
1

OPEN

DATA

Fatal exudative dermatitis in island populations of red squirrels 
(Sciurus vulgaris): spillover of a virulent Staphylococcus aureus 
clone (ST49) from reservoir hosts

Kay Fountain1,*, Tiffany Blackett2, Helen Butler3, Catherine Carchedi4, Anna-Katarina Schilling5, Anna Meredith5,6, 

Marjorie J. Gibbon1, David H. Lloyd4, Anette Loeffler4 and Edward J. Feil1

RESEARCH ARTICLE
Fountain et al., Microbial Genomics 2021;7:000565

DOI 10.1099/mgen.0.000565

Received 22 December 2020; Accepted 22 March 2021; Published 20 May 2021
Author affiliations: 1Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK; 2Voluntary Co-ordinator of the 
JSPCA Animals' Shelter Red Squirrel Disease Surveillance Scheme, JSPCA Animals' Shelter, 89 St Saviours Road, St Helier, Jersey JE2 4GJ, Jersey; 
3Wight Squirrel Project, PO Box 33 Nicholson Road, Ryde, Isle of Wight PO33 1BH, UK; 4Department of Clinical Science and Services, Royal Veterinary 
College, Hatfield, North Mymms, Hertfordshire, AL9 7TA, UK; 5The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of 
Edinburgh, Easter Bush Campus, Midlothian, Edinburgh, EH25 9RG, UK; 6Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, 
The University of Melbourne, Parkville Campus, Melbourne, VIC, 3010, Australia.
*Correspondence: Kay Fountain, ​kif21@​bath.​ac.​uk
Keywords: fatal exudative dermatitis; red squirrels; Staphylococcus aureus; transmission; wildlife hosts.
Abbreviations: BLAST, Basic Local Alignment Search Tool; BRIG, BLAST ring image generator; CI, Channel Islands; FED, fatal exudative dermatitis; 
GWAS, genome wide association study; IEC, immune evasion complex; IOW, Isle of Wight; JSPCA, Jersey Society for Prevention of Cruelty to Animals; 
LukM, component of leucocidin LukM/F' encoded by lukM gene; MLST, multi locus sequence type; SNP, single nucleotide polymorphism.
All genomes have been deposited with GenBank under Bioproject PRJNA679188. Closed genome accession numbers: CP065353.1, CP065354.1, and 
CP065355.1. This article contains data hosted by Microreact.
Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Four supplementary 
figures and five supplementary tables are available with the online version of this article.
000565 © 2021 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License. This article was made open access via a Publish and Read 
agreement between the Microbiology Society and the corresponding author’s institution.

Abstract

Fatal exudative dermatitis (FED) is a significant cause of death of red squirrels (Sciurus vulgaris) on the island of Jersey in the 
Channel Islands where it is associated with a virulent clone of Staphylococcus aureus, ST49. S. aureus ST49 has been found in 
other hosts such as small mammals, pigs and humans, but the dynamics of carriage and disease of this clone, or any other 
lineage in red squirrels, is currently unknown. We used whole-genome sequencing to characterize 228 isolates from healthy 
red squirrels on Jersey, the Isle of Arran (Scotland) and Brownsea Island (England), from red squirrels showing signs of FED on 
Jersey and the Isle of Wight (England) and a small number of isolates from other hosts. S. aureus was frequently carried by red 
squirrels on the Isle of Arran with strains typically associated with small ruminants predominating. For the Brownsea carriage, 
S. aureus was less frequent and involved strains associated with birds, small ruminants and humans, while for the Jersey car-
riage S. aureus was rare but ST49 predominated in diseased squirrels. By combining our data with publicly available sequences, 
we show that the S. aureus carriage in red squirrels largely reflects frequent but facile acquisitions of strains carried by other 
hosts sharing their habitat (‘spillover’), possibly including, in the case of ST188, humans. Genome-wide association analysis 
of the ruminant lineage ST133 revealed variants in a small number of mostly bacterial-cell-membrane-associated genes that 
were statistically associated with squirrel isolates from the Isle of Arran, raising the possibility of specific adaptation to red 
squirrels in this lineage. In contrast there is little evidence that ST49 is a common carriage isolate of red squirrels and infection 
from reservoir hosts such as bank voles or rats, is likely to be driving the emergence of FED in red squirrels.

