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Abstract: Medical advances and the availability of diagnostic tools have considerably increased life
expectancy and, consequently, the elderly segment of the world population. As age is a major risk
factor in cardiovascular disease (CVD), it is critical to understand the changes in cardiac structure
and function during the aging process. The phenotypes and molecular mechanisms of cardiac aging
include several factors. An increase in oxidative stress is a major player in cardiac aging. Reactive
oxygen species (ROS) production is an important mechanism for maintaining physiological processes;
its generation is regulated by a system of antioxidant enzymes. Oxidative stress occurs from an
imbalance between ROS production and antioxidant defenses resulting in the accumulation of free
radicals. In the heart, ROS activate signaling pathways involved in myocyte hypertrophy, interstitial
fibrosis, contractile dysfunction, and inflammation thereby affecting cell structure and function, and
contributing to cardiac damage and remodeling. In this manuscript, we review recent published
research on cardiac aging. We summarize the aging heart biology, highlighting key molecular
pathways and cellular processes that underlie the redox signaling changes during aging. Main
ROS sources, antioxidant defenses, and the role of dysfunctional mitochondria in the aging heart
are addressed. As metabolism changes contribute to cardiac aging, we also comment on the most
prevalent metabolic alterations. This review will help us to understand the mechanisms involved in
the heart aging process and will provide a background for attractive molecular targets to prevent
age-driven pathology of the heart. A greater understanding of the processes involved in cardiac
aging may facilitate our ability to mitigate the escalating burden of CVD in older individuals and
promote healthy cardiac aging.

Keywords: senescence; cardiac remodeling; reactive oxygen species; cardiac metabolism; aged heart

1. Introduction

Medical advances and the availability of diagnostic tools have considerably increased
life expectancy and, consequently, the elderly segment of the world population [1]. The
number of people aged 60 years and over worldwide is expected to increase from 841 mil-
lion in 2013 to approximately 2 billion in 2050 [2].

Aging is characterized by complex biological changes [3]. As aging is hard to define,
populational studies have used chronological definitions [4]. However, biological aging is
determined by a combination of characteristics, such as genetic load, lifestyle, risk factors
for cardiovascular disease, comorbidities, psychological condition, social and economic
background, functional capacity, biological stress exposure, and homeostatic capacity
changes [3,5,6]. Therefore, although the chronological years are unchangeable, other factors
that modulate aging may be modified [3,7]. As age is a major risk factor for cardiovascular
disease (CVD), it is critical to understand the cardiac changes that occur during the aging
process [8]. Advances in cardiovascular research have identified increased oxidative stress
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as a major pathophysiological mechanism in the development and progression of cardiac
alterations during aging [9]. Here, we summarize aging heart biology, highlighting key
molecular pathways and cellular processes that underlie the redox signaling changes.
Main reactive oxygen species (ROS) sources, the antioxidant defenses, and the role of
dysfunctional mitochondria in the aging heart are discussed. As metabolism changes
contribute to cardiac aging, we also comment on the most prevalent metabolic alterations.

2. Aging Cardiac Changes

Several molecular, biochemical, structural, and functional changes have been observed
in the heart of apparently healthy individuals [10]. Although the changes are commonly
characterized as “normal”, some alterations resemble the early stages of diseases such as
systemic arterial hypertension and coronary atherosclerosis. Thus, cardiovascular aging
and cardiovascular disease are connected and present molecular links that have not been
completely established [3].

Among structural myocardial alterations, a decrease in the number of myocytes and
in the left ventricular (LV) end-diastolic dimension is highlighted [11,12]. A reduction
in myocyte number is mainly caused by apoptosis [12]. As there is a size increase in the
remaining myocytes, increased LV wall thickness is often observed [13]. When LV mass
is preserved, the combination of reduced LV end-diastolic dimension with increased LV
wall thickness is known as concentric remodeling [13]. The Framingham Heart Study [14]
showed that the LV mass may increase with advancing aging; however, the study was
primarily carried out in individuals with an increased burden of risk factors for CVD, such
as diabetes mellitus, systemic arterial hypertension, and higher body mass index. The left
atrium is also subjected to aging modifications. The main structural modification is an
increase in left atrium diameter and volume [15].

