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Abstract: This review summarizes randomized controlled trials (RCTs) assessing the effect of
docosahexaenoic acid (DHA) supplementation in the first 1000 days on child language. Six databases
were searched and RCTs were included if they involved supplementation with DHA during pregnancy,
to preterm infants, or during the postpartum period, included a placebo group with less or no DHA,
and reported a language outcome. We included 29 RCTs involving n = 10,405 participants from 49
publications. There was a total of 84 language measures at ages ranging from 3 months to 12 years.
Of the 84 assessments, there were 4 instances where the DHA group had improved scores, and 2
instances where the DHA group had worse scores (with the majority of these significant effects found
within one RCT). The remaining comparisons were null. A few RCTs that included subgroup analyses
reported (inconsistent) effects. There was limited evidence that DHA supplementation had any effect
on language development, although there were some rare instances of both possible positive and
adverse effects, particularly within population subgroups. It is important that any subgroup effects
are verified in future trials that are adequately powered to confirm such effects.

Keywords: DHA; omega-3 fatty acids; supplementation; language; verbal abilities; speech; prenatal;
postnatal; neonatal; infant

1. Introduction

The first 1000 days of life is a period of rapid brain development where embryonic stem cells
develop into a functioning brain that is 80% of the size of an adult brain [1]. Although the brain
continues to develop well into early adulthood, the foundations are laid for later development during
this critical period [2]. Appropriate nutrition in early life is considered to be one of the most important
(non-genetic) influences on brain development [2–7]. The omega-3 long chain polyunsaturated fatty
acid, docosahexaenoic acid (DHA, 22:6n−3) is one nutrient that is concentrated in neural tissues, and is
actively accumulated in the brain during early development [8–10].

Observational studies have demonstrated associations between intake of foods rich in DHA (oily
fish) with positive outcomes for child development [11–18]. A number of randomized controlled
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trials (RCTs) have been conducted to further explore whether increasing exposure to DHA through
supplementation in the first 1000 days can enhance brain development. Cochrane reviews and
meta-analyses of these RCTs have revealed mixed and predominantly null effects of DHA interventions
on brain development [19–23]. RCTs have predominantly evaluated brain development through
assessments of cognition, however evidence is emerging to suggest that language may be a specific
domain of brain development sensitive to early DHA exposure [14–17,24–32].

1.1. The Development and Assessment of Language Abilities

Language is a critical component of overall development during infancy and childhood. Language
skills are necessary for understanding and communicating with others, forming relationships with
others, thinking and problem solving, learning, reading, and writing [33,34]. Language abilities develop
rapidly across childhood and are categorized as either receptive or expressive. Receptive language
abilities refer to receiving, internal processing, and understanding the meaning of information received
from another person. Expressive language abilities refer to an individual’s ability to express and
convey information to another person. Receptive language begins to develop before birth and young
infants can recognize the speech patterns of their mother’s voice from exposure during pregnancy.
By around six months of age, an infant can recognize the voice of their primary caregivers, the basic
characteristic sounds of their caregiver’s native language, and other important or regular sounds in
their environment. During this same period of infancy, expressive language emerges with infants
crying to express discomfort, or needs such as hunger, and later starting to smile, laugh, and babble.
Over the next year, infants begin to recognize and understand some commonly used words and start to
speak individual words, with meaning. Across early childhood the number and complexity of words
and sentences understood and spoken increases. By school age, children can form sentences with
appropriate structure, word endings, tense, and auxiliaries.

Language assessments can be based on caregiver report or clinician administered and can either
capture overall general language abilities or a specific domain (such as only receptive or only expressive
language abilities). As language abilities emerge and develop across childhood [35], assessments
of language during infancy and childhood must be developmentally appropriate for the age of the
child. Assessments during infancy and early childhood are often based on caregiver report, generally
requiring caregivers indicate from lists words or phrases used (expressive language) or understood
(receptive language, also labeled as verbal comprehension in many assessments) in daily life by the
child. In older children, global cognitive (clinician administered) tests, such as those measuring
Intelligence Quotient, include a Verbal Intelligence Quotient (VIQ), or equivalent, that captures
acquired verbal knowledge, and language-based cognitive reasoning abilities. Tests of academic
abilities typically include an assessment of language-dependent skills reading and spelling [33,34].
Caregiver reports have the advantage of comprehensively capturing the breadth of a child’s vocabulary,
but are limited by the potential bias from caregiver report. Assessments administered by a clinician
test whether a child recognizes, speaks, or understands particular standardized words, phrases or
instructions in the assessment setting. The strength of clinician administered assessments is the
standardized administration and absence of bias that may be associated with parental report; however,
such assessments can only reflect performance on the day of assessment. Many assessments have
age-normed references that indicate whether the performance of an individual child is appropriate for
a typical child of the same age. Most normed tests have scores that are age-standardized to a mean of
100, and standard deviation of 15 so that performance falling below 85 indicates a possible language
delay or impairment.

1.2. The Effect of DHA on Language Development

Initial support for the role of DHA in language development came from observational studies
of consumption of fish and seafood (naturally rich sources of DHA) during pregnancy. The most
compelling data linking maternal DHA intake during pregnancy with neurological benefits for the
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offspring comes from a high-quality cohort study of 5449 mother-child pairs (the Avon Longitudinal
Study of Pregnancy and Childhood) [17]. The authors found that fish and seafood intake above the
level recommended by the US government (340 g seafood/week) was associated with a decreased risk
of being in the lowest quartile for VIQ at 8 years of age [17]. These results are supported by other
smaller cohort studies reporting that increased fish and seafood intake during pregnancy is associated
with more advanced vocabulary comprehension at 18 months [14], receptive vocabulary at 3 years [15],
language development at 4 years [13], and VIQ at 9 years [16]. A study compared outcomes of infants
born preterm (<37 weeks’ completed gestation) who received a routine lipid emulsion containing fish
oil, to those born prior to this practice change who received a soy-based lipid emulsion [36]. Infants
receiving the emulsion with fish oil were slightly less likely to have language impairment at 18–24
months of age than infants who received the soy-based lipid emulsion [36]. In infants, DHA intake in
the first 6 months after birth through DHA fortified infant formula had higher VIQ at 4 years of age
than infants fed formula without DHA fortification [37]. Conversely, a negative association between
DHA status at 9 months of age has been reported with communication skills at 3 years of age, within
girls only [38]. In each of these observational studies, whilst several aspects of child development,
such as cognition, motor and behavior have been assessed at a range of ages, the strongest evidence
for a positive association between DHA intake and development has consistently been in language
outcomes [13–17,37]. However, observational studies are unsuitable for establishing causality due
to the difficulty in adjusting for confounding factors that also influence language development [39].
Hence RCTs are necessary to determine whether there is an effect of increased DHA exposure on
language development.

RCTs of DHA supplementation during the first 1000 days have been conducted during
pregnancy [19,20], with infants born preterm [21,40], during breastfeeding for full-term infants [22],
and with infants [23]. The largely null results from these RCTs may be partially attributable to the
focus on cognitive development [19–23,40]. Although aspects of language are captured by various
assessments in a many of these RCTs, these are often overlooked as secondary or exploratory outcomes,
and hence there is yet to be a review where language outcomes are collated and considered as a
whole [19–23,40,41]. Furthermore, whilst adequate DHA is likely to be important throughout the
whole of the first 1000 days, two reviews to date have attempted to synthesize [42] or provide at least a
very brief overview [43] of the evidence across this period and language was not reported in either.

Here we aim to gain an overview of the totality of the evidence around the effect of early DHA
supplementation on language development in childhood. We review RCTs with a DHA intervention
at any period during the first 1000 days that include a measure of language, or any assessments of
language-based cognitive or academic abilities.

2. Materials and Methods

This review was conducted according to the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis (PRISMA) guidelines [44].

2.1. Search Strategy

Six electronic databases were searched; Cumulative Index to Nursing and Allied Health Literature
(CINAHL), Cochrane Central Register of Controlled Trials (CENTRAL) Current Contents Connect,
Excerpta Medica dataBASE (EMBASE), PsycINFO, PubMed, and Web of Science. Strategies tailored to
each database were based on the PubMed search; “DHA OR Docosahex*enoic acid OR docosahex*enoate
OR omega 3 OR LCPUFA OR long chain polyunsaturated fatty acid OR fish oil OR marine oil OR
algal oil” AND “Language OR linguistics OR verbal OR vocabulary OR literacy OR reading OR
communication OR language test OR neurodevelopment OR cognitive development” AND “RCT
OR randomi*e* OR intervention OR placebo OR control”. The search strategy for other databases is
available from the authors, upon request. No date restrictions were set although studies had to be
published in a journal and in English, and searches were limited to trials on humans. The titles and
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abstracts of all articles retrieved by the search were screened to assess eligibility. The reference lists
of eligible articles identified by the search were also checked for other potentially relevant articles.
In addition, we searched the reference lists of relevant reviews [19–23,40]. Search engines used were
set up to email new publications identified by the search on a monthly basis, with new articles added
to the review up until acceptance of the manuscript.