DATA SUMMARY
All genomes have been deposited with GenBank under 
Bioproject PRJNA679188 (accession numbers are given in 
Table S1, available in the online version of this article). Closed 
genome accession numbers: CP065353.1, CP065354.1 and 
CP065355.1.

The authors confirm all supporting data, code and protocols 
have been provided within the article or through supplemen-
tary data files.

INTRODUCTION
Red squirrels (Sciurus vulgaris) have been extirpated from most 
of the UK, remaining only in pockets of the north of England, 
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Scotland and on islands such as the Isle of Arran (Scotland), the 
Isle of Wight (IOW) (England) and Jersey in the Channel Islands 
where the competing non-native grey squirrel (Sciurus carolensis) 
has not spread [1]. Red squirrels themselves were introduced to 
Jersey and to the Isle of Arran during the nineteenth and twentieth 
centuries respectively, and elsewhere in the British Isles historical 
population declines have been reversed by the introduction of 
animals from Europe and Scandinavia [1]. Red squirrels suffer 
from a number of skin diseases including poxvirus and leprosy, 
which can be fatal and threaten remaining populations [2, 3]. 
Recently, another fatal skin disease called ‘fatal exudative derma-
titis’ (FED) has affected red squirrels on the IOW and Jersey, 
where surveillance found the disease in 15 % of all examined 
dead squirrels [4]. Gross findings include an exudative, ulcerative, 
necrotic dermatitis around the mouth, nose and feet of affected 
squirrels, often with necrosis of digits [5]. The histopathology of 
affected skin shows epidermal hyperplasia and hyperkeratosis 
with Gram-positive cocci in surface crust and intraepidermal 
pustules. In some cases S. aureus has been isolated from the lung 
and liver of affected squirrels, consistent with systemic spread of 
infection [5]. Investigations into the cause of this disease indicated 
an association with a Staphylococcus aureus multilocus sequence 
type (MLST) ST49 clone, which contained a gene encoding for the 
leucocidin LukM’ (lukM) [6]. The results of this study suggested 
that S. aureus may not be part of the normal commensal flora of 
red squirrels, however this conclusion was based on samples from 
only a small number of unaffected squirrels (n=14).

S. aureus ST49 has previously been isolated from small mammals 
[7, 8], from pig noses [9], and from humans, including the well-
characterized Tager 104 strain, which was isolated in 1947 [10]. 
When different strains of S. aureus isolated from wild rodents 
were tested in laboratory mouse models of virulence, the ST49 
strain (strain DIP) was found to be by far the most virulent [11]. 
Strain DIP also carries lukM, and experiments in cattle demon-
strated that strains from other lineages expressing high levels of 
LukM’ were found to cause the most severe mastitis [12]. The 
bicomponent leucocidin LukM/F’ has previously been found to be 
expressed by mainly bovine S. aureus isolates of multiple lineages 
[13], and was found to lyse bovine leucocytes more effectively than 
human [14]. The effect of LukM/F’ on wild rodents which carry 
ST49 is not understood.

The aim of this study was to use whole-genome sequencing to 
compare isolates of S. aureus recovered from healthy carriage 
and cases of FED in discrete island red squirrel populations. This 
should shed light on the overall rate of S. aureus carriage and how 
this varies between populations, and the degree to which carriage 
and disease isolates are specifically adapted to red squirrels or 
reflect more transient spillover from sympatric reservoir hosts. 
Healthy squirrels on the Isle of Arran in Scotland, Brownsea Island 
in Poole Harbour (England) and on Jersey, and squirrels with FED 
on Jersey and the IOW were sampled. We sampled 228 red squir-
rels, and characterized 228 S. aureus isolates recovered from 26 
healthy squirrels, from 16 squirrels with clinical signs of FED and 
one with non-FED skin lesions. The carriage rate and ST profiles 
varied markedly amongst the red squirrel populations, suggesting 
that carriage is largely driven by facile transmission (‘spillover’) 
of S. aureus isolates from other hosts. However, a genome-wide 