Another commonly found structural change is an increase in collagen tissue which
also presents altered physical properties [16]. Fibrillar collagen Types I and III are the
predominant forms in the myocardial extracellular matrix. Type I collagen is composed of
thick fibers with a high tensile strength, and Type III collagen is formed of small diameter
fibers with a low tensile strength [17]. Collagen I/III ratio in the human heart remains
minimally evaluated or outdated in the literature. Nonetheless, there appears to be a
4-to-5-fold increase in myocardial collagen I/III ratio over physiological values in aged
persons [18]. Cardiovascular magnetic resonance images have shown that higher diffuse
myocardial fibrosis can be found in older individuals [13]. Similar changes in collagen I/III
ratio occurs in vessels during aging and collaborates to increase arterial stiffness [18,19].

The most evident functional alteration is related to LV diastolic function [20,21]. In-
creased interstitial collagen increases myocardial stiffness and reduces ventricular compli-
ance [22,23]. As a consequence, a progressive reduction in mitral early-diastolic inflow peak
velocity (E wave) can be observed [22]. Interestingly, this index starts to reduce from the
age of 20 years and by the age of 80 its value is approximately 50% lower than at 20 years
of age [22]. Changed LV diastolic properties may lead to diastolic dysfunction and heart
failure with preserved ejection fraction which is more common in the elderly [8]. From
45 to 95 years of age, overall lifetime risk for heart failure ranges from 20% to 45% [8]. It has
not currently been established whether diastolic dysfunction is part natural of the aging
process or is caused or influenced by pathological and lifestyle conditions such as smoking,
sedentarism, and nutritional imbalance [3,24,25].

Some experimental studies have suggested that contractile function is also impaired
with age [26,27]. Cardiac cycle duration is prolonged with an increase in both contraction
and relaxation times. Human studies have also shown a worsening in systolic function.
Advancing age has revealed a decline in myocardial and LV longitudinal deformation
rates [28], impaired LV dyssynchrony [29], and abnormal mitral annular plane systolic
excursion [30].

Left atrium function is composed of three components: reservoir, conduction and
pump. During aging, as atrial compliance during ventricular systole tends to reduce, the
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reservoir function is impaired [31]. The pump function, also called active atrial contraction,
is not fully understood and studies have shown both improved and impaired function over
the years [32,33]. When LV compliance is reduced, left atrium active emptying fraction
increases and passive emptying fraction decreases [34].

Several genetic, molecular and biochemical abnormalities are involved in the struc-
tural and functional myocardial changes during aging [9,26,35–37]. These abnormali-
ties are mainly characterized by changes in contractile proteins and cardiac excitation-
contraction coupling, decreased contractile response to β-adrenergic stimulation, increased
systemic and myocardial oxidative stress and renin–angiotensin activity, and metabolic
changes [3,26,27].

3. Energetic Metabolism and Cardiac Aging

The cardiac muscle consists of aerobic tissue with high energy demand and is depen-
dent on a large amount of adenosine triphosphate (ATP) which comes mostly from the
oxidation of fatty acids, carbohydrates, ketone bodies, and amino acids [38]. In the healthy
heart, approximately 60% of synthesized energy comes from the oxidation of fatty acids
and almost 40% from the oxidation of glucose and lactate; ketone bodies and amino acids
only have a minor contribution [39]. The role of each substrate can be altered depending
on changes in substrate availability, organ demand, feeding status, and the presence of
ischemia or hypoxia [40].

Aging causes a gradual loss of cellular homeostasis [41]. These changes lead to
metabolic alterations in the heart characterized by decreased oxidation of fatty acids and
increased glucose utilization in combination with changed expression of genes encoding
enzymes participants in the cardiac metabolism [42,43]. During aging, there is a decline in
respiratory proteins interfering with the use of fatty acids. On the other hand, there is an
increase in glycolysis-related proteins [44]. This process has been defined as a remodeling
of energy metabolism, which can also be observed in some heart diseases [42,45].

An imbalance between absorption and oxidation of fatty acids in aging hearts leads to
the accumulation of fatty acids that are incorporated into triglycerides, phospholipids and
other lipid subspecies [46]. In the elderly myocardium, lipid accumulation with increased
levels of lipid transporter suggests an inability to oxidize rather than to transport the
lipids [47,48]. Thus, the combination of increased lipid uptake and reduced oxidation
increases the amount of lipids in the cardiac tissue that may be responsible for lipotoxicity
and the onset of cardiac diseases.