2.2. Inclusion and Exclusion Criteria

To be eligible for inclusion, a trial had to be in English, be conducted in humans, have a RCT
design, include supplementation with DHA (where trials that included long-chain polyunsaturated
fatty acids (LCPUFAs) in conjunction with DHA were also considered), include a placebo group
without, or with less, DHA, with the intervention occurring during pregnancy, the postpartum period,
or during infancy, and report a language outcome.

2.3. Data Extraction

Three authors were involved with reviewing search results and extracting data from included
articles (J.F.G., N.R.G., and A.J.A.). Where relevant data or details were absent in an article, study
authors were contacted. Study characteristics extracted included authors, publication year, sample
information, intervention details, and language assessment and results. Possible sources of bias in
each trial were noted.

2.4. Data Synthesis

Included studies were grouped according to the intervention period as (1) maternal prenatal
interventions; (2) interventions for preterm infants; (3) postnatal interventions for breastfeeding mothers;
and (4) postnatal interventions for infants. Although preterm neonates are typically supplemented
during the same period of brain development as in trials where supplementation took place prenatally,
they are best considered separately. Infants born preterm undergo their fetal brain growth spurt
ex-utero and, hence, often have different developmental characteristics to term-born infants, such as
poorer cognitive development and increased risk of behavioral problems [45–50]. Interventions that
commenced either during pregnancy, or to preterm infants and continued through to infancy, were
considered to be prenatal and preterm infant interventions, respectively.

Data were extracted into a table of characteristics of the included RCTs with the overall language
assessment results. In order to comprehensively capture the language development of young children,
language outcomes derived from multiple sources were included. Results of language assessments
were categorized and discussed as:

(a) Clinician-administered global language measures (including language-specific subscales of global
developmental tests);

(b) Parent-rated assessments of global language or domain specific language abilities (including
language, communication or verbal scores from parent-completed assessments of non-language
domains such as global development or behavior;

(c) Assessments of language-based cognitive abilities;
(d) Language-based academic abilities;
(e) Other language measures not classified above, particularly experimental measures;
(f) Subgroup effects (where reported) such as for sex, socio-economic status or birthweight.

3. Results

The initial search resulted in 1304 articles, 634 of which remained after duplicates were removed.
Article abstracts were reviewed and 593 were excluded for the following reasons: not human trials
(n = 63), did not involve omega-3 LCPUFA supplementation (n = 127), were not RCTs (n = 302) or
did not have a language outcome (n = 101). The full text of 41 citations were then examined in detail
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and further exclusions were made primarily due to a focus on the effects of supplementation outside
the first 1000 days (n = 16). Subsequent searches identified 13 subsequent eligible studies. A total of
29 studies were identified as eligible for inclusion, with relevant trial outcomes or details published
across 49 articles.

3.1. Study Characteristics

There was a total of n = 10,405 participants included between the 29 studies (see Table 1). The
trials and follow-up results were published between 1998 and 2020 and were predominantly conducted
in high-income countries (the United States of America (USA), Australia, Canada, Sweden, Denmark,
the United Kingdom (UK), the Netherlands, Belgium and Italy), with three in low- or middle-income
countries (Iran, Mexico, and Ethiopia) [26,51–53]. English [54] Andrew, 2018 #3268; Devlin, 2017
#3272; Carlson, 2013 #3273; Colombo, 2019 #3067; O’Connor, 2001 #37; Fewtrell, 2002 #2761; Fewtrell,
2004 #2762; Isaacs, 2011 #507; Makrides, 2009 #33; Smithers, 2010 #825; Collins, 2015 #1693; Keim,
2018 #3110; Miller, 2016 #3111; Keenan, 2014 #2391; Keenan, 2016 #2389; Mulder, 2014 #2400; Mulder,
2018 #2916; Dunstan, 2008 #62; Meldrum, 2015 #1775; Makrides, 2010 #415; Makrides, 2014 #1564;
Gould, 2017 #2559; Jensen, 2005 #3128; Jensen, 2010 #642; Meldrum, 2012 #3127; Scott, 1998 #146;
Auestad, 2001 #2295; Auestad, 2003 #25; Birch, 2000 #116; Birch, 2007 #3115; Lucas, 1999 #3130; Willatts,
2013 #2402; Colombo, 2013 #2291; Drover, 2011 #2293; Drover, 2012 #680}, Swedish [55], Danish [32],
Norweigen [56,57], German [58], Farsi [26], Spanish [51,52], Dutch [59,60], Flemish [61], and Italian [61]
were the languages spoken. Most children participating in the trials were from singleton pregnancies
although some included twin [54,62–70] and triplet [65–70] pregnancies. Three prenatal trials did not
report whether multiple pregnancies were included in outcome assessments [56,57,71–74]. Three trials
in pregnancy and one postnatal trial for infants were restricted to populations with a history of allergic
disease [55,74–76].
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Table 1. Summary of the characteristics and results of randomized controlled trials included in the review.

Author and
Reference

Setting
Country;

Recruitment

Participants
Sample Size

Special Characteristics

Intervention
Duration, Form, Treatment and

Control Intervention

Assessment
Age, n, Outcome

Measure
Result

Maternal prenatal interventions

Dunstan 2008 [75],
Meldrum 2015 [76]

Australia; antenatal
clinic

N enrolled: 98
Trt: 52, ctrl: 46

all had allergic disease
excluded: if normal diet

included >2 fish meals/week

Duration: 20 w preg to birth
Form: 4 capsules daily

Trt: n-3 3300 mg/d, DHA 2200 mg/d
Ctrl: olive oil

Age: 2.5 y, n = 72
PPVT No diff
GMDS No diff
CBCL No diff

Age: 12 y, n = 50
WISC-IV No diff

CCC-2 No diff

Karlson 2010 [55]
Sweden; antenatal

clinic, local
newspaper adverts

N enrolled: 145
Trt: 70, ctrl: 75

all had allergic disease
Excluded: if taking n-3

Duration: 25 w preg to 3.5 mo
Form: 9 capsules daily

Trt: n-3 2700 mg/d, DHA 1100 mg/d
Ctrl: soy oil

Age: 46 mo, n = 40

WPPSI-III No diff

Makrides 2010 [25],
Makrides 2014 [77],

Gould 2017 [78]

Australia; antenatal
clinic

N enrolled: 2399
Trt: 1197, ctrl: 1202

singletons
Subset for neurodevelopmental
follow-up n = 726 (preterm and

randomly selected term)

Duration: 18–21 w preg to birth
Form: 3x capsules daily

Trt: 800 mg DHA/d
Ctrl: vegetable oil

Age: 18 mo, n = 726
Bayley-III No diff

Age: 4 y, n = 646
CELF-P2 No diff
DAS II No diff

Age: 7 y, n = 543
CELF-4 No diff
WASI II No diff
WRAT-4 No diff

Ramakrishnan 2010
[51], Ramakrishnan

2016 [52]

Mexico; antenatal
clinic

N enrolled: 1094
Trt: 547, ctrl: 547
Medium-low SES

Excluded: if taking n-3

Duration: 18–22 w preg to birth
Form: 2x capsules daily

Trt: 400 mg/d DHA
Ctrl: olive oil

Age: 5 y, n = 797

MSCA No diff
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Table 1. Cont.