association (GWAS) analysis also provided preliminary evidence 
of specific adaptation to red squirrels on the Isle of Arran within 
the ruminant lineage ST133. Our data strongly reinforce the previ-
ously reported association of FED with S. aureus ST49 strains, and 
suggest that spillover from reservoir hosts drives the spread of this 
clone within populations of red squirrels [6].

METHODS
Sampling and isolation of staphylococci
A total of 228 red squirrels was sampled on the Isle of Arran, 
Brownsea Island, the IOW and Jersey (Channel Islands), 
between 2016 and 2019 as part of three projects, all approved 
by their relevant ethics oversight boards and licensing authori-
ties [4, 15, 16]:

(1)	 Squirrels trapped and anaesthetized for a separate lep-
rosy study were swabbed opportunistically on the Isle of 
Arran (UK) (n=44) and Brownsea Island (n=44) [15].

(2)	 On the IOW, three sick squirrels were sampled before 
treatment as part of the Wight Squirrel Project.

(3)	 Sick, injured, orphaned and casualty red squirrels on Jer-
sey (n=137) were sampled as part of the JSPCA squirrel 
surveillance project [4, 16].

(4)	 For comparison purposes, on the Isle of Arran 20 domes-
tic sheep from a flock grazing in the squirrel-trapping 
site, plus ten freshly culled wild red deer (Cervus ela-
phus) were also sampled.

Impact Statement

Populations of endangered wildlife are threatened by many 
pressures such as loss of habitat, hunting and climate change. 
However, in some cases, such as Chytrid disease in frogs, or 
poxvirus disease in red squirrels, disease can be a signifi-
cant cause of population decline, leading to local loss of a 
species or even global extinction. The investigation of wildlife 
disease is often given a low priority unless it directly affects 
human wellbeing. This study is an important contribution to 
our understanding of a disease that affects a population of 
threatened small mammals, and to our knowledge of how a 
common bacterium is transmitted amongst farmed animals, 
humans and wildlife. Red squirrels on the islands of Jersey 
(Channel Islands) and the Isle of Wight have been affected by 
a fatal skin disease associated with a particular clone of the 
bacterium, Staphylococcus aureus. In this study we sought to 
establish where squirrels carry this clone, and other S. aureus 
strains, and how these findings correlate with the incidence of 
the disease. Our data confirm a strong association between 
the clone and disease, and suggest that ST49 is rarely carried 
by healthy squirrels, pointing to a high level of virulence. In 
contrast, other island squirrel populations where the disease 
is not so common tend to acquire other S. aureus strains from 
co-residing host species.

https://paperpile.com/c/fAhN9e/mFo7P
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For each squirrel, oral mucosae (where possible the oropharynx), 
the clean skin of the axilla or inguinal region and skin lesions were 
sampled using separate cotton tipped swabs. Swabs were rolled 
over each site for 2–5 s and placed into charcoal Amies medium 
(Technical Services Consultants, Heywood, UK) for transport to 
the laboratory.

Within 24 h of receipt, swabs were aseptically cut into tryptone 
soya broth (TSB) containing 10 % salt (TSB+) (Oxoid, Thermo 
Fisher Scientific, Basingstoke, Hampshire, UK, and Sigma-
Aldrich, Gillingham, Dorset, UK) and incubated at 37 ℃ for 24 h 
before streaking onto Columbia 5 % sheep blood agar (Oxoid) and 
further incubation at 37 ℃ for 24 h. Presumptive S. aureus isolates 
were identified on the basis of colony morphology, haemolysis, 
and production of DNase (Oxoid) and up to five colonies were 
picked from different areas of the plate for each swab, yielding up 
to 20 isolates from a single animal. Isolates were stored at −20 ℃ 
and subcultures of 228 S. aureus isolates were dispatched on beads 
(Microbank, Prolab Diagnostics, Cheshire, UK) to MicrobesNG 
(Birmingham, UK) for sequencing.