Glucose is delivered to cardiomyocytes from the bloodstream or intracellular glyco-
gen storage [42]. Increased energy production by glycolysis during changes in substrate
availability or pathological changes may be beneficial as it ensures the supply of ATP to the
contractile function [49,50]. In the aged heart, greater glycolysis was found compared to
fatty acid utilization [51]. This compensatory mechanism can balance energy deficiency.
However, it is not clear whether this mechanism is advantageous in the long term. In cardiac
hypertrophy there is a decreased fatty acid oxidation with increased glucose utilization [52],
which has been considered an adaptive compensatory response [53–55]. On the other hand,
increased glucose uptake during hyperglycemia was harmful to cardiac myocytes [56]. Fi-
nally, in hearts from transgenic mice, increased glucose uptake improved diastolic function,
preserved myocardial energy, and attenuated susceptibility to ischemia-reperfusion caused
by aging [57]. Although suggesting that the heart can adapt to a long-term increase in
intracellular glucose with no adverse effects, this issue needs a better clarification.

Recent studies have focused on ketone bodies as an energy source for cardiac mus-
cle [58–60]. In addition to being an efficient substrate for cardiac metabolism as it requires
less oxygen per produced ATP [61], the oxidation of ketone bodies has the potential to
alleviate age-related cardiovascular complications [38]. Its energy-saving properties im-
prove cardiac metabolic efficiency by increasing ATP production [58]. The oxidation of
ketones in the myocardium is proportional to their plasma concentrations; an increase
in ketones levels could have cardioprotective effects by enhancing cardiac function and
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reducing cardiac inflammation [62]. The production of ketone bodies in the liver is higher
in elderly mice than their young counterparts [63]. Enzymatic alterations involved in
ketone body metabolism have been suggested as a mechanism for the age-related metabolic
shift towards increased consumption of ketone bodies and as an alternative source of
energy supply [64]. Several studies have shown the antioxidant effects of ketone bodies
in elderly hearts, with improved mitochondrial repair mechanisms and increased ratio of
reduced-to-oxidized glutathione [65–67].

One of the enzymes responsible for cell energy homeostasis is adenosine monophos-
phate activated protein kinase (AMPK), which also regulates mitochondrial production of
ROS [68,69]. Activation of AMPK modulates several biochemical events, including glucose
uptake, glycolysis, fatty acid oxidation, and mitochondrial biogenesis [42,70]. These pro-
cesses significantly contribute to increasing ATP levels and restoring myocardial contractile
efficiency [71]. Aging can impair the AMPK signaling pathway. AMPK activation protects
the elderly heart from oxidative stress through activation of nuclear factor erythroid 2-
related factor 2 and serine/threonine-protein kinase 2 [72–75]. Recent studies have shown
that hormones and natural substances may activate AMPK, inhibiting ROS production
and preserving cardiomyocytes [73,76–78]. These findings suggest that AMPK protects the
heart against oxidative stress and acts as a potential therapeutic target.

Alterations in cardiac substrate use have been associated with CVD [79,80]. Changes
in substrate preference from fatty acid to glucose and ketone bodies were described in
the hypertrophied or failing heart [60,81,82]. The decrease in fat oxidation is associated
with reduced expression of genes involved in fatty acid uptake and mitochondrial β-
oxidation [80]. In the pathological remodeling caused by diabetes, greater utilization of
fatty acid and ketone bodies was observed and assigned to the increased fatty acid supply
and insulin resistance [79]. In the ischemic disease, cessation of oxidative phosphorylation
leads to the use of alternative pathways [80]. High-energy phosphates in the form of
creatine phosphate are used, but they are quickly depleted, and anaerobic glycolysis
becomes the main ATP source [83]. If ischemia continues, the rate of glycolysis decreases,
lactate accumulates, and acidosis inhibits several enzymes of the glycolytic pathway. The
ATP reduction in the ischemic myocardium is associated with irreversible changes in
cardiomyocytes [84].

The contribution of oxidative stress to the metabolic remodeling is not well estab-
lished. In aging, mitochondrial dysfunction impairs oxidative phosphorylation reducing
ATP production and increasing cardiomyocyte ROS [85]. Increased ROS further induces
mitochondrial electron transport chain dysfunction leading to a vicious cycle between
damaged mitochondria and increased ROS production (see below) [86]. Increased ROS can
affect the availability of heart substrates reducing ATP turnover and causing both metabolic
remodeling and contractile dysfunction.

