding G, Liu Q, Wang C, He Y, et al. InPrePPI: an integrated
evaluation method based on genomic context for predicting protein-
protein interactions in prokaryotic genomes. BMC Bioinformatics. 2007;8:414.
doi:10.1186/1471-2105-8-414.

48. Bhagwat M, Aravind L. PSI-BLAST tutorial. Methods Mol Biol Clifton NJ.
2007;395:177–86.

49. Strong M, Mallick P, Pellegrini M, Thompson MJ, Eisenberg D. Inference of
protein function and protein linkages in Mycobacterium tuberculosis based
on prokaryotic genome organization: a combined computational approach.
Genome Biol. 2003;4:R59. doi:10.1186/gb-2003-4-9-r59.

50. Ermolaeva MD, White O, Salzberg SL. Prediction of operons in microbial
genomes. Nucleic Acids Res. 2001;29:1216–21.

51. Smith TF, Waterman MS. Identification of common molecular subsequences.
J Mol Biol. 1981;147:195–7.

52. Pearson WR. Flexible Sequence Similarity Searching with the FASTA3 Program
Package. In: Misener S, Krawetz SA, editors. Bioinformatics Methods and
Protocols. New Jersey: Springer Science & Business Media; 1999. p. 185–216.

53. Chang C-C, Lin C-J. LIBSVM: A Library for Support Vector Machines. ACM
Trans Intell Syst Technol. 2011;2:27:1–27. doi:10.1145/1961189.1961199. 27.

54. Cho BH, Yu H, Lee J, Chee YJ, Kim IY, Kim SI. Nonlinear support vector
machine visualization for risk factor analysis using nomograms and localized
radial basis function kernels. IEEE Trans Inf Technol Biomed Publ IEEE Eng
Med Biol Soc. 2008;12:247–56. doi:10.1109/TITB.2007.902300.

55. Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H. Assessing the
accuracy of prediction algorithms for classification: an overview.
Bioinformatics. 2000;16:412–24. doi:10.1093/bioinformatics/16.5.412.

56. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a
fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39:561–77.

57. Vergara IA, Norambuena T, Ferrada E, Slater AW, Melo F. StAR: a simple tool
for the statistical comparison of ROC curves. BMC Bioinformatics. 2008;9:265.
doi:10.1186/1471-2105-9-265.

58. Zhang QC, Petrey D, Deng L, Qiang L, Shi Y, Thu CA, et al. Structure-based
prediction of protein-protein interactions on a genome-wide scale. Nature.
2012;490:556–60. doi:10.1038/nature11503.

59. Planas-Iglesias J, Bonet J, García-García J, Marín-López MA, Feliu E, Oliva B.
Understanding protein-protein interactions using local structural features.
J Mol Biol. 2013;425:1210–24. doi:10.1016/j.jmb.2013.01.014.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Kara et al. BMC Bioinformatics  (2015) 16:297 Page 9 of 9

http://dx.doi.org/10.1038/nbt0106-51
http://dx.doi.org/10.1093/bioinformatics/bts269
http://dx.doi.org/10.1093/nar/gkp1158
http://dx.doi.org/10.1093/nar/gkp1158
http://dx.doi.org/10.1038/nbt1206-1565
http://dx.doi.org/10.1093/bioinformatics/bti532
http://dx.doi.org/10.1038/47056
http://dx.doi.org/10.1371/journal.pcbi.0030043
http://dx.doi.org/10.1038/msb4100203
http://dx.doi.org/10.1093/nar/gkj109
http://dx.doi.org/10.1093/nar/gkh052
http://dx.doi.org/10.1038/nbt926
http://dx.doi.org/10.1093/database/bar009
http://dx.doi.org/10.1007/s00239-006-0180-1
http://dx.doi.org/10.1093/molbev/msm170
http://dx.doi.org/10.1186/1471-2164-11-720
http://dx.doi.org/10.1371/journal.pone.0042057
http://dx.doi.org/10.1371/journal.pone.0042057
http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S329
http://dx.doi.org/10.1093/bioinformatics/btm377
http://dx.doi.org/10.1186/1471-2105-8-414
http://dx.doi.org/10.1186/gb-2003-4-9-r59
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1109/TITB.2007.902300
http://dx.doi.org/10.1093/bioinformatics/16.5.412
http://dx.doi.org/10.1186/1471-2105-9-265
http://dx.doi.org/10.1038/nature11503
http://dx.doi.org/10.1016/j.jmb.2013.01.014

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Datasets: training and testing
	The P+ and P- datasets
	NP+ and OP+ and Species-specific datasets
	T, SP+ and SP- datasets

	The MetaPred2CS prediction method
	Individual prediction methods
	Reference genome dataset
	Implementation of individual prediction methods
	Integration of individual prediction methods using a SVM: MetaPred2CS
	Benchmarking and comparison of MetaPred2CS performance
	Assessing MetaPred2CS performance


	Results and Discussion
	Evaluation of individual prediction methods
	Contribution of individual methods to MetaPred2CS
	Species-specific predictions
	Predictions of neighbouring and orphan pairs �(NP+/P- and OP+/P- sets)
	Comparison of MetaPred2CS and a competing machine-learning method and STRING database

	Conclusion
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	References