Sequencing
Isolates (n=228) were sequenced on an Illumina platform by 
MicrobesNG (Birmingham) as follows:

Three beads were washed with extraction buffer containing 
lysostaphin and RNase A, and incubated for 25 min at 37 °C. 
Proteinase K and RNaseA were added and incubated for 5 min 
at 65 °C. Genomic DNA was purified using an equal volume of 
SPRI beads and resuspended in EB buffer. DNA was quantified 
in triplicates with the Quantit dsDNA HS assay in an Ependorff 
AF2200 plate reader. Genomic DNA libraries were prepared 
using Nextera XT Library Prep Kit (Illumina, San Diego, USA) 
following the manufacturer’s protocol with the following modi-
fications: two nanograms of DNA instead of one were used as 
input, and PCR elongation time was increased to 1 min from 30 s. 
DNA quantification and library preparation were carried out on 
a Hamilton Microlab STAR automated liquid handling system. 
Pooled libraries were quantified using the Kapa Biosystems 
Library Quantification Kit for Illumina on a Roche light cycler 96 
qPCR machine. Libraries were sequenced on the Illumina HiSeq 
using a 250 bp paired end protocol.

Three isolates were also sequenced using long-read sequencing 
using Oxford Nanopore Technologies (ONT):

Approximately 2×109 cells were used for high molecular weight 
DNA extraction using Nanobind CCB Big DNA Kit (Circulomics, 
Maryland, USA). DNA was quantified with the Qubit dsDNA HS 
assay in a Qubit 3.0 (Invitrogen, Eppendof UK, UK). Long-read 
genomic DNA libraries were prepared with Oxford Nanopore 
SQK-RBK004 kit and/or SQK-LSK109 kit with Native Barcoding 
EXP-NBD104/114 (ONT, UK) using 400–500 ng of high molec-
ular weight DNA. Twelve to twenty-four barcoded samples were 
pooled together into a single sequencing library and loaded in a 
FLO-MIN106 (R.9.4 or R.9.4.1) flow cell in a GridION (ONT, 
UK).

Additional sequences from seven red squirrels from Jersey and 
the IOW, which were part of the 2013 investigation were obtained 

from public databases using metadata kindly supplied by the 
authors, and other sequences from CC49 were identified using 
pubMLST and downloaded from GenBank (Table S2) [6, 17, 18].

Bioinformatics
Quality control, assembly and annotation of reads was undertaken 
using an in-house pipeline as follows: raw reads were trimmed 
using Trimmomatic [19], and quality confirmed with Fastqc 
[20]. Reads were assembled using Spades [21], and annotated 
with Prokka [22]. Hybrid assemblies of Illumina and Nanopore 
reads were built using Unicycler [23], and the assembly graphs 
visualized using Bandage [24]. MLSTs were determined using the 
software tool ‘MLST’ (profiles in Table S3) [17, 25]. Variants were 
called using Snippy against closed genome assemblies from this 
study as references and Snippy-Core used to generate full genome 
alignments [26]. Snp-dists was used to produce a distance matrix 
from an alignment [27].

Pangenomes were built using Roary [28], and phylogenetic trees 
constructed from the core gene alignments using RAxML-NG 
[29]. Phylogenetic tree illustrations were produced in iTOL v5.7 
[30]. Genomes were visually examined and manipulated using 
Artemis [31], further alignments were constructed using Clustal 
Omega [32], and viewed using Jalview [33]. BRIG was used to 
generate circular comparisons of genomes and Easyfig was used 
to create blast comparisons of phage genomes [34, 35].

