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/e aim of this study was to analyze the application value of functional magnetic resonance imaging (FMRI) optimized by the fast
independent component correlation algorithm (ICA algorithm) in the diagnosis of brain functional areas in patients with lumbar
disc herniation (LDH). An optimized fast ICA algorithm was established based on the ICA algorithm. 50 patients with cerebral
infarction were selected as the research objects, and 30 healthy people were selected as the control group./e 50 patients from the
observation group were examined by fMRI based on Fast ICA algorithm, while the control group was tested by fMRI based on the
routine ICA algorithm. /e performances of the two algorithms, the analysis results of the two groups of brain functional areas,
cerebral blood flow (CBF), resting state functional connectivity (rsFC), behavioral data, and image data correlation of patients
were compared. /e results showed that the sensitivity, specificity, and accuracy of Fast ICA algorithm were 97.83%, 89.52%, and
96.27%, respectively, which in the experimental group were greatly better than the control group (88.73%, 72.19%, and 89.72%),
showing statistically significant differences (P< 0.05)./emaximumDice coefficient of FAST ICA algorithmwas 0.967, and FAST
ICA algorithm was better obviously than the traditional ICA algorithm (P< 0.05). /e cerebral blood flow of the healthy superior
frontal gyrus (SFG) and healthy superior marginal gyrus (SMG) of the observation group with goodmotor function recovery were
1.02± 0.22 and 1.53± 0.61, respectively; both indicators showed an increasing trend, and those in the experimental group were
much higher in contrast to the control group, showing statistically obvious differences (P< 0.05). Besides, the detection results of
cerebral blood flow (CBF) in the healthy SFG and healthy SMG were negatively correlated with the results of connection test B. In
summary, the fMRI based on the Fast ICA algorithm showed a good diagnostic effect in the changes of brain functional areas in
patients with cerebral infarction. /e experimental results showed that the cerebral blood flow in the brain area was related to
motor or cognitive function. /e results of this study provided a reliable reference for the examination and diagnosis of brain
functional areas in patients with cerebral infarction.

1. Introduction

In recent years, with the continuous improvement of
people’s living standards, the incidence of heart and brain
diseases has also increased year by year, especially the
number of patients with cerebral infarction. Cerebro-
vascular stenosis and occlusion lead to ischemic hypoxia
necrosis of brain cells, which results in corresponding
brain tissue necrosis, abnormal brain structure, func-
tional and energy metabolism, and clinical dysfunction of
motor, sensory, and cognitive functions [1, 2]. /e brain

is a complex structure consisting of neurons in the cortex
and subcortex, which interact to maintain the balance of
brain functions. Ischemic infarction of the brain motor
pathway may lead to severe dysfunction of the motor
system [3, 4]. /e plasticity and reorganization ability of
the brain after cerebral infarction is a necessary condition
for the recovery of patients’ neurological function, which
is currently a hotspot of neuroscience research. It has
important research significance and clinical significance
and helps to promote the prognosis and rehabilitation of
patients [5, 6].
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/e human brain is not only plastic in structure, but also
has the ability of recombination in pathophysiology. When
local cerebral ischemia and hypoxic necrosis occur, local
brain structures (such as white matter volume, gray matter
volume (GMV), cerebral cortical thickness, and curvature)
and brain functions (such as resting state functional con-
nectivity (rsFC), amplitude of low-frequency fluctuation
(ALFF), and regional homogeneity (Reho)) can also be
restored. /e research on changes and reorganization of
brain function after cerebral infarction is of practical value in
evaluating the prognosis and functional recovery of patients
[7]. Nowadays, more instruments are applied to examine the
functional areas of the brain such as functional magnetic
resonance imaging (fMRI) based on blood oxygenation level
dependent (BOLD) [8]. fMRI is divided into two modes,
namely, task-state fMRI and resting-state fMRI. Resting-
state functional connectivity (rsFC) analysis method is often
applied in the overall study of brain networks based on
resting-state fMRI [9, 10].

