
Sarcopenia, the loss of skeletal muscle mass and function with age, was first recognized as a dis-
ease in the International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-
CM) (M62.84) and has recently attracted attention as aged populations increase. However, the di-
agnostic criteria for sarcopenia remain controversial and there are as yet no US Food and Drug 
Administration-approved medications for sarcopenia. Given that both intrinsic and extrinsic fac-
tors contribute to sarcopenia onset and development, understanding the mechanism of sarcopenia 
is important for the development of therapeutic strategies. In this review, we described a variety of 
drugs for sarcopenia under investigation, including myostatin/ActR2 signaling inhibitors, exercise 
mimetics, anabolic hormones, and natural compounds. However, the combination of non-drug 
therapies with exercise and nutritional supplements are also needed as more easily accessible in-
tervention strategies against sarcopenia rather than pharmacological treatments alone. Many ap-
proaches to develop therapeutic methods to overcome sarcopenia may lead to healthy aging. 
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INTRODUCTION 

Sarcopenia is the decline in skeletal muscle mass and function with 
age.1) Muscle mass and strength peak in early adulthood, followed 
by a gradual decline after 40 years of age,2) with a more substantial 
decline from the fifth decade onwards.3) Sarcopenia has been con-
sidered a consequence of normal aging; however, research on sar-
copenia has supported its recognition as a disease entity, with a 
new disease code in the International Classification of Diseases, 
Tenth Revision, Clinical Modification (ICD-10-CM) (M62.84) 
established in October 2016.4) 

Currently, the suggested clinical diagnostic criteria for sarcope-
nia are based on low muscle mass and function (strength or perfor-
mance)5) although an international consensus is needed regarding 
the specific criteria and cut-offs. The technologies used to estimate 
muscle mass include magnetic resonance imaging, computed to-
mography, dual-energy X-ray absorptiometry scans, and bioelectri-
cal impedance analysis. The parameters to test muscle strength 
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and performance are handgrip strength and gait speed, respective-
ly. The European Working Group on Sarcopenia in Older People 
(EWGSOP) classifies sarcopenia into three conceptual stages 
based on the severity of the condition: presarcopenia is character-
ized by low muscle mass only without influence on muscle func-
tion. Sarcopenia is characterized by low muscle mass with low 
muscle function (either muscle strength or physical performance). 
Finally, severe sarcopenia is characterized by low muscle mass with 
low of the muscle function (both muscle strength or physical per-
formance). The Asian Working Group for Sarcopenia (AWGS) 
also adopted this algorithm.6) In 2019, the updated EWGSOP2 
classified sarcopenia into ‘probable’, ‘confirmed’, or ‘severe’. EWG-
SOP2 elevated low muscle strength as a primary indicator of prob-
able sarcopenia instead of low muscle mass and defined confirmed 
sarcopenia depending on the presence of accompanying low mus-
cle mass.7) 

Research in the economic costs associated with sarcopenia indi-
cates that the direct expenditure was approximately $18.5 billion 
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($10.8 billion in men and $7.7 billion in women) in the United 
States in 2000, comprising approximately 1.5% of the country’s to-
tal health expenditure.8) The EWGSOP reported that the preva-
lence of sarcopenia among individuals 60-70 years of age was 5%-
13% and increased to 50% in those over 80 years of age depending 
on the definition and method for identifying sarcopenia.9,10) Sarco-
penia is the most significant cause of disability and frailty in the el-
derly, which lead to a poor quality of life.11) In addition, sarcopenia 
is associated with other diseases such as diabetes, non-alcoholic fat-
ty liver disease, and cardiovascular disease including hypertension 
and arterial stiffness.12-15) Therefore, the management of sarcopenia 
is important for healthy aging. However, despite development ef-
forts, to date, there remain no US Food and Drug Administration 
(FDA)-approved drugs for the treatment of sarcopenia (Table 1). 
As the population of adults aged over 60 years worldwide is predict-
ed to expand to 2 billion by 2050,16) there is corresponding interest 
in the development of diagnostic tools and drugs for sarcopenia to 
improve the quality of life and reduce healthcare costs. 