Abricate was used to search for antimicrobial resistance and 
virulence genes, and plasmid replicons using the incorporated 
databases ARG-ANNOT, CARD, Resfinder, VFDB and Plasmid-
Finder [36–41]. A custom database was created from the Phaster 
[42] website database and blast was used to search for intact 
phages [43]. Potential plasmid sequences were confirmed using 
plasmidSPAdes and investigated using Mob-recon from Mob-
suite to classify them against the database of known plasmids 
[44, 45].

A genome-wide association study was run using pySEER [46], 
using the phenotypes of ‘squirrel/not squirrel’ on a single MLST 
sequence type (ST133) to reduce the problem of lineage-related 
effects. A linear mixed model was used on kmers and a phylogeny 
incorporated to control for population structure.

RESULTS
All 88 squirrels sampled on the Isle of Arran and Brownsea 
Island were deemed healthy on inspection; of the 137 squir-
rels sampled on Jersey, 122 were free of clinical signs of FED 
on inspection (classified as ‘healthy’), 14 had clinical signs 
or post-mortem evidence consistent with FED and one had 
other, non-FED-like skin lesions. The three diseased squirrels 
from IOW had skin lesions consistent with FED (Table 1).

S. aureus isolates were recovered from 43 red squirrels out of 
228 sampled, 26 of 210 healthy squirrels (12.4%), including 
1/122 healthy squirrels from Jersey, and from 17/18 (94.4 %) 
squirrels with skin lesions (Table 1). On Jersey, this is likely 
to underestimate the true carriage rate because posting delays 
might have resulted in false negative samples; the average 
time from sampling on Jersey to laboratory was 5 days with a 
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maximum of 41 days. S. aureus was also isolated from 13/20 
(65 %) sheep and from 8/10 deer (80%) (Table 1).

Characterization of the S. aureus isolates

Genomes
A total of 228 genomes was sequenced using Illumina 
sequencing and genomes were assembled with a mean of 63 
contigs (Table S1). Assemblies with N50 lower than 10 000 
(n=4) were removed from core gene alignments constructed 
from the pangenome as the poor assemblies contained many 
apparent gene alleles, which distorted the branch lengths in 
the phylogenies.

In order to provide closed, accurate, closely related assem-
blies for mapping, and to enable examination of the context 
of mobile genetic elements, two red squirrel isolates from 
Jersey (ST49) and one from the Isle of Arran (ST133) were 
additionally sequenced on the Oxford Nanopore platform. 
Two ST49 isolates were chosen because they had different 
bacteriophage content, including the presence or absence 
of the phage carrying lukM/F genes (henceforth referred 
to as ‘the lukM phage’). Using a combination of long- and 
short-read data, complete assemblies consisting of a single 
closed chromosome with no plasmids were generated for all 
three isolates (Table S1). Genome data is publicly available 
at https://www.​ncbi.​nlm.​nih.​gov/​bioproject/​PRJNA679188

S. aureus lineages recovered
The S. aureus lineages recovered are reported in Table 1.

Of the 44 healthy red squirrels from the Isle of Arran that 
were sampled, S. aureus was isolated from 14 of them. 
Three lineages of S. aureus were observed; seven individuals 
carried ST133, six individuals carried ST2328 and a single 
individual carried ST49. Healthy red squirrels on Brownsea 
Island (11/44) were found to carry four different lineages; four 
individuals carried ST692, four individuals carried ST133, 
two individuals carried ST188 and a single individual carried 
ST130.

Healthy sheep (n=13/20) from a single flock on the Isle 
of Arran, which grazed two sites close to the red squirrel 
sampling site carried ST1640, ST130 and ST8. Healthy free-
ranging red deer from Arran (n=8/10) carried ST3237, 1640, 
130, 1958 and 425. The deer were frequently (4/8) coinfected 
with more than one sequence type.

On Jersey, 14 squirrels, which had clinical signs or post-
mortem evidence consistent with FED were found to carry 
ST49, and one of these was co-infected with ST2328. One 
squirrel, which had skin lesions not confirmed to be FED, 
also carried ST2328. A single healthy squirrel carried ST130.