Author and
Reference

Setting
Country;

Recruitment

Participants
Sample Size

Special Characteristics

Intervention
Duration, Form, Treatment and

Control Intervention

Assessment
Age, n, Outcome

Measure
Result

Carlson 2013 [79],
Colombo 2019 [80]

USA; antenatal
clinics

N enrolled: 350
Trt: 178, ctrl: 172

Singleton, healthy, normal BMI

Duration: mean 14.5 w preg to birth
Form: 3x daily capsules

Trt: 600 mg/d DHA
Ctrl: soy and corn oil

Age: 18 mo, n = 195
MCDI No diff

Age: 36 mo, n = 168
WPPSI-III No diff

Sentence repetition No diff
Age: 42 mo, n = 158

TOPEL No diff
Sentence repetition No diff
Age: 48 mo, n = 147

WPPSI-III No diff
Sentence repetition No diff
Age: 60 mo, n = 159

PPVT-3 No diff
Age: 72 mo, n = 151

WPPSI-III No diff

Mulder 2014 [27],
Mulder 2018 [28]

Canada; NR
N enrolled: 270

Trt: 138, ctrl: 132
term-born singletons

Duration: 16 w preg to birth
Form: daily capsules
Trt: 400 mg/d DHA

Ctrl: corn and soy oil

Age: 9 mo, n = 144
Recognition task No diff

Age 14 mo, n = 159
MCDI No diff

Age: 16 mo, n = 82
Word-Object pairing No diff
Age: 18 mo, n = 154

Bayley-III No diff
MCDI No diff

Age: 5–6 y, n= 97
PPVT No diff

Keenan 2014 [81],
Keenan 2016 [82]

USA; university
medical centre

N enrolled: 64
Trt: 43, ctrl: 21

African- American women of
low SES

Duration: 16–21 w preg to birth
Form: 2x capsules daily

Trt: 450 mg DHA + 90 mg EPA/day
Ctrl: corn and soybean oil

Age: 3 mo, n = 49

Bayley-III No diff
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Table 1. Cont.

Author and
Reference

Setting
Country;

Recruitment

Participants
Sample Size

Special Characteristics

Intervention
Duration, Form, Treatment and Control

Intervention

Assessment
Age, n, Outcome

Measure
Result

Miller 2016 [83] USA; antenatal clinic
N enrolled: 115
Trt: 60, ctrl: 55

singletons

Duration: 24–28 w preg to 3 mo
Form: capsules

Trt: 300 mg DHA + 67 mg EPA/d
Ctrl: sunflower oil

Age: 4 mo, n = 91
Bayley-III No diff

Age: 12 mo, n = 83
Bayley-III No diff

Ostradrahimi 2017
[26]

Iran; healthcare
centres

N enrolled: 150
Trt: 75, ctrl: 75

Duration: 20 w preg to 30 days
Form: capsules

Trt: 120 mg DHA + 180 mg EPA/day
Ctrl: liquid paraffin

Age: 4 mo, n = 148 Trt

ASQ improved
Age: 6 mo, n = 146

ASQ No diff

Brei 2017 [58] Germany; NR N enrolled: 208
Trt: 104, ctrl: 104

Duration: 15 w preg to 4 mo
Form: capsules (+ dietary counselling to

↓ AA intake)
Trt: 1020 mg DHA + 180 mg EPA/day

Ctrl: general dietary information

Age: 4 y, n = 119

CDI No diff
Age: 5 y, n = 130

CDI No diff

Interventions for preterm infants (born <37 weeks’ gestation)

O’Connor 2001 [64]
USA, UK, South

America; neonatal
intensive care units

N enrolled: 470
Trt1: 140, Trt2: 143 ctrl: 144

birthweight 750–1800 g
singletons and multiples <33 w

FF or BF

Duration: <72 h of enteral feeding to 12
mo

Form: formula (infants also receiving
breastmilk)

Trt1: DHA + AA from fish/fungal oil
Trt2: DHA + AA from egg

Ctrl: no DHA

Age: 9 mo

MCDI No diff

Age: 14 mo
MCDI No diff

Fewtrell 2002 [65] UK; neonatal units
N enrolled: 195
Trt: 95, ctrl: 100

<37 w, birthweight <1750 g, FF

Duration: <10 days until discharge
Form: Formula

Trt: LCPUFA formula
Ctrl: standard formula

Age: 9 mo n = 158

KPSDSI No diff

Fewtrell 2004 [66],
Isaacs 2011 [67]

UK; neonatal units

N enrolled: 238
Trt: 122, ctrl: 116

<35 w, birthweight ≤2000 g
FF

Duration: before discharge to 9 mo CA
Form: formula

Trt: LCPUFA formula
Ctrl: standard formula

Age: 9 mo CA n = 117
KPSDSI No diff

Age: 10 y n = 107
WASI No diff

NEPSY No diff
WIAT-II No diff
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Table 1. Cont.

Author and
Reference

Setting
Country;

Recruitment

Participants
Sample Size

Special Characteristics

Intervention
Duration, Form, Treatment and

Control Intervention

Assessment
Age, n, Outcome

Measure
Result

Henriksen 2008 [56],
Westerberg 2011 [57],

Almaas 2015 [84]

Norway; neonatal
units

N enrolled: 141
Trt: 68, ctrl: 73

birthweight < 1500 g
BF only

Duration: from enteral feeds to
discharge from hospital or infant
finished the 100 mL bottle of oil

Form: oil added to breast
milkTrt: 32 mg DHA + 31 mg

AA/100 mL breastmilk
Ctrl: soy oil

Age: 6 mo CA n = 105
ASQ No diff

Age: 20 mo CA n = 92
ASQ No diff

Age: 8 y n = 98
WASI No diff

Makrides 2009 [68],
Smithers 2010 [69],
Collins 2015 [70]

Australia; neonatal
units

N enrolled: 657
Trt: 322, ctrl: 335

singletons and multiples <33
wsmall subset for follow-up at

26 mo
FF and BF

Duration: <5 d of starting full
enteral feeds to term equivalent

Form: Preterm infant formula, 6x
capsules daily to breastfeeding

mothers
Trt: Formula 1% DHA

Ctrl: Formula 0.35% DHA

Age: 26 mo CA n =
128

MCDI No diff
Age: 7 y CA n = 604

WASI No diff
WRAT-4 No diff

Keim 2018 [24] USA; neonatal
intensive care units

N enrolled: 377
Trt: 189, ctrl: 188

singletons and multiples <35 w,
no longer FF or BF

Duration: 10–16 mo CA for 6 mo
Form: dissoluble powder

Trt: 200 mg DHA + 200 mg AA/d
Ctrl: 400 mg corn oil/d

Age: 16–22 mo n = 377

Bayley-III No diff

Andrew 2018 [85] UK; neonatal units

N enrolled: 59
Trt: 29, ctrl: 30

Singletons
<31 w/with risk of

neurodevelopmental
impairment (such as brain

injury)

Duration: from full milk feeds for
2 y

Form: sachet to mix with milk or
food

Trt: DHA 1% fatty acids
Ctrl: no DHA

Age: 12 mo, n = 45

Bayley-III No diff
Age: 24 mo, n = 43

Bayley-III No diff

Hewawasam 2020
[54]

Australia; neonatal
units

N enrolled: 192
Trt: 96, ctrl: 96

<29 w with no major congenital
or chromosomal abnormality

Duration: <3 d of starting full
enteral feeds to term equivalent

Form: enteral emulsion
Trt: 60 mg/kg/day DHA

Ctrl: no DHA

Age: 2–3 y, n = 77

Bayley-III No diff

Postnatal interventions for breastfeeding mothers
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Table 1. Cont.

Author and
Reference

Setting
Country;

Recruitment

Participants
Sample Size

Special Characteristics

Intervention
Duration, Form, Treatment and

Control Intervention

Assessment
Age, n, Outcome

Measure
Result

Lauritzen 2005 [32]

Denmark; antenatal
general practitioner

visit (via Danish
National Birth

Cohort)

N enrolled: 175
Trt: 62, ctrl: 60, Ref: 53
Healthy term infants

BF
habitual fish intake below

Danish median

Duration: <7 days for 4 mo
Form: muesli bars, cookies and

capsules
Trt: 4.6 g fish oil, 1.5 g LCPUFA

Ctrl: no DHA
Ref: high habitual fish intake

Age: 12 mo, n = 131

MCDI Trt worse
Age 24 mo, n = 111

MCDI No diff

Jensen 2005 [62],
Jensen 2010 [63]

USA; advertising in
newspaper,

physicians’ offices,
childbirth classes

N enrolled: 230
Trt: 115, ctrl: 115

BF
term infants

singletons and twins

Duration: < 5 days for 4 mo
Form: capsules

Trt: 200 mg DHA
Ctrl: vegetable oil

Age:12 mo, n = 162
CLAMS No diff

Age:30 mo, n = 160
CLAMS No diff

Age:5 y, n = 119
WPPSI-R No diff

Argaw 2018 [53] Ethiopia; NR

N enrolled: 360
Trt1: 90, Trt2: 89, Trt3: 90, ctrl:

91
BF healthy singletons

Duration: 6–12 mo for 12 mo
Form: Mother-capsules,

Child-complimentary food
supplements

Trt1: Mother-215 mg DHA + 285
mg EPA, Child-169 mg DHA + 331

mg EPA
Trt2: Mother-215 mg DHA + 285

mg EPA
Trt3: Child-169 mg DHA + 331 mg

EPActrl: Mother-corn oil,
Child-corn + soy oil

Age: Baseline, 6–12
mo, n = NR

Denver No diff
Age: after 6 mo, 12–18

mo, n = 326 No diff

Denver
Age: after 12 mo,
18–24 mo, n = 313

Denver No diff
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Table 1. Cont.