In recent decades, fMRI technology has been widely used
in the field of science and technology, and the cognitive
network of the brain plays an irreplaceable role in accurately
detecting brain function [11]. However, it is more com-
plicated to extract the basic characteristic elements from the
mixed signal when using fMRI detection, and there are many
interference factors, such as noise signals, task-related sig-
nals, and eye movement signals. If the true brain activity
signal and other uncorrelated signals such as noise signals
are unrelated, the collected statistical MRI signals are in-
dependent of each other and the collected time series can be
regarded as each independent mixed element [12]. Since the
reason why unknown activities activate the brain is difficult
to determine, the independent signal source and the mixing
matrix are unknown, which belongs to a typical blind source
separation problem. /e independent component analysis
(ICA) method is often employed to solve the blind source
separation problem. What is more, ICA is a method of
separating components from a large amount of mixed data,
which is applied to the fMRI examination of patients with
cerebral infarction, which has a significant optimization
effect [13].

Based on the above, there are not too many relevant
research conclusions in the past. /is study firstly con-
structed an improved independent component analysis al-
gorithm and applied it to fMRI to provide reference for the
diagnosis of brain functional area changes in patients with
cerebral infarction.

2. Materials and Methods

2.1. ResearchObjects andGrouping. In this study, 50 patients
with cerebral infarction who admitted to hospital for
treatment from July 27, 2019, to July 27, 2020, were selected
as the research objects. /ere were 40 males and 10 females,
aged 40–5 years old, with an average age of 55.21± 6.33 years
old./e studies involving human participants were reviewed
and approved by the ethics committee of hospital. /e
patients/participants provided their written informed con-
sent to participate in this study.

/e criteria for inclusion were defined to include patients
who suffered from chronic cerebral infarction, with a course
of more than 6 months, had cerebral infarctions in the
subcortical area (all onset for the first time), had no other
lesions ormental diseases in the brain, had nomajor physical
or tumor diseases, and could ensure high cooperation and
good communication.

/e criteria for exclusion were defined to include pa-
tients who suffered from multiple or recurrent cerebral
infarction, had the lesion in the brain, had severe white
matter demyelination disorder, and suffered from alcohol
dependence or mental illness.

In addition, 30 healthy people of the same age and
gender who underwent physical examination at the same
time were recruited as the control group. /e included
research objects had brain lesions or structural abnormalities
in the examination department, did not have the habit of
smoking or drinking, and did not use medicine or drugs.

50 patients from the observation group were tested by
fMRI based on the Fast ICA algorithm, and the routine ICA
algorithm-based fMRI was used for the detection of the
research objects from the control group.

2.2.Assessmentof thePatients’CognitiveLevel. /e computer
version of Trail Making Test (TMT) Part A (TMT-A) and
Part B (TMT-B) was adopted in this study. Connection
TMT-B: some numbers and letters would be displayed on
the computer screen, such as 1, 2, 3, 4, ..., 13 and A, B, C, D,
E, F, G, H, I, J, K, L, and numbers and letters were scattered
randomly distributed [14]. When the test was started, the
patient was instructed to sit in front of the computer, look up
at the screen, and use the left mouse button to quickly click
the corresponding numbers and letters in the order of A-2-
B-3-C-4-D. . .. . .11-K-12-L-13 to record the time for the
patient to complete the test. /e connection TMT-A re-
flected the speed of the research objects to process infor-
mation. /e shorter the time it took the patient to complete
connection TMT-A, the faster the research objects process
the information./e connection TMT-B meant the patient’s
execution ability. /e shorter the time for the patient to
complete the connection TMT-B, the stronger the execution
ability of the research object.

2.3. Parameter Basis of fMRI Equipment. /e detection
equipment applied in this study included the 3.0 Tmagnetic
resonance scanner and the head eight-channel phased array
coil scanning. All patients in this study were scanned with
three-dimensional (3D)-BRAVO sequence, 3D-pseudo
continuous arterial spin labeling (pcASL) sequence, and
REST sequence.