4. Oxidative Stress and Aging

ROS were generally considered to be detrimental by-products of cellular metabolism
and thought to cause toxic effects associated with several pathological conditions. However,
it is now well established that besides playing a role in molecular damage, ROS fulfil second
messenger-like functions [87]. A fine balance is necessary for ROS generation to limit cell
injury and extend lifespan. For example, moderate ROS levels may increase the tolerance
against metabolic, mechanical, and oxidative stressors [88]. Brief periods of increased
oxidative stress during ischemia-reperfusion may limit later cellular injury through several
pathways such as those involving the mechanistic target of rapamycin (mTOR) or Wnt
signaling. However, at increased levels, ROS can damage mitochondria, organelles, and
DNA culminating in cell aging and cell demise [89].

Known as redox regulation, the balance between ROS generation and elimination is
maintained by complex mechanisms. Dysfunction in any of these mechanisms can disrupt
redox homeostasis and increase oxidative stress [90]. Oxidative stress is a major contributor
to several age-associated cardiovascular diseases including atherosclerosis [27,91,92]. Gene
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expression coding for proteins involved in ROS production and clearance pathways are
changed with aging in both human and rat hearts leading to increased systemic and cardiac
oxidative stress and predisposing to cardiovascular diseases [9,93]. The responsiveness
of the aged heart to stress is altered with a decrease in antioxidant capacity along with
increased oxidant production [94]. The main ROS source during aging is mitochondria
(discussed later), where ROS are mainly generated as a by-product of oxidative phosphory-
lation [95]. In this section, we will address major endogenous ROS sources including the
NADPH oxidase (NOX) family, nitric oxide oxidase, and endoplasmic reticulum.

4.1. Sources of ROS Other Than Mitochondria
4.1.1. NADPH Oxidase

Despite the multiple ROS sources, a major source of ROS involved in myocardial redox
signalling is the family of NADPH oxidases. Currently, there are seven known proteins
in the NOX family—NOX1, NOX2, NOX3, NOX4, NOX5, dual oxidase (DUOX) 1, and
DUOX2. All members of the NOX family can drive the NADPH-dependent reduction of
O2 to O2

•−. NOX4, DUOX1, and DUOX2 may also generate H2O2 [96].
NOX2 consists of a multicomponent complex involving transmembrane flavocy-

tochrome b558—which is the heterodimeric assembly of NOX2 and p22phox—supported
by cytosolic protein factors p47phox, p67phox and p40phox, and small GTP-binding pro-
teins (G proteins Rac1 or Rac2). NOX2 activation requires assembly of the multiprotein
complex. In brief, NOX2 activation requires phosphorylation of p47phox to induce a con-
formational change to unmask p47phox’s autoinhibited tandem SH3 domain. Release of
the tandem SH3 enables p47phox translocation and binding to the PRR region of p22phox.
This interaction provides a scaffold for p67phox and p40phox assembly in the complex.
When joined by Rac, this complex enables electron transfer and superoxide production in
the presence of NADPH [97].

NOX1 and NOX3 are the closest isoforms to NOX2 and their activation requires
cytosolic factors NOXO1 and NOXA1, respectively, homologous to the p47phox and
p67phox NOX2 subunits. Unlike other isoforms, NOX4 is constitutively active. NOX5
is endowed with other specificities compared to other NOX isoforms, such as a Ca2+-
dependent activation. Binding of Ca2+ to NOX5’s extra EF-hand domain results in a
conformational change which exposes hydrophobic regions that bind to the catalytic core
to activate electron transfer [97].

The DUOXes are sequestered in an inactive state in the endoplasmic reticulum. They
require a maturation factor (DUOXA1 or DUOXA2) to adopt a conformation consistent
with the acquisition of post-translational modifications responsible for the migration of the
complex to the plasma membrane. In the presence of DUOXA2, DUOX1 produces O2

•−

while DUOX2 also produces H2O2 [97].
ROS generated by NOX have been implicated in the pathophysiology of systemic arte-

rial hypertension, atherosclerosis, angiogenesis, and in endothelial dysfunction associated
with hypercholesterolemia, diabetes and aging [98]. NOX in cardiovascular cells continu-
ously generates ROS at a low level even in the absence of cell stimulation. NOX activity may
be enhanced by several stimuli, such as cyclic stretch, angiotensin II, α-adrenergic agonists,
endothelin-1, and TNF-α, many of which are relevant to left ventricular hypertrophy and
heart failure [98]. Studies have shown both increased and unchanged myocardial and skele-
tal muscle NOX activity during cardiac injury [99–107]. Differences in experimental models
and cardiac injury levels could be involved in the divergent results. NOX2 can play an
essential role in age-associated cardiac remodeling by enhancing matrix metallopeptidase
activation and the expression of pro-fibrotic factors such as connective tissue growth factor
and transforming growth factor-β, and the induction of cardiomyocyte hypertrophy [108].