Author and
Reference

Setting
Country;

Recruitment

Participants
Sample Size

Special Characteristics

Intervention
Duration, Form, Treatment and

Control Intervention

Assessment
Age, n, Outcome

Measure
Result

Postnatal interventions for infants

Scott 1998 [71],
Auestad 2001 [72],
Auestad 2003 [73]

USA; children’s
hospital

N enrolled: 404
Trt1: 82, Trt2: 80, ctrl: 77, BF:

165
healthy term bornFF

Duration: <7 days to 12 mo
Form: formula

Trt1: 0.13% DHA-egg
Trt2: 0.13% DHA-fish/fungal

Ctrl: no LCPUFA
BF: Trt1 & Trt2 formula if stopped

BF

Age 9 mo, n = 163

MCDI
No diff/no

overall
score

Age: 14 mo, n = 173

MCDI
No diff/no

overall
score

Age 39 mo, n = 157
PPVT-R No diff

MLU No diff

Lucas 1999 [86] UK; hospital

N enrolled: 447
Trt: 155, ctrl: 154, BF: 138

term born
FF

Duration: <7 days to 6 mo
Form: formula
Trt: 0.32%DHA
Ctrl: no DHA

Age: 9 mo n = 241 +
BF = NR

KPSDSI No diff

Willatts 2013 [61] UK, Belgium, Italy;
antenatal clinic

N enrolled: 376
Trt: 126, ctrl: 111, BF: 139

FF

Duration: <7 days to 4 mo
Form: formula

Trt: 0.30% DHA
Ctrl: no DHA

Age:6 y, n = 235

WPPSI-R No diff

Birch 2000 [87],
Birch 2007 [88]

USA; hospitals

N enrolled: 119
Trt1: 26, Trt2: 27, ctrl: 26, BF: 40

healthy term-born
FF

Duration: <5 days to 17 w
Form: formula

Trt1: 0.35% DHA
Trt2: 0.36% DHAC

trl: no DHA
BF: no formula

Age: 18 mo, n = 76

Bayley-II No diff
Age: 4 y, n = 84

WPPSI-R No diff

Bouwstra 2005 [59],
de Jong 2012 [60]

Netherlands;
antenatal clinics

N enrolled:474
Trt: 145, ctrl: 169, BF: 160

healthy term-born
FF

Duration: 2 mo to 6 mo
Form: formula

Trt: 0.3% DHA + 0.45%AA
Ctrl: no DHA

BF: Trt formula if stopped BF

Age: 9 y, n = 341

WASI NR
NEPSY No diff
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Table 1. Cont.

Author and
Reference

Setting
Country;

Recruitment

Participants
Sample Size

Special Characteristics

Intervention
Duration, Form, Treatment and

Control Intervention

Assessment
Age, n, Outcome

Measure
Result

Drover 2011 [30],
Drover 2012 [31],

Colombo 2013 [29]
USA; hospitals

N enrolled: 159
Trt1: 38, Trt2: 39, Trt3: 40, ctrl:

42
healthy full-term singletons

low SES
FF

Duration: 1–9 days to 12 mo
Form: formula

Trt1: 0.32% DHA
Trt2: 0.64% DHA
Trt3: 0.96% DHA

Ctrl: no DHA

Age: 18 mo, n = 92 No diff
MCDI

Bayley-II Trt
improved

Age:2 y, n = 99
PPVT-III Trt worse

Age 2.5 y, n = 93
BBCS-R No diff

Age:3.5 y, n = 88
PPVT-III No diff

Age:5 y, n = 81

PPVT-4 Trt
improved

Age: 6 y, n = 81

WPPSI-III Trt improv
ed

Meldrum 2012 [74],
Meldrum 2020 [89]

Australia; antenatal
clinic

N enrolled: 420
Trt: 218, ctrl: 202

All mothers had allergic disease
FF and BF

excluded preterm

Duration: birth to 6 mo
Form: oil capsules

Trt: 250–280 mg/d DHA
Ctrl: olive oil

Age: 12 mo, n = 128
MCDI No diff

Age:18 mo, n = 287
Bayley-III No diff

MCDI (n = 269) No diff
CBCL (n = 185) No diff

Age: 6 y, n = 304
CELF-4 No diff

Renfrew Bus Story No diff
CCC-2 No diff



Nutrients 2020, 12, 3106 13 of 31

Table 1. Cont.

Author and
Reference

Setting
Country;

Recruitment

Participants
Sample Size

Special Characteristics

Intervention
Duration, Form, Treatment and

Control Intervention

Assessment
Age, n, Outcome

Measure
Result

Devlin 2017 [90]

Canada; community
advertising,

immunization
clinics

N enrolled: 133
Trt: 68, ctrl: 65

Term, singleton, normal
birthweight, BF < twice/d,
English primary language

Duration: 12–14 mo ± 7 d to 24 mo
Form: sprinkles x2/d
Trt: 200 mg/d DHA

Ctrl: corn oil

Age: 24 mo, n = 110

Bayley-III No diff

AA = Arachidonic Acid; ASQ = Ages and Stages Questionnaire (subscale-communication); Bayley = Bayley Scales of Infant Development (edition III has a standardized global Language
Scale score, editions I and II combine cognitive and language into one scale although some authors attempt to calculate a language score); BBCS = Bracken Basic Concept Scale (receptive
language and acquisition of basic concepts); BF = breastfed; CA = corrected age (corrected for prematurity); BMI=body mass index; CBCL = Child Behavior Checklist (subscale-Language
Development Survey, parent-rated number of words in infant vocabulary); CCC = Children’s Communication Checklist; CDI = Child Development Inventory (subscales-Expressive
Language, Language Comprehension, Letters); CELF = Clinical Evaluation of Language Fundamentals (P = Preschool edition); CLAMS = Clinical Linguistic and Auditory Milestone
Scale; Ctrl = control group; d = day(s); DAS = Differential Ability Scales (subscale-Verbal Scale Score); Denver = Denver Developmental Screening Test (subscale-language); DHA =
Docosahexaenoic acid; EPA = Eicosapentaenoic acid; FF = formula fed; GMDS = Griffiths Mental Development Scale (subscale-Speech and Hearing subscale); KPSDSI = Knobloch,
Passamanick and Sherrard’s Developmental Screening Inventory (Subscale-Language); LCPUFA = Long-chain polyunsaturated fatty acid; MCDI = MacArthur-Bates Communicative
Development Inventories; MLU = Mean length of utterances during free-play with parent; mo = month(s); MSCA = McCarthy Scales of Children’s Abilities (subscale-Verbal); NEPSY =
Developmental NEuroPSYchological Assessment (subscale-language domain); No diff = No difference; NR = Not reported; n-3 = Omega-3 long chain polyunsaturated fatty acid; preg =
pregnancy; PPVT = Peabody Picture Vocabulary Test; R = revised; Ref=reference group; SES= socioeconomic status; TOPEL = Test of Preschool Early Literacy (vocabulary, phonological
awareness, print knowledge); Trt = treatment group; UK = United Kingdom; USA = United States of America; WASI = Wechsler Abbreviated Scale of Intelligence (subscale-VIQ); WIAT =
Wechsler Individual Achievement Test (subscale-Word Reading, Spelling, Pseudoword decoding); WISC = Wechsler Intelligence Scale for Children (subscale-VIQ); w = week(s); WPPSI =
Wechsler Preschool and Primary Scale of Intelligence (subscales-VIQ); WRAT = Wide Range Achievement Test (subtests-Word Reading, Spelling); y= year(s); ↓= decreased.
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3.2. Participants and Intervention

3.2.1. Maternal Prenatal Interventions

Ten RCTs have investigated the effect of maternal prenatal supplementation in
n = 4894 infants [25–28,51,52,58,75–83]. Some trials included exclusively term infants in their
follow-ups [27,28,55,74–76,83] whereas one RCT specifically included preterm as well as term
infants [25,77,78], as shown in Table 1.

Mothers took capsules with DHA doses of 120 [26], 300 [83], 400 [27,28,51,52], 450 [81,82],
600 [79,80], 800 [25,77,78], 1020 [58], 1100 [55], and 2200 [75,76] mg per day. Trials generally examined
the effect of DHA in combination with eicosapentaenoic acid (EPA). The supplementation period
commenced between mid-pregnancy and ended at birth in most trials [25,27,28,51,52,75–82]. Some trials
continued the intervention after birth to 30 days [26], 3 months [83], 3–3.5 months [55], and 4 months [58].
Intervention after birth was through infant formula and supplements for breastfeeding mothers.