2.4. Experiment Process. Before the start of the experiment,
the researchers should explain the experiment process for
the participants and all participants should sign the in-
formed consent forms to ensure full cooperation. /e
simplified Fugal–Meyer motor function gradient method
was adopted to evaluate the motor function and cognitive
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function of the participants. With the help of computer
evaluation, the participants were explained to complete the
evaluation and instructed to take the record of score and
time seriously. /ey should be informed of the time and
precautions required for this MRI scan before the scan.
During the scan, each participant was instructed to lie on the
examining bed, straighten the body, and hold the head in
place to reduce head movement. Moreover, the participants
were instructed to close their eyes and relax, but remained
awake, did not think actively, and kept silent. Sagittal 3D-
BRAVO sequences, axial static fMRI, and axial 3D-pcASL
sequences were used for scan [15].

2.5. �e Construction Process of Fast ICA Algorithm

2.5.1. ICA Principle. ICA is a new way of analyzing signals
evolved from principal component analysis. /e ICA al-
gorithm evolved from the “cocktail party problem” [16]. /e
general model is as follows:

Suppose K � k1, k2, k3, · · · , kn is n observation signals
and S � s1, s2, s3, · · · , sn is n source signals, of which the
observation signal K is developed from the source signal S.
Assuming that the lth observation signal obtained by mixing
the lth independent component of the source signal S, the
following equation can be obtained, where l � 1, 2, 3, . . . , n:

kl � k1s1 + k2s2 + k3s3 + · · · + klsn. (1)

X � [y1, y2, y3, · · · , yn] is supposed, so the relationship
between the observation signalK and the source signal S is as
follows:

K � XS. (2)

Equation (2) can be regarded as a general mixed model
of ICA. In the above equation, X � [y1, y2, y3, · · · , yn] is the
mixed matrix. Since each source signal S is assumed to be
independent of each other, a linear transformation matrix
can be found isomorphically to transform the observed
signal, so that a signal similar to the source signal K is
obtained as follows:

K � US � UXS. (3)

In equation (3), U represents the unmixing matrix. /e
estimation of the mixing matrix U is shown in the following
equation:

X′ � U
− 1 (4)

2.5.2. Fast ICA Algorithm. According to the estimated
source signal of the observed signal, a new objective function
P(a) can be established, where a stands for the extreme value
of the objective function [17]. Kurtosis is the most common
standard used by ICA, and the equation for defining random
variables is as follows:
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In equation (5), W ·{ } means mathematical expectation,
and there is κ(ℓa) � κ(ℓa),∀ℓ ≠ 0.

In order to simplify the source signal obtained, whit-
ening can be used to make the zero mean value of the
observed signal, as shown in the following equation:
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􏽮 􏽯 � O. (6)

In the case of real numbers, equation (7) is equivalent to
the fourth-order accumulation equation:

T(a) � W |s|
4

􏼐 􏼑. (7)

When ‖a‖ � 1, the fixed point of equation (8) can be
found through W skk∗2􏼈 􏼉, and ℓ represents a Lagrangian
number.
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/e kurtosis optimization algorithm mainly adopts the
time stochastic gradient algorithm. For the case of maxi-
mizing the objective function and minimizing the objective
function, the value of a should be separated first. In the case
of real numbers, the Hessian matrix approximation of T(a)

can be considered as follows:
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/erefore, Fast ICA based on kurtosis can be trans-
formed into the following equations:
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∇T(a) � 4W S(ai, S)3􏽮 􏽯, so equation (11) can be con-
verted to

a
+

� a − z∇T(a). (12)

/e Fast ICA algorithm has many advantages, such as
fast convergence speed and simple calculation, so the ap-
plication of this algorithm is more common.

2.6. Image Processing. Before data preprocessing, the images
of 10 patients with subcortical infarction lesions located on
the right side were selected by MATLAB software and
turned to the left side. Besides, the left side was defined as the
ill side, and the right side was defined as the healthy side.