4.1.2. Nitric Oxide Oxidase

Nitric oxide (NO) is synthesized by NO synthase (NOS) during the catalysis of L-
arginine into L-citrulline. Three NOS isoforms have been reported: neuronal NOS (nNOS
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and NOS1)—linked to intracellular signaling, inducible NOS (iNOS and NOS2)—activated
in response to endotoxins or cytokine signals, and endothelial NOS (eNOS and NOS3)—
related to vasodilation and vascular regulation. There is high expression of nNOS in
neuronal cells, including those in the brain and skeletal and cardiac muscle. NO modulates
cardiac function and also has a protective role in the ischemic and failing heart [109].
Cytotoxicity attributed to NO is, to a certain extent, due to peroxynitrite. NOS uncoupling
in various diseases results in a dysregulated NO response whereby NO combines with
O2

− to produce peroxynitrite, which interacts with lipids, DNA, and proteins leading to
oxidative damage [110].

Changes in NOS or NO concentration are involved in the pathophysiology of aging. NO
regulates xanthine oxidase, a ROS source in the heart [111]. Under physiologic conditions,
administration of a specific NOS inhibitor induces cardiac mechanoenergetic uncoupling due
to an increase in oxygen consumption in relation to the work performed, which was attributed
to the ROS production by xanthine oxidase [112]. ROS production by xanthine oxidase is
increased in the absence of NOS1 leading to deleterious effects on myocardial excitation–
contraction coupling [113]. Deficiency of NOS1 or NOS3 isoforms is associated with cardiac
hypertrophy in mice [111]. Loss of both isoforms produces a classic cardiovascular phenotype
of aging with concentric left ventricular remodeling [114]. During aging and cardiovascular
disease, animal and human studies confirm that NO is dysregulated at various levels, with a
decrease in production, tissue half-life, and potency [115].

4.1.3. Endoplasmic Reticulum

The endoplasmic reticulum (ER) regulates calcium homeostasis, lipid metabolism,
protein synthesis, and posttranslational modification and trafficking. The ER contains high
Ca2+ concentration, which is maintained by the active transport of the sarcoendoplasmic
reticulum (SR) calcium transport ATPase. Homeostasis in the endoplasmic reticulum may
be disrupted by a number of insults, including alterations in intracellular Ca2+ transient or
redox status [116].

The ER is the site of folding secreted proteins. Cellular stress, such as an increase in
secretory load or the presence of mutated proteins that cannot be properly folded, can
unbalance the relationship between demand for protein folding and ER capacity for protein
folding, inducing ER stress [117]. ER senses and responds to stress through signal trans-
duction pathways known as the unfolded protein response [118]. Protein-folding is highly
sensitive to endoplasmic reticulum redox status; dysregulation of disulfide bond forma-
tion in response to endoplasmic reticulum stress increases luminal oxidative stress and
reduces endoplasmic reticulum function [119]. The efficiency of the ER stress recognition
system and unfolded protein response signaling declines during aging [120]. Increased ER
stress was observed in senescent cardiomyocytes with impaired contractility, which was
associated with increased oxidative stress and endoplasmic reticulum stress [120,121].

4.1.4. Other ROS Sources

Other endogenous ROS sources include cytochrome P450 and peroxisomal oxidative
metabolism [96]. ROS are also produced by exogenous agents, such as chemotherapy drugs,
radiation, heavy metals, atmospheric pollutants, chemicals, drugs and xenobiotics [96].