3.2.2. Interventions for Preterm Infants

There were 8 RCTs that supplemented n = 2214 preterm infants [24,54,56,57,64–70,84,85]. The
intervention was administered to infants through supplements for breastfeeding mothers, supplemented
infant formula, through enteral feeds, or as sprinkles or a dissoluble powder that could be added to
milk or food. It is noteworthy that in some trials, interventions in exclusively formula-fed infants
compared formulas containing some DHA, to formulas that contained no DHA [64–67]. Other trials
compared a low or standard dose of DHA to a higher dose of DHA [54,56,57,68–70,84]. Only one
trial comparing low-dose DHA to high-dose DHA, included breastfed babies as well as formula fed
babies [68–70]. All but one study [24] commenced the intervention within the first week of birth.
Three of the trials finished the intervention by the time the infant was discharged from hospital
(at around term-equivalent age) [54,56,57,65,68–70,84]. Three trials continued the intervention past
discharge, until infants were aged 9 [66,67], 12 [64], or 24 months of age [85]. One trial administered
the intervention later in infancy, commencing at 10 to 16 months of age, once formula feeding and
breastfeeding had ceased [24]. The doses administered were largely dependent on the amount of
breastmilk or formula the infants were able to consume on a daily basis and hence varied within
intervention groups.

3.2.3. Postnatal Interventions for Breastfeeding Mothers

Three trials assessed DHA interventions for breastfeeding women in n = 765 mother-infant
pairs [32,53,62,63]. In one trial mothers were provided with capsules, and in another trial mothers had
the option of capsules, muesli bars, or cookies with the supplementation period commencing within 5
days of birth and lasing up until 4 months of age [32,62,63]. The dosage of daily DHA was 200 mg in
one of these trials [62,63], and was not reported in the other trial [32]. One trial targeting women with
habitual low fish intake (for the population) additionally included a reference group of non-randomized
breastfeeding women with high habitual fish intake [32]. The third trial involved randomizing breastfed
infants aged 6 to 12 months to 4 intervention groups for a 12-month intervention [53]. In this study,
mothers were provided with capsules containing 215 mg DHA, and infants were provided with a
corn–soy blend complimentary food supplement that included 19 micronutrients (with or without 285
mg DHA depending on randomization group) [53]. One group received study products containing
DHA for mothers only, one group received DHA study products for both mothers and children, one
group received DHA in the child supplement only and the fourth group received capsules and child
complimentary food supplements devoid of DHA [53]. The four groups were compared individually,
rather than combined. This trial was conducted in Ethiopia where dietary DHA intake is reported to
be habitually low [53].
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3.2.4. Postnatal Interventions for Infants

There were eight RCTs involving n = 2532 infants [29–31,59–61,71–74,86–90]. Only two trials
included infants that were breastfed [74,90] and the majority included only term-born infants [29–31,
59,60,71–74,86–88,90]. One RCT provided fish oil or olive oil capsules that were added to formula or
breastmilk [74], one provided sprinkles to add to food [90], and six RCTs compared infant formula
supplemented with DHA to infant formula devoid of DHA [29–31,59–61,71–73,86–88]. Infants received
doses of DHA ranging from 0.12 to 0.96% of total fatty acids present in formula [29–31,59–61,71–73,86–
88], or 250 to 280 mg DHA as oil per day [74], or up to 200 mg/d through sprinkles [90]. RCTs examined
the effect of DHA alone, in combination with arachidonic acid (AA), or EPA, or both AA and EPA.
Three trials involved more than one treatment group with differences between groups being source
and dosage of DHA as well as combination with other fatty acids [29–31,71–73,87,88]. One formula
trial included a breastfed group as a comparative reference group [59]. The supplementation period
commenced within the first week of life and went for at least four months and up until a maximum
of 12 months of age [29–31,59–61,71–74,86–88], or started at 12–14 months up until 24 months in one
trial [90].

3.3. Possible Sources of Bias

Trials generally had adequate sequence generation, treatment allocation and blinding of participant
processes. One trial did not appear to adequately blind participants as 92.9% of participants correctly
guessed their infant’s group allocation [74]. In this trial as well as one other there was higher attrition
from the treatment group compared with the control group [74,75]. There was some evidence of
reporting bias, where one trial with a relevant assessment was reported in an abstract in 2010 and is
yet to be published in full [55], although other outcomes from this trials have been published [91,92].

Follow-up rates and attrition varied between the studies. Only five trials [25,64–70,77,78] had
a follow-up rate of ≥80% which is the minimum follow-up considered acceptable for minimizing
attrition bias [93].

3.4. Assessments of Language Abilities

Child language was assessed with a total of 83 assessments at a variety of different ages between
3 months [82] and 12 years [76].

(a) Clinician-administered global language measures (including language-specific subscales of global
developmental tests).

There were 16 studies that used a clinician-administered test specifically designed to assess
language or a clinician-administered global development assessment with a subscale capturing overall
language abilities; five prenatal trials [25,28,75,77,78,82,83], five preterm infant trials [24,54,65,66,85],
2 postnatal trials for breastfed infants [53,62], and six postnatal trials for infants [29–31,73,74,86,87,89,90]
Of these 16 studies, there were 10 language-specific assessments [28,29,31,62,73,75,77,78,80,89] and 16
global developmental assessments with an overall language subscale [24,25,28,30,53,54,65,66,74,75,82,
83,85–87,90].

The Peabody Picture Vocabulary Test (PPVT), as used in five trials, [28,29,31,73,75,80] is designed
to measure receptive vocabulary for individuals 2.5 years an older. The Clinical Evaluation of
Language Fundamentals (CELF) assesses general language ability and included studies used editions
for preschool children [77] as well as school aged-children [78,89]. The Clinical Linguistic and Auditory
Milestone Scale (CLAMS) provides a language development quotient that was used in one trial at 2
ages, but with limited details available about the assessment [62].

As language is a key ability that emerges in early childhood, many general developmental tests
designed to detect developmental delays in infants and toddlers specifically include a measure of
early overall language development. The Bayley Scales of Infant Development (Bayley) is one of
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the most widely used development assessments for young children. It was developed for infants
and toddlers (up to ~3.5 years of age) and has multiple editions. The Bayley-III was used in nine
studies [24,25,28,54,74,82,83,85,90] and includes a specifically designed, standardized global Language
Scale score made up of a receptive and expressive language score. Bayley editions I and II combine
cognitive and language development into one mental scale although authors in 2 trials calculated
a language score from this (which has been included in this review) [30,87]. The Griffiths Mental
Development Scale (GMDS) [75] is a global developmental test from birth to 8 years that includes
a Speech and Hearing subscale that captures expressive and receptive language. The Knobloch,
Passamanick and Sherrard’s Developmental Screening Inventory (KPSDSI) is a global developmental
assessment for infants and young children with a language subscale that was used in three trials for
infants aged 9 months [65,66,86]. The Denver Developmental Screening Test (Denver) is a global
developmental test that includes a language subscale. The Denver test was culturally adapted for use
in Ethiopia and included items that were clinician administered as well as parent-report items [53].

(b) Parent-rated assessments of global language or domain-specific language abilities (including
language, communication or verbal scores from parent-completed assessments of non-language
domains, such as global development or behavior).

There were 12 trials reporting a parent-rated global or domain specific language assessment;
five in prenatal trials [26,28,58,75,76,80], three in preterm infants [57,64,69], one in breastfeeding
mothers [32], and in three postnatal trials in infants [30,71,72,74,89]. There were 11 parent-completed
assessments specifically targeting language [28,30,32,64,69,71,72,74,76,80,89] and five assessments of
another neurological domain that included a language-related score [26,57,58,74,75].

There were two parent-rated measures designed specifically to measure language abilities. The
MacArthur-Bates Communicative Development Inventories (MCDI) are age-standardized forms to
capture developmentally appropriate comprehension, non-verbal communication, vocabulary and
early emergence of grammar depending on the age of the child. The MCDI was used in nine studies
and involves a Words and Gestures form for children 8–18 months and a Words and Sentences form for
children age 16–30 months [28,30,32,64,69,71,72,74,80]. The Children’s Communication Checklist (CCC)
likewise specifically targets language and was developed as a screen for communication difficulties
(both expressive and receptive) and pragmatic impairments in children aged 4 to 16 years and was
used in two trials [76,89].