2.6.1. Patient Perfusion Imaging Data Processing. /e SPM8
software based on the MATLAB platform was used to
process the perfusion image, which could be divided into the
following steps. First, the cerebral blood flow (CBF) image
was obtained from ASL perfusion image. /en, spatial
registration was carried out to align the data of different
patients into the same standard space, thus solving the
problems of brain morphological differences of different
patients and inconsistent spatial positions during scanning.
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/e affine transformation matrix of brain tissue and MNI
space generated by the segmentation of patients’ structural
images was applied to register the perfusion images of the
participants to the ICBM161 standard brain Atlas, and then
the normalization processing was carried out. Finally, in
order to reduce the influence of registration deviation, in-
crease the signal-to-noise ratio of the data, and make the
data more consistent with the Gaussian distribution, 3D
Gaussian kernel convolution operation was employed to
carry out spatial smoothing processing on fMRI, and the
FWHM value was 9× 9× 9mm3 [18].

2.6.2. Resting-State fMRI Data Processing. /e DPARSF
software based onMATLAB platform was used to preprocess
the resting state fMRI data. /e following steps were carried
out [19]: (1) Deletion of previous time: the signal was unstable
at the beginning of the collection, and the participants had to
adapt to the environment, so it was generally necessary to
delete the images taken in the first 10 time stages. (2) Section
time correction: MRI images were scanned layer by layer, so
the acquisition time of each layer was different. Since the time
series needed to run, time scale correction was required to
ensure that the capture times for all pixels in the volume were
theoretically consistent. Slice timing setting: the total number
of layers in this study was 32, and the scanning order was 1
through 32. /e reference layer usually had the number of
layers corresponding to the scanning center (time center)
(i.e., 31 layers or 2 layers). (3) Head movement correction: it
was adopted to correct the slight headmovement between the
volume blocks in the scanning process. In this study, 6
motion parameters, namely, translation and rotation in x-, y-,
and z-directions, were estimated by rigid body transforma-
tion. (4) Spatial standardization: the data of different par-
ticipants were aligned to the same standard space to solve the
problems of morphological differences among different
participants and inconsistent spatial positions in the scan-
ning process. After spatial standardization, all participants’
anatomies were theoretically the same and voxel-based
statistical comparisons could be made within the standard
range. (5) Elimination of linear drift: with the extension of
time, there would be a linear trend due to the heat generated
in the working process of the machine or fatigue caused by
long-term scanning work. (6) Band-pass filtering: the low-
frequency component of the BOLD signal mainly reflected
the spontaneous neural activity of the brain. /e BOLD
signal in this part fluctuated slightly and was easily masked by
other signals. Band-pass filtering could eliminate low-fre-
quency physiological signals (such as breathing and heart-
beat) and high-frequency random noise. In this study, low-
frequency signals were screened in the frequency range of
0.01–0.08Hz. (7) Regression interference signal: the linear
regression model was applied to remove the interference
information in the BOLD signal. (8) Spatial smoothing: in
order to reduce the impact of registration deviation, improve
the signal-to-noise ratio of the data, and keep the data
consistent with the Gaussian distribution, the spatial
smoothing adopted 3D Gaussian kernel convolution, and the
FWHM value was 9× 9× 9mm3 [20].

2.6.3. Resting Functional Connection. On the MATLAB
platform, REST software was used to perform seed point
analysis on the preprocessed functional data. According to
the statistical results of CBF, the region of interest (ROI) was
selected as the brain region with significant difference in
CBF between the observation group and the normal control
group. /e acute Pearson correlation analysis between ROI
and other brain voxels was calculated to obtain the corre-
lation map and correlation coefficient z. /e correlation map
was transformed into Q map by Fisher-Z transformation,
making it conform to normal distribution [21]. /e con-
version equation was expressed as follows:

Q � 0.5 log
1 + z

1 − z
. (13)