4.2. Antioxidant Defense Mechanisms

The heart is equipped with antioxidant systems to scavenge excess ROS [90]. An inte-
grative system of antioxidant enzymes maintains reactive species in a range that promotes
physiological cell signaling and minimizes oxidative damage. The primary antioxidant
enzymes are superoxide dismutase, catalase, and glutathione peroxidase. Briefly, O2 is
converted by superoxide dismutase to H2O2, which is decomposed to water and oxygen
by catalase, preventing hydroxyl radical production. Additionally, glutathione peroxidase
converts peroxides and hydroxyl radicals into nontoxic forms by oxidation of reduced
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glutathione into glutathione disulfide and then reduced to glutathione by glutathione
reductase [122].

Thioredoxins, peroxiredoxins, glutathione peroxidases, p38 mitogen-activated protein
kinase (MAPK), sirtuins, and non-enzymatic antioxidants such as glutathione, Vitamin C,
Vitamin E and polyphenols also directly act on oxidative agents [96]. Sirtuin 1 is a longevity
gene considered to play an important role in cardiovascular aging. Sirtuin 1 expression
declines with age. Aging impairs sirtuin 1 activation during ischemic stress increasing the
susceptibility of the heart to ischemia/reperfusion injury [123].

4.3. ROS-Mediated Signaling

Considering the importance of switch ability between ON and OFF states in intra-
cellular signaling, proteins that can be sensitively and reversibly oxidized by ROS are
candidates for mediating the ROS signaling function. Among the 20 amino acids that
make up proteins, cysteine is of particular interest, because the thiol moiety in the cysteine
side chain is very sensitive to oxidation and can form disulfide bonds with another thiol
moiety. Disulfide bonds can be reduced back to the free thiol moiety under physiological
intracellular conditions. Therefore, the cysteine residues that exist on the protein surface are
considered to be the physiological targets for ROS. This oxidative reaction appears to occur
non-specifically, but studies revealed the presence of highly reactive cysteine selectively
oxidized by ROS [124].

The central mechanism underlying most ROS-dependent signaling is thought to be
the covalent modification of specific cysteine residues found within redox-sensitive target
proteins. Oxidation of these reactive cysteine residues can lead to reversible modification
and activate or inactivate their target proteins [125]. Examples of transcriptional regulation
that uses cysteine oxidation to sense and respond to increased ROS levels include intracel-
lular targets such as Kelch-like ECH associated protein 1 (Keap1), nuclear factor erythroid
2-related factor 2 (Nrf2), and forkhead box O [126]. Expression of Nrf2 is decreased in
elderly patients. Strategies to stimulate Nrf2 and enhance endogenous antioxidants may
decrease the severity of cardiovascular disease in the elderly [94].

Nuclear transcription factor κB (NF-κB) is another example of redox-dependent ac-
tivation. Its active form is a heterodimer consisting of 50- and 65-kDa subunits. The
heterodimer remains bound to NF-κB inhibitor (IκB) in the cytoplasm. In response to
oxidative stress, IκB is phosphorylated, ubiquitinated, and degraded, which unmasks the
DNA binding activity of the heterodimer and allows it to translocate to the nucleus where
it can activate gene transcription. Depending on the context, ROS can both activate and
inhibit NF-κB signaling [127].

The sirtuin family of seven enzymes has also been linked to several antioxidant and ox-
idative stress related processes, including longevity, mitochondrial function, DNA damage
repair, and metabolism [128]. Sirtuin 1 was shown to protect the aging heart by inhibiting
the endoplasmic reticulum-mediated apoptosis [120]. Finally, a major pathophysiological
characteristic of aging involves the elevated and sustained endogenous expression of the
stress response signaling pathways that involve p38 MAPK, JNK, and NF-κB [92].

Mitochondria can intensify ROS production by a phenomenon called ROS-induced
ROS release, which occurs when ROS produced in an intracellular niche triggers ROS
formation at other cell sites [129,130]. The increase in ROS synthesis can occur through
ion channels of the mitochondrial inner membrane such as mitochondrial permeability
transition pore and ATP-dependent K-channel, which, once activated, increases NADPH
consumption and H2O2 production forming a vicious cycle [131,132].

5. Aging Mitochondria

One fundamental mechanism in increased oxidative stress during aging is the dysregu-
lation of mitochondrial dynamics and quality control [9,27]. Cardiomyocytes present a large
number of mitochondria which supply the great demand for energy generating ATP. The
cardiomyocyte aging process is accompanied by several mitochondrial alterations, such as
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ultrastructure abnormalities, electron transport defects, genome mutations, mitochondrial
biogenesis changes accompanied by clonal expansion of dysfunctional mitochondria, ROS
production increase, and mitophagy suppression [133,134].