MOLECULAR TARGETS FOR PHARMACOLOGICAL 
INTERVENTION 

The etiologies of sarcopenia are not fully understood. An imbal-
ance between muscle protein synthesis and degradation may cause 
the onset of sarcopenia and various mechanisms are potentially in-
volved in the pathogenesis of sarcopenia. Both intrinsic factors 
within skeletal muscle (e.g., inflammation, apoptosis, autophagy, 
mitochondria, neuromuscular junction, and calcium metabolism) 
and extrinsic factors in systemic environments (e.g., endocrine, nu-
tritional status, and immobility)10,17-21) contribute to defective 
myogenesis, muscle atrophy, and weakness. Therefore, under-
standing the mechanisms in sarcopenia is essential to identify mo-
lecular targets for pharmacological treatment. 

MYOSTATIN 

Myostatin is the most intensively studied molecular target for mus-

Table 1. Current status of the development of drugs for sarcopenia

Company name Drug name Collaborator Target Remark
Novartis AG Bimagrumab (antibody) MorphoSys AG Activin receptor type 

2B
Thigh muscle volume increased by week 2 and 

was sustained throughout the treatment peri-
od (June 2017, phase 2).

Regeneron Pharmaceuticals Inc. Trevogrumab (antibody) Sanofi S.A. Myostatin Primary endpoint of phase 2: percent change 
in total lean body mass.

Biophytis SAS Sarconeos (natural active ingredi-
ents)

NA Proto-oncogene pro-
tein c-MAS-1, MAS 
receptor

Meaningful activity in animal models of mus-
cular dystrophies. Good tolerability profile 
and no serious adverse events (phase 1).

ARMGO Pharma Inc. ARM-210 (small molecule) Servier Ryanodine receptor Treatment of Becker and limb-girdle muscular 
dystrophies as well as cachexia.

Immusoft Corporation NA (cell therapy) Bellicum Phar-
maceuticals

Enzyme/protein re-
placement therapy

Immune system programming technology.

Neurotune AG NT-1654 (fragment of neural agrin) NA NA Low-density lipoprotein receptor-related pro-
tein 4, acetylcholine. NT-1654 accelerated 
muscle reinnervation after nerve rush.

AAVogen Inc. AVGN7 (gene therapy) NA Activin receptors Gene expression inhibitors. AVGN7 contains a 
gene called SMAD7, which stops gene expres-
sion for muscle wasting.

Amgen Inc. ATA 842 (antibody) NA Myostatin, activin ATA 842 demonstrated increased muscle mass 
and muscle strength in the treatment of young 
and old mice for 4 weeks.

Vibe Pharmaceuticals LLC VB-102 (protein) NA NA The drug can potentially regenerate muscle and 
bones.

MYOS RENS Technology Inc. Peptide of follistatin Cloud Pharma-
ceuticals

Furin, Janus kinase 3, 
myostatin

Discovery of a myostatin inhibitor therapeutic 
for the treatment of sarcopenia.

BioViva AAV gene therapy NA Myostatin Obtained from a natural source and has poten-
tial in the modulation of myostatin expression.

Teijin Pharma Ltd. TEI-SARM2 NA Androgen receptor Selective androgen receptor modulator.

Source from Sarcopenia Therapeutics - Pipeline Analysis 2018 by P&S Market Research (https://www.psmarketresearch.com/market-analysis/sarcopenia-
therapeutics-pipeline-analysis). 
NA, not applicable.
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cle-wasting disease. Also known as growth differentiation factor-8 
(GDF-8), myostatin is a member of the transforming growth fac-
tor β (TGF-β) superfamily. Myostatin is predominantly expressed 
in cells of skeletal muscle lineage and inhibits muscle cell growth 
and differentiation22) through binding with its receptor complex 
activin type 2B (ACVR2B), resulting in activation of Smad signal-
ing.23) The loss of myostatin function induces muscle hypertrophy 
in children24) and improved muscle function in animal models.25) 
In addition, myostatin haploinsufficiency prevents not only ag-
ing-related declines in muscle function and but also enhances the 
longevity of mice.26) Therefore, the targeting of myostatin has been 
proposed as a primary strategy for pharmacological interventions 
in muscle-wasting diseases.25,27) 