There were two general developmental questionnaires that included a language outcome, and
one behavior questionnaire that had a language survey. The Child Development Inventory (CDI) is a
parent-rated measure of global child development between the ages of 1 and 6 years. Along with an
overall developmental score, there are subscales for Expressive Language, Language Comprehension,
and Letters. A German-translation was used in one of the included trials [58]. The Ages and Stages
Questionnaire (ASQ) is also designed as a global measure of general development for children aged 1
to 66 months. A subscale for Communication is included and was reported in two trials [26,57]. The
Child Behavior Checklist (CBCL) is a measure of behavioral development and behavior problems
with editions for young children (1.5 to 5 years) and older children (6–18 years). The questionnaire for
young children includes a Language Development Survey where parents indicate the number words
in their child’s vocabulary and was used in 2 of the include trials [74,75].

(c) Assessments of language-based cognitive abilities.

The majority of trials that evaluate the effect of a DHA intervention on neurodevelopment include
a test of cognition, and many of these tests include an assessment of language-based cognitive abilities.
We identified 12 trials that reported the results of a language-based cognitive ability; five prenatal
trials [52,55,76–78,80], two trials in preterm infants [67,70], 1 in breastfeeding mothers [63], and in four
postnatal interventions for infants [29,60,61,88].
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Three IQ tests commonly used in child and young-adult populations were outcome assessments
in the included trials; the Wechsler Abbreviated Scale of Intelligence (WASI) was used in five trials [60,
67,70,78,84], the Wechsler Preschool and Primary Scale of Intelligence (WPPSI) was administered in
six trials [29,55,61,63,80,88], and the Wechsler Intelligence Scale for Children (WISC) was conducted
in one trial [76]. All include a Verbal Comprehension Index (an equivalent of a VIQ score) capturing
crystallized or verbal abilities. The Differential Ability Scales (DAS) is an assessment of global cognitive
functioning ability, similar to an IQ test. The DAS includes a Verbal Scale Score that measures
verbal-based cognitive abilities [77]. The McCarthy Scales of Children’s Abilities (MSCA) is a cognitive
development assessment for young children with a Verbal subscale that was used at 5 years in one
prenatal trial [52]. The Developmental NEuroPSYchological Assessment (NEPSY) is a general cognition
test battery for school-age children with a language domain that was used in two trials [60,67].

(d) Language-based academic abilities.

There were five reports of a language-based academic assessment; two in prenatal trials [78,80],
two in preterm infants [67,70], and one in postnatally supplemented infants [31]. All language-based
academic assessments were administered by a clinician. The Wide Range Achievement Test (WRAT)
includes a Word Reading task and a Spelling task and was performed in one prenatal trial [78] and
one preterm infant trial [70]. The Wechsler Individual Achievement Test (WIAT) is an educational
assessment with a test each of Word Reading, Spelling, and Pseudoword decoding that was administered
in one preterm infant trial at 10 years [67]. The Test of Preschool Early Literacy (TOPEL) is designed to
detect early literacy problems in preschool aged children. The TOPEL includes subtests of vocabulary,
phonological awareness, and print knowledge (knowledge of written language) and was used in
one trial to assess 42-month-old infants [80]. The revised version of the Bracken Basic Concept Scale
(BBCS) similarly assesses language-based abilities associated with school-readiness [31]. The BBCS was
administered to 2.5-year-old infants to capture acquisition of basic concepts and aspects of receptive
language [31].

(e) Other language measures not classified above, particularly experimental measures.

There were four trials that included an alternate, or more experimental measure of language. One
trial measured mean length of utterances (MLU) at 39 months of age [73]. A mother and child were
recorded during ~15–30 min of conversational free-play. Taped sessions were transcribed and coded to
obtain the MLU score. One trial administered the Renfrew Bus Story at 6 years of age [89]. This task
required the children to retell a narrative with correct sentence length, complexity and vocabulary.
A prenatal trial assessed Sentence Repetition at 36, 42 and 48 months of age [80]. Children were
required to repeat verbal sentences verbatim, despite increasing length and complexity [80]. One trial
administered a Recognition task requiring the infants to react to English and non-English consonants
at 9 months [27] and a word-object pairing task to the same infants at age 16 months of age [28] that
were not otherwise described.

3.5. Efficacy of Intervention

3.5.1. Assessments of Language Abilities after Maternal Prenatal DHA Intervention

The 10 trials of maternal prenatal DHA supplementation showed no overall significant differences
between treatment and control group language development between 18 months and 7 years of age
using 35 different assessments of language abilities [25–28,51,52,55,58,75–83,94].

(a) Of the 10 trials with prenatal interventions, there were four that conducted an assessment of
language through a clinician [28,75,77,78,80]. The PPVT was administered at 2.5 years [75],
60 months [80] and 5–6 years of age [28] with no evidence of an effect of DHA supplementation
at any age. The CELF-P2 was conducted with 4-year-old children [77] and then the CELF-4 was
used with the same children at 7-years of age, with no effect of DHA intervention detected [78].
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There were an additional 5 trials that included a global developmental assessment that contained
an assessment of overall language abilities [25,28,75,82,83]. The Bayley-III language subscale was
administered at 3 months [82], 4 months [83], 12 months [83], and 18 months [25,28] of age, between
four RCTs with null effects reported. The GMDS speech and hearing subscale revealed no group
differences at 2.5 years of age [75].

(b) Of the 10 RCTs conducted during pregnancy, there were three that included a parent-rated
measure of language [28,76,80]. The MCDI was completed three times by parents, once at
14 months [28] and in two trials at 18 months [28,80] of age with no evidence of a benefit of
prenatal DHA supplementation. The CCC was administered at 12 years of age with no group
difference [76].

There were four parent-rated measures of development in general [26,58], and one behavioral
questionnaire that included a language subscale [75]. The CDI was completed by parents at 4
years and again at 5 years of age, with no group differences in expressive language or language
comprehension [58]. The general development ASQ was completed by parents at 4 months and 6
months of age and similarly revealed no group effects [26]. A language survey included in a behavior
questionnaire completed when children were 2.5 years old showed no effect of DHA intervention [75].

(c) There were six IQ or cognitive tests with a VIQ or equivalent score reported between the 10
prenatal trials [55,76–78,80]. The WPPSI-III was administered at 46 months of age in one study [55]
and at 48 months of age in another [80], with no evidence of an effect found in either. The DAS-II
was administered at 4 years of age [77], and the WASI-II was administered to these same children
at 7 years of age [78] with no effect of prenatal DHA supplementation reported. The WISC-IV
was conducted at 12 years of age with no group differences found [76]. The MSCA administered
at 5 years of age likewise detected no difference in group scores [52].

(d) Two out of the 10 prenatal DHA trials assessed language-based academic abilities. One trial
assessed preschool aged children [80], and the other trial assessed 7-year-old children [78].
No differences were found with these academic measures of reading, spelling, vocabulary,
phonological awareness, or knowledge of written language [78,80].

(e) Two of the 10 prenatal studies included an alternate/experimental assessment of
language [27,28,80]. In one trial, the assessment was repeated at three ages [80], whilst the
other trial used differing alternative language measures at different ages [27,28]. Neither trial
found a group difference on any of the measures at any of the ages [27,28,80].

(f) Of the 10 prenatal RCTs, two reported conducting a subgroup analysis [25,52,77,78,94]. Subgroup
analyses were conducted for sex [25,77,78], maternal education [94], maternal smoking during
pregnancy [94], and stimulation in the home environment [52]. Subgroup analyses for sex showed
poorer language scores, and greater risk of delayed language (score < 85) within girls only at 18
months of age [25], although no sex by treatment effects were detected in the assessments at 4
and 7 years of age [77,78]. Subgroup analyses with maternal education in the same trial revealed
no effect of DHA supplements amongst women who had not completed tertiary education.
However, lower language scores at 18 months of age were observed with DHA supplementation
in women who had completed tertiary education [94]. Trial authors likewise explored whether
there was a smoking (during pregnancy) by treatment effect, but found none [94]. In one trial,
authors explored an interaction effect for quality of stimulation in the home environment during
childhood [52]. For children in the DHA group, the home environment appeared to have less
influence on developmental outcomes than for children in the control group [52].

3.5.2. Assessments of Language Abilities after a DHA Intervention to Preterm Infants

The eight trials of preterm infant DHA supplementation showed no differences between treatment
and control group language development in children between 9 months and 10 years of age, using 17
different assessments of language abilities [24,54,56,57,64–70,84,85].
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(a) Four of the eight trials conducted in preterm infants included a clinician-administered global
assessment with an overall language subscale [24,54,65,66,85], although none assessed global
language. The Bayley-III was administered at 16–22 months of age in one trial [24], at 2–3 years
in one trial [54], and at both 12 and 24 months of age in another trial [85], with no differences
detected in either study. Two studies used the KPSDSI at 9 months and likewise detected no effect
of the DHA intervention [65,66].