5.1. Respiratory Chain

In the myocardium, the reticular form of mitochondria allows ATP synthesis through-
out the entire mitochondrial extension [135]. This organelle has binding structures that
favor the communication and distribution of ATP between them; the binding sites tend to
be damaged with advancing age [135,136]. Electron microscopy of rat myocardium showed
that aging affects the inner mitochondrial membrane, where the respiratory complexes are
housed and ATP is synthesized [136].

Mitochondria generate energy in the form of ATP through oxidative phosphorylation
of carbohydrates and fatty acids. Energy supply is regulated under different scenarios
enabling the heart to have energetic plasticity [137]. The electron transport chain is repre-
sented by large enzymatic complexes, numbered from I to IV, which form the respirasomes.
Oxygen production comes from electron transfer through the redox potential gradient of
nicotinamide adenine dinucleotide (NADH) or flavin adenine dinucleotide H2 (FADH2).
The transfer is accomplished by active transport of hydrogen ions between mitochondrial
membranes [94]. Briefly, NADH delivers electrons to complex I (NADH-coenzyme Q-
reductase) which transfers electrons to complex III (coenzyme QH2-cytocrome c reductase)
and complex IV (cytochrome c oxidase). The energy released from the passage of electrons
through the three complexes displaces protons out of the mitochondrial matrix forming
an electrochemical gradient between the inner membranes of the mitochondria, which
results in ATP generation. Complex II participates in the respiratory chain when electrons
in FADH2 enter the respiratory chain via coenzyme Q-succinate reductase [94,138]. The
mitochondrial ability to generate ATP differs in physiological and pathological conditions;
since the heart is highly metabolic, any failure in the respiratory performance can impair
its performance [139].

The activity of respiratory complexes III, IV, and V is impaired with aging [94]. Com-
plex III is a major source of free radicals into mitochondria; it catalyzes the transfer of
electrons from ubiquinol to cytochrome c in the respiratory chain [140]. Aging modifies
the binding locus of mixothiazole in the QO site of cytochrome b [141]. The functional
deficiency in the complex III QO site triggers electron leakage increasing ROS production
in interfibrillar mitochondria [142].

Alterations in the interactions between mitochondria and ER play fundamental roles
in the development and progression of cardiac aging and disease [143,144]. Contraction
of myocytes depends on the adequate supply of both ATP and Ca2+. Most of the Ca2+

needed for contraction is released by the sarcoplasmatic reticulum (SR) and ATP is pro-
vided by mitochondria [35]. During the excitation-contraction (EC) coupling, the transverse
tubules allow the transduction of the action potential into Ca2+ release from the intracellu-
lar stores [145]. The function of mitochondria and the Ca2+ releasing mechanism are also
controlled by their cross-talk: Ca2+ released for cell contraction enters mitochondria via the
mitochondrial Ca2+ uniporter to stimulate the respiratory chain, and the ROS produced by
mitochondria modulates SR Ca2+ release [145]. Therefore, the increased generation of mito-
chondrial ROS may change Ca2+ handling and vice versa [146]. Communication between
ER and mitochondria can be disrupted by the ER stress, which impairs mitochondrial
complex I activity and increases ROS production [147–151]. Cardiomyocytes from aged
hearts have decreased levels of mitochondrial Ca2+ acquisition [152], which is improved by
the pharmacological control of ER stress [147,153].

5.2. Structural Changes

The heart possesses two types of mitochondria: subsarcolemmal, located below the
plasma membrane, and interfibrillar, nestled between the myofibrils. The different mito-
chondria types allow myocytes to properly respond to different stimuli [154]. The interfib-
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rillar subtype is the most affected by age [155]. Although controversial, it has been reported
that both mitochondria types increase in size and the interfibrillar mitochondria lose their
cristae during aging. These alterations reduce the extension of the contact surface of inner
mitochondrial membrane, which functions as a platform for anchoring the respiratory
complexes [156]. Thus, while respiration by subsarcolemmal mitochondria is not affected
by aging, interfibrillar mitochondria have decreased oxidative phosphorylation mainly due
to defects in the selective donation of complex IV and cytochrome c oxidase [157].