The first human trial tested the myostatin inhibitor Stamulumab 
(MYO-029) developed by Wyeth Pharmaceuticals with Cam-
bridge Antibody Technology Group. Stamulumab is a recombinant 
human antibody that neutralizes the activity of myostatin protein 
by preventing myostatin from binding to ACVR2B. Phase 2 clinical 
trials were conducted in muscular dystrophy patients but develop-
ment was discontinued due to the lack of efficacy on muscle 
strength. Landogrozumab (LY-2495655) is a humanized monoclo-
nal antibody developed by Eli Lilly & Company that also neutraliz-
es the activity of the myostatin protein. Phase 2 clinical trials have 
been performed in patients with sarcopenia (completed in Decem-
ber 2013), elective total hip replacement (completed in February 
2014), and cancer cachexia (completed in January 2016), and are 
still under review. Increased appendicular lean body mass was re-
ported with LY-2495655 treatment in patients aged 75 years or old-
er who had fallen in the past year.28) After hip fracture surgery, LY-
2495655 treatment induced increased appendicular lean body mass 
and decreased fat mass; however, the appendicular lean body mass 
did not reach the superiority threshold at week 12.29) 

Regeneron Pharmaceuticals Inc. has developed the myostatin 
antibody Trevogrumab (REGN1033) in collaboration with Sano-
fi. Phase 2 clinical trials in sarcopenia patients were completed in 
February 2015 and the evaluations of its efficacy on muscle mass 
and function are ongoing.23) 

Acceleron Pharma developed ramatercept (ACE-031) a decoy 
form of ACVR2B. Although the FDA awarded orphan status to 
this drug for muscular dystrophy and reviewed it in 2010, the de-
velopment of ACE-031 was discontinued due to concerns about 
safety including minor nosebleeds, gum bleeding, and/or small di-
lated blood vessels within the skin (completed on June 2011). Al-
ternatively, Acceleron Pharma is developing ACE-083 as a newer 
form of ACE-031. ACE-083 is designed for facioscapulohumeral 
muscular dystrophy (FSHD) and Charcot-Marie-Tooth disease 
(CMT) based on a modified form of human follistatin.23) Follista-

tin inhibits muscle growth signaling by binding to activins A and B 
and myostatin as well as other ligands in the family except for 
BMP9/10.30,31) The results of phase 1 of clinical trials of ACE-083 
reported in 2018 included increased muscle volume as the ACE-
083 dose increased.32) Phase 2 clinical trials are ongoing to test its 
safety, tolerability, pharmacokinetics, and pharmacodynamics in 
patients with FSHD and CMT. 

ACTIVIN RECEPTOR 

In addition to ligands such as myostatin and activins, receptor 
ACVR2B has also been targeted for the development of drugs for 
sarcopenia. An ACVR2B antibody, which blocks the signaling 
pathway, was reported to induce muscle hypertrophy.33) Novartis 
Institutes for BioMedical Research has developed a human mono-
clonal antibody, bimagrumab (BYM-338), in collaboration with 
MorphoSys AG. BYM-338 binds to both ACVR2A and ACVR2B 
and acts competitively with its ligands. In August 2013, the FDA 
granted breakthrough therapy designation to BYM-338 for spo-
radic inclusion body myositis, the most common idiopathic in-
flammatory myopathy that is characterized by progressive patho-
logical muscle weakness and atrophy. BYM-338 promotes differ-
entiation of primary human skeletal myoblasts and prevents the in-
hibition of differentiation induced by myostatin or activin A. 
BYM-338 also inhibits myostatin- or activin A-induced atrophy, 
thus sparing the myosin heavy chain from degradation. BYM-338 
significantly increases skeletal muscle mass in mice, beyond the 
sole inhibition of myostatin.34) BYM-338 is administered by intra-
venous infusion. Phase 2/3 clinical trials of BYM-338 in patients 
with sporadic inclusion body myositis were completed in January 
2016. However, no significant effects were observed in any objec-
tive measurements related to muscle strength or physical function. 
Phase 2 clinical trials of BYM-338 were also conducted in patients 
with hip fracture recovery or sarcopenia. In older adults with sarco-
penia, BYM-338 increased muscle mass and strength and also im-
proved mobility in those with slow walking speed.35) Although the 
aforementioned study was the first to evaluate a type II activin re-
ceptor antagonist in older individuals with sarcopenia, it had some 
limitations. For example, the use of a gait speed cutoff of 1.0 m/s 
rather than the more common 0.8 m/s limited the number of par-
ticipants in the study whose gait speed improved with bimagrum-
ab. Moreover, the lack of introductory sessions before the gait 
speed or 6-minute walk tests probably led to a pervasive learning 
effect in the performance test results. Physical activity was not 
monitored, so there were also limits in understanding how exercise 
might interact with the drug in this population. In December 2018, 
Novartis discontinued development of BYM-338 for hip fracture 
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recovery and sarcopenia. 
Although there are currently no clear drug candidates as most of 