(b) Three of the eight RCTs in preterm infants included a parent-rated measure of child
language [57,64,69]. Two RCTs included a general language measure completed by parents,
the MCDI, administered at 9 months [64], 14 months [64], and at 26 months [69] of age. No
evidence of a benefit of DHA intervention was detected in either trial, at any of the ages
administered [64,69]. Parents completed a global measure with a communication subscale in one
trial at 6 and again at 20 months of age, with no hint of an effect of DHA intervention at either
age [57].

(c) Between the eight RCTs conducted in preterm infants, there were three that included a
language-based cognitive assessment [67,70,84]. All trials administered the WASI, at 7 years [70],
8 years [84] and 10 years of age [67], with no effect of DHA supplementation on VIQ. One trial
also conducted the NEPSY at the 10-year follow-up and likewise detected no benefit of the
intervention [67].

(d) Two of the trials in preterm infants included an assessment of language-based academic
abilities [67,70]. Both measured word reading and spelling in school-aged children and found no
effect of the intervention [67,70]. Nor was there an effect on Pseudoword decoding [67].

(e) There were no assessments of language abilities not otherwise classified in the trials with preterm
infant interventions.

(f) Of the eight preterm infant RCTs, 4 reported conducting a subgroup analysis [24,67,69,70,84]
and two studies reported sensitivity analyses [64,67]. Subgroup and sensitivity analyses were
conducted for sex [67,69,70,84], birthweight [24,69,70,84], and household income [24]. One of
the earlier RCTs found a sex by treatment interaction where girls in the DHA group had better
academic abilities, although there was no such effect on language-based cognitive abilities [67].
Performance of boys in this trial did not differ between groups [67]. In a larger trial including
both breastfed and formula-fed preterm infants, subgroup analyses revealed no sex by treatment
interaction on language development at 26 months [69], or 7 years [70] of age. Likewise,
birthweight <1250 g or >1250 g did not appear to interact with language abilities in this same
trial [69,70]. Another trial testing for interaction effects between sex and birthweight ≤1000 g
found none [84]. A separate trial identified a negative effect of DHA supplementation on language
at 16–22 months of age within infants with birthweight <1250 g [24]. This trial also explored
household income and found no interaction effect with DHA supplementation on language
outcomes [24]. Sensitivity analyses involving only the preterm infants who did not receive any
breastmilk revealed benefits to language-based cognitive abilities in the intervention group at 10
years of age, but no effect on academic abilities [67]. Sensitivity analyses in another trial detected
a benefit of the intervention to parent-rated vocabulary comprehension (although no effect on
overall language scores, or language production) at 14 (but not 9) months when multiple births
and non-English speaking families were excluded [64].

3.5.3. Assessments of Language Abilities after Maternal Postnatal DHA Intervention

The three trials of postnatal maternal DHA supplementation primarily revealed null, but also
some negative effects on seven comparisons of language development from 12 months to 5 years of
age [32,53,62,63].

(a) One of the maternal postnatal trials conducted a clinician-assessment of language abilities [62],
and one used a global development measure that included a language subscale [53]. No effect of
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the DHA intervention was detected with the CLAMS at 12 or 30 months of age [62]. Nor was an
effect found on the Denver at 6–12 months, 12–18 months or at 18–24 months [53] of age.

(b) One trial in breastfeeding mothers administered the parent-rated MCDI at 12 and 24 months of
age and found no group differences [32].

(c) One postnatal RCT in mothers administered a WPPSI-R at 5 years of age and detected no effect of
DHA supplementation [63].

(d) No trials of DHA supplementation in breastfeeding mothers assessed language-based
academic abilities.

(e) There were no assessments of language abilities not otherwise classified in the trials that
supplemented breastfeeding mothers.

(f) Only one of the three maternal postnatal RCTs reported conducting a subgroup analysis for
sex [32]. Authors found poorer language scores within boys in the DHA group, when compared
with the control group, but no effect within females [32].

3.5.4. Assessments of Language Abilities after Postnatal Infant DHA Intervention

The eight trials of infant DHA supplementation primarily revealed null effects on language
development, as well as three instances of improvement and one instance of worse scores from 6 months
to 10 years of age using 25 different assessments of language abilities [29–31,59–61,71–74,86–88,90].

(a) Of the eight trials conducted postnatally in infants, three included a clinician-administered
assessment of global language abilities [29,31,73,89]. Null effects were reported for the CELF at 6
years [89] and the PPVT-R at 39 months [73] of age. However, in one trial with repeat language
measures, DHA group children had a slightly worse PPVT-III score than control group children
at 2 years, whilst there were no differences detected on the same assessment at 3.5 years [31] and
at 5 years of age PPVT-4 scores were higher in the treatment group compared with the control
group [29].

Five trials included overall language as a subscale of a global developmental test [29,30,74,86,87,90]
and null effects were reported for the KPSDSI at 9 months [86], Bayley-III at 18 and 24 months [74,90],
and Bayley-II at 18 months [87] of age, whilst another trial found that DHA group children had higher
scores on the Bayley-II at 18 months of age [29,30].

(b) Of the eight RCTs in infants, only three included parent-rated measures of child language [29,
71,72,74,89]. The MCDI was completed five times by parents at 9 months [72], 12 months [74],
14 months [71,72], and 18 months [29,74] of age with no hint of benefit of the DHA intervention
at any age. The CCC was administered when children were 6 years of age [89] without any
group differences. When the same children were 18 months of age, parents completed a
language survey included in a behavior questionnaire [74] that likewise suggested no effect of
DHA supplementation.

(c) From the 8 infant intervention trials there were seven IQ or cognitive tests [29,60,61,88]. The
WASI was conducted at 9 years of age along with the NESPY in one trial where authors were
testing for effect interactions with smoking [60]. There were 3 trials that administered the WPPSI
test [29,61,88]. Two conducted a WPPSI-R at 4 years [88] and 6 years [61] of age, with no evidence
of an effect of the intervention. However, in a third trial the WPPSI-III at 6 years of age detected
higher scores in children who received the DHA intervention compared with children who
received no DHA [29].

(d) One trial of infant DHA supplementation included an assessment of language-based academic
abilities and school readiness at 2.5 years of age and found no differences between the groups in
either the overall score, or subscales [31].

(e) Two infant intervention studies included an alternate/experimental assessment of language, and
neither found a difference in randomization group performance on the task [73,89].
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(f) Of the eight infant RCTs, two reported conducting a subgroup analysis [31,60], for sex [31], and
for maternal smoking during pregnancy [60]. There was no evidence for a sex by treatment
interaction for clinician-assessed language abilities at 2 years of age [31]. Subgroup analyses
for prenatal smoking revealed a benefit of the DHA intervention to VIQ among children whose
mothers smoked in pregnancy, but no effect among non-smokers [60].

4. Discussion

This is the first systematic review of the effect of DHA supplementation in early life on child
language abilities. After conducting an exhaustive search strategy, we identified 29 eligible studies.
There was a total of 84 language outcomes compared between a DHA and a control group, with 78
comparisons revealing no effect of a DHA intervention. We conclude that the existing evidence does
not conclusively support or refute the hypothesis that DHA supplementation in the first 1000 days of
life improves children’s language abilities. However, it is noteworthy that adequate DHA is likely to
be important from conception through to 24 months of age, and that to date no trial has attempted to
provide DHA across this entire period [2,7].

There was great heterogeneity in the timing and dose of DHA, although interventions were
typically administered through capsules during pregnancy, lactation or infancy or infant formula for
formula-fed infants. Language abilities were assessed with a wide variety of language measures at
various ages, complicating comparability between studies and compounding the inappropriateness of
combining results in a meta-analysis. Most assessments of language were in children up to 2 years of
age (43 of 84 assessments), when language abilities are limited and still emerging. The majority of
RCTs involved multiple longitudinal assessments of language abilities, with lack of group differences
generally consistent at differing ages [25–32,56–58,62–64,66–78,83,84,87–89].

Of the 84 language assessments across 29 included RCTs, the majority reported no overall group
differences [24,25,27,28,32,51,52,55–78,81–90]. Within trials where an effect of DHA supplementation
was detected, effects were not identified consistently across all language outcomes [26,27,29–32,95].