2.7. Statistical Analysis. After preprocessing, the CBF value of
each voxel of the whole brain of all participants was obtained.
/e GLM model of SPM8 software was adopted in this study;
gender, years of education, and age were taken as covariables,
and whole brain gray matter template was used as mask to
conduct independent sample t-test (α� 0.05 as the test level).
Besides, the difference in CBF between the observation group
and the normal control group was compared, and the results
were expressed asmean± standard deviation./e threshold for
each voxel was set at P< 0.005 (two-sided).WhenP< 0.05, the
difference was considered to be statistically substantial. In order
to exclude the influence of GMV on CBF, gender, years of
education, and age were used as covariates, and the whole brain
gray matter template was used as a mask. An independent
sample t-test was performed to compare the difference in CBF
between the observation group and the control group.

3. Results and Discussion

3.1. Performance Analysis of the Algorithm. In this research
topic, the improved Fast ICA algorithm and the traditional
ICA algorithm were compared and analyzed./e sensitivity,
specificity, and accuracy of the algorithm are shown in
Figure 1. /e sensitivity, specificity, and accuracy of the Fast
ICA algorithm were 97.83%, 89.52%, and 96.27%, respec-
tively; the sensitivity, specificity, and accuracy of the tra-
ditional ICA algorithm were 88.73%, 72.19%, and 89.72%,
respectively./ere were obvious differences between the two
groups, and the two were statistically remarkable (P< 0.05).

In different training cycles, the Dice coefficients of the
MRI images processed by the Fast ICA algorithm in this
study were compared with those processed by the traditional
ICA algorithm, and the results are presented in Figure 2.
With the increase of training cycle, the Dice coefficients of
different algorithms all showed an obvious upward trend.
/e Dice coefficients of Fast ICA algorithm in this study
were greater than the coefficients of the traditional ICA
algorithm in different training cycles; the Dice coefficient of
Fast ICA algorithm reaches 0.967 at most, while the Dice
coefficient of the traditional ICA algorithm was 0.738 at
most. Figure 3 reveals that the area under the curve (AUC) of
the Fast ICA algorithm was 0.978, and the AUC of the
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traditional ICA algorithm was 0.773./erefore, the Fast ICA
algorithm was better greatly than the traditional ICA al-
gorithm (P< 0.05).

3.2. Comparison of General Data of Patients from the Two
Groups. As shown in Figure 4, the connection TMT-A of the
observation group was 66.37± 7.39, and that of the control
group was 63.28± 5.92; the connection TMT-B of the ob-
servation group and the control group was 200.83± 22.93
and 120.35± 28.93 in turn. It was found that there were
statistically huge differences in TMT-B between the two
groups (P< 0.05).

3.3.Analysis of theResults of thePatients’ BrainFunctionArea.
Figure 5 shows that the GMV of the auxiliary motor area
(SMA) of the contralateral cerebral hemisphere in the

observation group was 0.56± 0.11 and that of the control
group was 0.32± 0.023. /e gray matter area of the obser-
vation group was significantly increased compared with the
control group, and no area of GMV reduction was found.

3.4. Analysis of CBF Results. /e comparison results of CBF
in the two groups of patients showed that the CBF of the
healthy superior frontal gyrus (SFG) and the healthy su-
perior marginal gyrus (SMG) of the observation group with
good recovery of motor function were 1.02± 0.22 and
1.53± 0.61 in sequence. What is more, both showed an
increasing trend (Figure 6(c)), which was statistically dif-
ferent from the control group (P< 0.05), and there was no
brain area with reduced CBF (Figures 6(a) and 6(b)). /e
brain areas with increased CBF in the healthy SFG and
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under different cycle periods.
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Figure 4: Comparison on TMTtest results of patients from the two
groups. ∗P< 0.05 compared with the control group.
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healthy SMG were used as ROI1 and ROI2 in turn for
analysis of resting state functional connectivity.