the compounds in development have had very limited efficacy in 
larger clinical trials, many smaller clinical trials have demonstrated 
that the inhibition of myostatin/ACVR2 signaling may improve 
muscle mass in patients with muscle wasting. As positive effects on 
muscle wasting through exercise training and nutritional supple-
mentation have been reported,36-38) hybrid therapies combining 
myostatin inhibitors with other approaches such as exercise and 
nutritional therapy could be more effective in the treatment of 
muscle wasting.23) 

EXERCISE MIMETICS 

Numerous studies have examined the positive effects of exercise 
on patients with sarcopenia. Exercise has consistently demonstrat-
ed improved muscle strength and function, with inconsistent ef-
fects on improving muscle mass. However, as most patients with 
sarcopenia have problems with physical activity, there is a limit to 
the ability of exercise to overcome sarcopenia. Thus, exercise mi-
metics (exercise pills) are a potential therapeutic strategy for sarco-
penia that produce the effects of exercise without exercise. The 
peroxisome proliferator-activated receptor beta or delta (PPARβ/
δ) agonist GW1516 and exercise training synergistically increased 
oxidative myofibers and running endurance in adult mice.39) More-
over, 4 weeks of AMP-activated protein kinase (AMPK) agonist 
5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) treat-
ment alone enhanced running endurance by 44% even in seden-
tary mice. In addition, PPARδ or AMPK activates robust transcrip-
tion that re-programs the metabolic skeletal muscle genome. 
These results demonstrate that the AMPK-PPARδ pathway can be 
targeted by orally active drugs to enhance training adaptation or 
increase endurance without exercise. 

Metformin has also examined under drug repurposing for the 
prevention of sarcopenia with prediabetes through activation of 
AMPK. Metformin is commonly prescribed for the treatment of 
type 2 diabetes. The effects of metformin on muscle are still uncer-
tain and its exact mechanism of action is a matter of debate. Howev-
er, metformin extended the lifespan and health span with improved 
physical performance in model systems.40) Thus, metformin has 
been studied as a potential pharmacological intervention to delay 
aging and the incidence of age-related diseases as well as sarcopenia. 

Although most potential exercise mimetics including AMPK ag-
onists are still in pre-clinical stages due to side effects, the develop-
ment of exercise mimetics is urgently needed and should be con-
tinued for patients on bedrest or with severe sarcopenia patients 
with loss of physical activity. 

HORMONES 

Decreased circulating levels of several anabolic hormones with 
aging may contribute to changes in muscle mass and function in 
older individuals.41) Therefore, hormonal manipulation has inves-
tigated as the basis of many of the therapies for sarcopenia.5) In 
phase 2 clinical trials by GTx Inc., treatment with selective andro-
gen receptor modulator (SARM) enobosarm (also known as os-
tarine, MK-2866) induced dose-dependent increases in total lean 
body mass with improvements in physical function in older indi-
viduals.42) Moreover, its side effects were similar to those of the 
placebo, indicating that it is safer than steroids. Another phase 2 
clinical trial of the SARM MK-0773 (also known as PF-
05314882) also increased lean body mass in women with sarco-
penia, without evidence of androgenization.43) Physical perfor-
mance also tended to increase, although the difference was not 
statistically significant. Several patients in the treatment group ex-
perienced elevated transaminase levels that resolved after discon-
tinuing the study. Despite growing evidence linking age-related 
hormonal changes to the development of sarcopenia, it is still too 
early to determine the clinical efficacy of hormonal supplementa-
tion for the management of sarcopenia.44) 