Cardiolipin is a phospholipid widely distributed across the inner membrane of mito-
chondria. It plays an essential role in maintaining the structural integrity of the cristae and
the interaction between respiratory complexes [158]. Studies have suggested that cardi-
olipin is decreased or structurally changed during senescence [159,160]. Increased oxidative
stress contributes to reduced cardiolipin levels [161]. Cardiolipin levels were restored after
supplementation with acetyl-L-carnitine, a component of the mitochondrial membrane,
in aged rats [162]. Alterations in binding between cardiolipin and cytochrome c oxidase
may induce structural modifications that facilitate oxidation of the cytochrome c heme
ligand creating a cytochrome with a peroxidase function that oxidizes cardiolipin [163].
Conformational changes decrease the cardiolipin function in the respiratory complexes
damaging the inner mitochondrial membranes, facilitating the migration of cytochrome c
to the cytosol and inducing pro-apoptotic cell death [161,164].

5.3. Mitochondrial DNA and Oxidative Stress

Mitochondria are not only a main cellular source of ROS, but also a major target for
ROS [165]. Mitochondrial mutagenesis results from errors during mitochondria DNA
(mtDNA) replication [166,167]. Mutations and deletions in mtDNA are more frequent in
the hearts of aged than young animals and are related to increased cardiac apoptosis [168].
Somatic mutations in mtDNA are involved in several aging characteristics including
mitochondrial dysfunction and reduced ATP production [169,170]. PolyG mice expressing
mtDNA polymerase defects harbor mtDNA mutations or deletions in all tissues and show
early cardiac aging with cardiac hypertrophy and dysfunction [168,171]. On the other hand,
overexpression of catalase targeted to mitochondria (mCAT) prolonged murine lifespan by
17% to 21% and protected mice from cardiac aging, providing direct evidence of the role
played of mitochondrial ROS in the aging heart [172,173].

5.4. Mitophagy and Cardiac Aging

Autophagy is the process of delivering cellular elements to lysosome degradation.
In the heart, inhibition of autophagy results in age-related cardiac disease [72,174]. Au-
tophagy deficient mice present sarcomere disruption, collapsed mitochondria, impaired
cardiac function, and reduced survival [175]. Cardiomyocyte autophagy may be modu-
lated by activating autophagic repressors such as Mst1 and inhibiting autophagy activators
such as sirtuin 1 [176]. Increased oxidative stress plays an important role in autophagy
dysregulation [177].

Damaged mitochondria are eliminated through a specific autophagic process called
mitochondrial autophagy or mitophagy [178,179]. Defective mitophagy may trigger several
heart disorders [94,177]. In the aging heart, reduced mitophagy was related to accumulation
of injured mitochondria, which produce a large amount of ROS. During ischemic damage
or cardiac hypertrophy, mitophagy is essential to clear defective mitochondria and avoid
oxidative damage [180]. As previously reported, increased oxidative stress contributes
to a vicious cycle between the presence of damaged mitochondria and increased ROS
production [44,181].

Figure 1 summarizes the imbalance between ROS sources and ROS scavengers that
increases oxidative stress and induces cardiac myocyte aging.
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Figure 1. Summary of the mechanisms involved in oxidative stress-induced cardiac myocyte aging.
The imbalance between ROS sources and ROS scavengers increases oxidative stress that triggers
DNA damage, protein misfolding, mitochondrial mutations, and cell damage culminating in cell
aging. NOS: nitric oxide synthase; p38: p38 mitogen activated protein kinase; SIRTs: sirtuins; ROS:
reactive oxygen species.

Figure 2 shows a summary of the mechanisms involved in heart structure and function
impairment during heart aging.

Currently, substantial research has been conducted to better clarify the role of oxidative
stress in cardiac aging and to find specific drugs to modulate oxidative stress. Physical exer-
cise has been extensively studied as a non-pharmacologic treatment to reduce systemic and
muscular oxidative stress and improve functional capacity under physiological and patho-
logical conditions [88,182–184]. Mitochondrial health in cardiomyocytes is associated with
extended longevity in rats with higher intrinsic exercise capacity; probably, these findings
can be translated to other populations as predictors of health and survival outcomes [185].
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6. Conclusions

The aging heart is characterized by molecular, biochemical, structural, and functional
changes. Excessive oxidative stress and metabolic alterations play a major role in the aging
process. The understanding of reactive oxygen species as signaling molecules in several
signaling pathways is highly relevant for the development of novel therapies to modulate
the production and effects of the reactive oxygen species in aging and related events.
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