After GMV correction, the CBF of the healthy SFG and
healthy SMG of the subcortical cerebral infarction patients
with good motor function recovery in the observation group
increased significantly in contrast to the CBF of the control
group (Figure 7). /ese results were consistent with the
increase in CBF before GMV correction.

3.5. rsFC Result Analysis. /e functional connection ROI
analysis of the whole brain was performed on the healthy
SFG and healthy SMG. /e results are shown in Figure 8,

suggesting that the resting-state functional connectivity
(rsFC) values of patients from the observation group and the
control group were 0.872± 0.163 and 0.261± 0.09, respec-
tively./us, there was a statistical difference between the two
groups of patients (P< 0.05).

3.6. Comparison of the Results of Correlation Analysis
between Patient Behavior Data and Image Data. When the
clinical basic indicators of the patients were consistent, the
CBF values of the healthy SFG of the patients with good
motor function recovery in subcortical cerebral infarction
were r� −0.362 and P � 0.0357 (Figure 9(a)), and the CBF
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Figure 5: /e infarct focus located in the basal ganglia area (a); the lateral ventricle (b); the thalamus position (c); and GMV comparison
between the two groups (d) (note: ∗meant that the GMV in the SMA area of the contralateral hemisphere in patients with subcortical
cerebral infarction and good recovery of motor function in the observation group increased hugely compared with the control group
(P< 0.05)).
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Figure 6: Comparison of CBF in the SFG of the healthy hemisphere in patients with good motor function recovery from the observation
group. (a) /e fMRI image of the patient before treatment, (b) /e fMRI image of the patient after treatment. (c) /e comparison on CBF
between the two groups. ∗P< 0.05 compared with the control group.
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values of the healthy SMG were r� −0.369 and P � 0.0421
(Figure 9(b)). /us, the CBF values of the healthy SFG and
healthy SMG were negatively correlated with the results of
connection TMT-B. However, there was no correlation
between the cognitive function of GMV and rsFC in patients
with cerebral infarction (P> 0.05).

4. Discussion

Cerebral infarction is caused by stenosis and occlusion of
cerebral blood vessels due to various reasons, resulting in
insufficient blood supply to the brain to cause hypoxia and

brain tissue necrosis. /e clinical symptoms are manifested
as motor, sensory, cognitive, and other dysfunctions. /e
disease has a high incidence, and the course of the disease is
longer, which has a great impact on the work and life of the
patient. fMRI technology has developed rapidly in recent
years, which can explore the pathological and physiological
changes of cerebral infarction from multiple perspectives
and provide sufficient imaging basis for clinical diagnosis. In
this study, the improved FAST ICA algorithm was applied to
optimize the image processing of fMRI so as to improve the
diagnostic accuracy of fMRI imaging for cerebral infarction
patients. /e results showed that the sensitivity, specificity,
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Figure 7: Comparison of CBF in the SMG of the healthy side of the observation group with good motor function recovery. (a) /e fMRI
image of the patient before treatment. (b) /e fMRI image of the patient after treatment. (c) /e comparison on CBF between the two
groups. ∗P< 0.05 compared with the control group.
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Figure 8: Analysis results of resting state functional connection between the two groups of patients. (a)/e fMRI image of the patient before
treatment. (b)/e fMRI image of the patient after treatment. (c)/e comparison on rsFC between the two groups. ∗P< 0.05 compared with
the control group.
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and accuracy of the Fast ICA algorithm in the experimental
group were 97.83%, 89.52%, and 96.27%, respectively, which
were greatly better than those of the control group, showing
statistically significant differences (P< 0.05). /e maximum
Dice coefficient of Fast ICA algorithm was 0.967, while the
maximum Dice coefficient of traditional ICA algorithm was
0.738. /e AUC values of FAST ICA algorithm and tradi-
tional ICA algorithm were 0.978 and 0.773 in turn, so the
FAST ICA algorithm was obviously better than traditional
ICA algorithm (P< 0.05). /e research results were similar
to the research findings of Zan et al. [22], and both showed
that the diagnostic accuracy and other performance of the
optimized Fast ICA algorithm were significantly improved.