NATURAL COMPOUNDS 

Since sarcopenia is an age-related disease, natural compounds 
with anti-aging effects have been assessed for anti-sarcopenic 
properties. Ursolic acid, a pentacyclic triterpenoid enriched in ap-
ples, reduced muscle atrophy and stimulated muscle hypertrophy 
in mice by enhancing skeletal muscle insulin/IGF-1 signaling and 
inhibiting atrophy-associated mRNA expression.45) Furthermore, 
the effects were accompanied by reductions in adiposity and lev-
els of fasting blood glucose, and plasma cholesterol and tri-
glycerides.  

Tomatidine improves muscular strength and decreases adiposi-
ty.46) Tomatidine, abundant in unripe green tomatoes, is a metab-
olite of α-tomatine. Supplementation with tomatidine in old mice 
significantly reduced age-dependent declines in skeletal muscle 
mass, strength, and quality.47) 

Both ursolic acid and tomatidine generate hundreds of small 
positive and negative changes in mRNA levels in aged skeletal 
muscle, with remarkably similar mRNA expression signatures.47) 
Ursolic acid and tomatidine in aged skeletal muscle reportedly re-
pressed a subset of the mRNAs positively regulated by activating 
transcription factor 4 (ATF4), a basic leucine zipper (bZIP) tran-
scription factor subunit regulating oxidative and other stress re-
sponses.48) 
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High-energy skeletal muscle tissue relies upon mitochondria 
for energy production and contractile function; however, mito-
chondrial function declines with aging.49) The association be-
tween sarcopenia and mitochondria may also inform new and ef-
fective treatments for sarcopenia.50) Mitophagy plays a significant 
role in mitochondrial quality control in muscles; therefore, mito-
phagy-inducing agents may have anti-sarcopenic functions.51) 
Urolithin A is a metabolically transformed compound from a 
group of natural compounds, ellagitannins (ETs), which are 
found in pomegranates, as well as nuts and berries.52) Urolithin A 
has been shown to induce mitophagy and prolong lifespan in C. 
elegans and increase muscle function in rodents.52) 

The results of studies in model animals suggest that supplemen-
tation with these natural compounds may ameliorate sarcopenia 
in older individuals, especially when clinically assessed with other 
medical treatment options. 

CONCLUSION 

According to reports from the FDA in 2017,53) many patients with 
sarcopenia are uncertain if their symptoms worsen due to sarco-
penia or as a natural result of aging. Therefore, older individuals 
should recognize sarcopenia as a disease to prevent or treat. As a 
new disease code for sarcopenia was established in ICD-10-CM 
(M62.84) in October 2016, other countries will also soon accept 
sarcopenia as a disease entity. 

As a result of sarcopenia, patients have difficulty in performing 
basic physical tasks such as standing and walking long distances. 
Moreover, balance problems, falling, fatigue, and muscle pain, 
along with comorbid conditions such as arthritis, make them in-
active. In addition to physical limitations, patients with sarcopenia 
experience emotional impacts such as fear of injury and embar-
rassment of their physical limitations, limited social interactions 
and feelings of isolation, and difficulties caring for themselves and 
living independently.53) Therefore, the development of preventive 
and therapeutic strategies against sarcopenia is imperative for 
healthy aging. Future large-scale clinical trials are essential to de-
velop precision medicine reflecting individual patient characteris-
tics since the cause and clinical features vary between patients. 
Comprehensive strategies together with pharmacological and 
non-pharmacological intervention including exercise, physical 
therapy, dietetic regulation, lifestyle modification, and emotional 
support may be more effective against sarcopenia.53) 
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