It has previously been suggested that there may be participant characteristics that may modify
the effect of a DHA intervention, and that RCTs should be encouraged to explore this possibility [94].
In particular, there is growing interest in the interaction effect of sex and early nutrition on outcomes [96].
However, there were only 9 of the 29 RCTs that explored the effect of DHA supplementation on language
within a specific population subgroup. Evidence has pointed to the potential for inter-individual,
biologically based, differences, such as child sex to moderate DHA synthesis [97–101]. There were six
RCTs that reported subgroup analyses for sex [25,31,32,67,69,70,77,78,84], with no interaction detected
in three trials [31,69,70,84], while two trials reported a difference within girls only [25,67] and one
within boys only [32]. Exploration of birthweight by treatment interaction was considered in three
trials of preterm infants, with no interaction effect of DHA reported in two [69,70,84], and a negative
interaction effect in the other [24]. Trials that explored whether maternal education [94], maternal
smoking during pregnancy [60,94], or home environment [24,52] had mixed findings. However, only
three trials were likely powered to allow a meaningful subgroup analysis [25,51,52,68,70,77,78] and
importantly, with all of these trials, the effects seen are generally in subgroup comparisons only,
and could be Type I errors given that these are not the primary outcome and there are numerous
comparisons. Further work is needed to determine whether there are any true characteristics that
interact with DHA treatment, or whether there are subgroups of individuals more likely than others to
respond positively to DHA supplementation.

DHA interventions are hypothesized to be beneficial for brain development, and at present there
is no known mechanism for a negative effect of DHA. However, an optimal dose of DHA is yet to be
identified, and it may be that exposure to excessive DHA is detrimental. In the formula trial testing
three doses of DHA, the high-dose group performance was similar to or worse than the control group,
while the low and mid-dose groups performed well [29–31]. In a trial of breastfeeding Danish women
(who would naturally already be providing their infants with some DHA), increasing DHA intake led
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to some instances of worse language, mainly within boys, and infant DHA status at the end of the
intervention period was negatively associated with vocabulary [32]. Of the studies that identified a
possible negative effect of DHA on language, the doses were 800 mg/day or higher [25,32,77,78], and
supplementation was in addition to DHA present in the diet of the participant. Additionally, two
studies, one with subgroup analyses for maternal education and one exploring household income
(both markers of socio-economic status likely positively associated with dietary DHA intake), indicate
possible adverse effects of DHA supplementation in those who have completed higher levels of
education or have higher household income [24,94]. Future research is needed to establish whether
there is an upper limit for DHA intake, above which additional DHA is detrimental and whether DHA
supplements should not be recommended for those already consuming sufficient dietary DHA.

Potential adverse effects of DHA supplementation are scarcely mentioned in other reviews and
meta-analyses [19–23,40–42]. However, several intervention trials report negative effects of DHA,
generally in subgroup analyses [24,25,70,78]. A prenatal trial found that parents of children in the DHA
group perceived more behavioral problems and executive dysfunction at four and seven years of age
than parents of children in the control group [25,77,78]. Similarly, in a RCT of DHA in neonates born
<33 weeks’ gestation parents of females in the high-DHA group rated their children as having poorer
behavioral functioning than parents of females in the standard-DHA group [70]. A RCT in toddlerhood
for infants born preterm conducted subgroup analyses and found that among children from higher
income households there was a possible negative effect of the DHA intervention on effortful control [24].
An infant study testing three formulas with varying doses of DHA to a control formula reported
a consistent benefit at the two middle doses and a decline in performance on cognitive, language
and executive functioning tasks in the group that received the highest dose of DHA, suggesting a
dose-effect [29]. Importantly, with all of these trials, the effects seen are generally in secondary or
exploratory outcomes in subgroup comparisons and could be Type I errors. There are currently
no known mechanisms for DHA supplementation to have an adverse effect on brain development
or functioning.

As a single nutrient intervention, DHA supplementation in nutritionally replete samples is likely
to have a small-to-modest effect, requiring large samples in order to detect efficacy or adversity.
This is particularly true if there are subpopulations that respond differently to increased DHA
exposure. Furthermore, large samples increase the likelihood that characteristics conducive to optimal
development, such as genetics and parental education, are balanced between the intervention and
control groups, and hence will not confound group comparisons. Many of the trials included in
this review had relatively small samples (n < 100 enrolled per group) [26,30,32,54–56,65,75,76,81,
83,85,87,90] and were powered to detect relatively large differences rather than the modest effects
that might be expected from a single nutrient intervention. Few trials attempted to account for
possible confounders such as environmental stimulation [25,62–64,69,70,77,78], maternal intelligence
quotient [63], paternal education [30,31,61,74] or maternal language [29], although all but one adjusted
for maternal education [87,88]. Attrition was high (>20%) in many studies, and some attrition could
be linked to post-randomization exclusions that could contribute to systematic loss to follow-up and
attrition bias [93]. Given the already small and underpowered samples in many of the included trials,
the chance of a Type I error may be increased.

Compounding the likelihood of a Type 1 error in the included studies is the fact that language was
not a primary outcome of any trial, and all included trials compared multiple outcomes between the
groups. A further important limitation is that few relevant DHA RCTs included a specific assessment
of language abilities [24,26–29,32,64,69,71–73,75,76,82,83]. Several included trials only have a language
score as part of an assessment of behavior [74,75], or general development [26,56,57,74], or from a
cognitive assessment involving a measure of language-based cognitive abilities [52,55,58,65–67,70,75,
76,84]. Several RCTs assessed language development using the MCDI [28,29,32,64,69,71–74,80], despite
debate regarding its suitability for evaluating the effectiveness of interventions [102]. Two trials used
the Bayley-I or II and attempted to calculate their own language score from the combined cognitive and
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language Mental Development Index [30,87]. Few trials provided scores for global language abilities
with the majority using assessments that measured a specific domain, which for children under 24
months typically involves basic naming ability. Furthermore, there are numerous DHA trials that were
not eligible for inclusion in this review as they had neither a language assessment nor assessment
of language-based cognitive abilities, although they assessed an aspect of neurodevelopment such
as cognition [51,103–125]. One trial was excluded as the form of supplementation was eggs (which
contain DHA as well as other nutrients that contribute to neurodevelopment) and the control group
received no intervention [126]. It is noteworthy that several ineligible RCTs used the Bayley-I or II
(which combines cognition and language into a Mental Development Index) [29,51,57,59,62,64–66,68,
71,86,87,103,111,113,118–121,127–129]. Hence, key aspects of language abilities may have been missed
in many of RCTs assessing the effect of early DHA supplementation on child outcomes.

The effect of early DHA supplementation on language abilities as summarized here is comparable
to previous reviews and meta-analyses of DHA interventions for child development outcomes [19–23,
40,41,43]. Only one other review to date has synthesized DHA trials conducted during pregnancy,
as well as for preterm infants, and postnatally [42]. Authors of this study reported child outcomes
for cognition, motor and visual development across 38 trials, DHA intervention enhanced infant
cognition (but not child IQ) and visual acuity [42]. This differs to the findings of previous high-quality
reviews and meta-analyses, that considered only one period of supplementation (for example, during
pregnancy only) [19–23,40]. Unlike our own review, the authors of this review did not report or detect
any subgroup effects (for world region, race, maternal education, age at assessment, intervention
duration or trial quality) [42]. However, they did not explore the subgroups considered in our current
review, with the exception of maternal education. Importantly, the review also missed several trials
and eligible follow-ups [24,60,70,77,78,82,83,85,90], particularly some of the key larger ones with null
findings [24,60,70,77,78].

5. Conclusions

The present study provides the first overview of the totality of evidence around the effect of
early DHA supplementation on the development of language. There were 84 assessments of language
reported between 29 trials of DHA supplementation in the first 1000 days, with only four findings of a
positive effect on a language outcome (three from the same RCT). Substantial variation between the
included trials, such as the timing, duration, and dosage of the intervention, the sample (preterm or
full-term, or both, and high or middle-to low-income countries) as well as range of language outcomes
and assessments, and absence of consistent subgroup comparisons make it difficult to reach a definitive
conclusion regarding the efficacy of early DHA interventions to improve language. Whilst the vast
majority of trials consistently reported a null effect, two studies detected potentially adverse effects,
suggesting that it may be worth considering the possibility of a detrimental effect of DHA exposure
on language, at high doses and/or in specific subpopulations. This review supports the need to
consider that blanket DHA supplementation strategies may not be appropriate. Further work is needed
to identify whether there is an upper-limit for safe DHA exposure, and which (if any) population
subgroups may benefit or be adversely effected by DHA supplementation.
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