In the diagnosis of patients with cerebral infarction, the
GMV of the contralateral cerebral hemispheric SMA in the
observation group and the control group was 0.56± 0.11 and
0.32± 0.023 in sequence. Compared with the control group,
the gray matter area was significantly increased, and no area
with a decreased GMV was found, which indicated that the
brain structure of the contralateral cortex underwent plastic
changes. SMA is an auxiliary motor area of the brain and an
important part of the brain motor network. Houkin et al. [15]
pointed out that the patient’s motor function gradually re-
covered and the gray matter volume in the healthy SMA area
increased compensatory, with the extension of time, sug-
gesting that the brain structure had obvious plasticity.
Compared with the normal control group, the CBF of the
observation group with good motor function recovery in the
healthy SFG (1.02± 0.22) and healthy SMG (1.53± 0.61)
displayed an increasing trend. /us, there was a statistically
significant difference between the two groups (P< 0.05). /e
rsFC values of functional connectivity in resting state from the
observation group and the control group were 0.872± 0.163
and 0.261± 0.09, respectively, and there was a statistically
huge difference between the two groups (P< 0.05). r� −0.362
and P � 0.0357 in the CBF value of the healthy SFG of the

patients with good motor function recovery in subcortical
cerebral infarction, and CBF value of the healthy SMG was
r� −0.369 and P � 0.0421. Besides, the CBF value of the
healthy SFG and the healthy SMG was negatively correlated
with the results of the connection TMT-B. /e research of
Zhang and Shen [23] found that there was a marked cor-
relation between the blood flow in the left corner and the
posterior part of the left middle temporal gyrus in patients
with subacute cerebral infarction, as well as dyslexia. Nah et al.
[16] applied ASL to longitudinal investigate the relationship
between CBF and motor function recovery in patients with
cerebral infarction, finding that CBF in the SMA on the
healthy side of patients with better motor function recovery
showed a significant downward trend, and the CBF between
the two hemispheres was gradually balanced. Patients with
poor motor function recovery would have continuous low
perfusion state in the motor sensory cortex. It also meant that
the imbalance of blood perfusion ratio in the sensorimotor
cortex was likely to cause poor motor function recovery after
cerebral infarction. /e correlation analysis of this study
found that there was a negative correlation between CBF
values of healthy SMG and healthy SFG and the connection
TMT-B. Furthermore, connection TMT-B reflected the ability
to execute; the shorter the time of connection TMT-B, the
stronger the ability to execute. In other words, the CBF values
of healthy SMG and healthy SFG could enhance the lead-
ership of patients. /e results of this study were consistent
with previous studies, showing that CBF in brain areas was
associated with motor or cognitive function.

5. Conclusion

In this study, 50 patients with cerebral infarction were se-
lected as the observation group, and 30 healthy people were
selected as the control group. /e patients in observation
group were examined with fMRI based on Fast ICA
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Figure 9: Correlation analysis between the CBF values and the connection TMT-B. (a) Correlation analysis on the CBF and the connection
TMT-B in the healthy SFG. (b) Correlation analysis on the CBF and the connection TMT-B in the healthy SMG.
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algorithm, and the patients in control group were examined
with fMRI based on conventional ICA algorithm./e results
revealed that fMRI based on Fast ICA algorithm showed a
good diagnostic effect in detecting brain functional area
changes in patients with cerebral infarction. Patients with
cerebral infarction with good motor function recovery had
changes in brain structure and functional plasticity, and the
plastic reconstruction of brain functional areas was con-
ducive to the recovery of patients’ motor and cognitive
functions. /e disadvantage was that the sample size of the
selected patients was small and the source was single, which
may have some influence on the results. It would increase the
sample size of patients and conduct multicenter and large
sample size analysis in future. In short, the results of this
article provided a reliable reference for the examination and
diagnosis of brain functional areas in patients with cerebral
infarction.
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