On the IOW, of three red squirrels with skin lesions, one 
carried ST49 and one carried the single-locus variant of ST49, 

Table 1. Occurrence and molecular characteristics of S. aureus isolated from carriage or surface infection sites of 228 red squirrels, 20 sheep and 
10 red deer at four locations: The Isle of Arran, Brownsea Island, Jersey (Channel Islands) and IOW. The percentage positive for S. aureus for IOW is 
not reported as only suspected FED cases were sampled. MLST of isolates was deduced from whole-genome sequences. The allele sequences are 
ST133 (6,66,46,2,7,50,18), ST2328 (251,66,46,2,7,50,2), ST130 (6,57,45,2,7,58,52), ST49 (14,16,11,2,13,12,14), ST1957 (216,16,11,2,13,12,14), ST692 
(12,89,1,1,4,5,90), ST188 (3,1,1,8,1,1,1), ST8 (3,3,1,1,4,4,3), ST1958 (3,3,1,1,4,226,3), ST425 (18,33,6,20,7,50,48), ST1640 (6,125,213,27,13,13,15), ST3237 
(6,380,6,18,62,70,406). ~Individuals co-colonized with two different STs. * Individual coinfected with ST49. $ Individual not confirmed as FED.

Location Animals sampled Positive for S. 
aureus (%)

MLST
(allelic patterns in 

legend and Table S3)

Individuals 
carrying each 
sequence type

Isolates in each 
sequence type

Arran Squirrel 44 14 (32) ST133
ST2328

ST49

7
6
1

15
18
3

 �  Sheep 20 13 (65) ST1640
ST130

ST8

10
2
1

21
4
2

 �  Red Deer 10 8 (80) ST3237
ST1640
ST130

ST1958
ST425

8
2~
1~
1~
1~

15
2
3
1
1

Brownsea Squirrel 44 11 (25) ST692
ST133
ST188
ST130

4
4
2
1

7
9
5
3

Jersey Squirrel 137 16 (12) (FED n=14, 
not FED n=2)

ST49
ST2328* $

ST130

14 (FED)
2 (FED/not FED)

1 (healthy)

88
3
8

IOW Squirrel 3 2 (FED) ST49
ST1957

1
1

16
4

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA679188
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ST1957, which was also reported by Simpson et al. (2013) on 
this island [6].

The lineages recovered from red squirrels have previously 
been recorded in other host species: ST133 and 2328 (rumi-
nants), ST130 (small ruminants and small mammals), ST692 

(avian), ST188 (livestock and human), ST49 (small mammals 
and pigs), ST1957 (red squirrels).

Phylogenomic analysis suggests multiple host 
switch or spillover events
Genome sequences corresponding to sequence types ST188, 
ST133 and ST49 were compared with publicly available 

Fig. 1. Phylogeny constructed using a core-gene alignment from Roary using publically available genomes of ST188 and genomes from 
red squirrels (Brownsea – green). The genomes from squirrels appear to represent two separate acquisitions. Available on Microreact 
https://microreact.org/project/_WmBHj3Ru.

https://microreact.org/project/_WmBHj3Ru
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genomes for these lineages by constructing phylogenies 
using core gene alignments generated by pangenome analysis 
using Roary (Figs 1–3). The remaining sequence types did not 
have enough publicly available genomes to construct useful 
phylogenies.

On the ST188 tree, five ST188 strains isolated from two 
squirrels on Brownsea Island were resolved into two distinct 
sub-clusters corresponding to the individual squirrels from 
which they were isolated. They are positioned far apart on 
the tree (Fig. 1), suggesting independent introductions into 
the squirrel population. Although neither cluster is closely 

related to any of the publicly available genomes for this 
lineage, it is possible to infer that these isolates may have 
been acquired from humans based on phage content. All five 
squirrel isolates carried the β-haemolysin converting phage 
(Saphi3), which harbours genes associated with evasion of the 
human immune system such as sak, chp and scn, commonly 
termed the immune evasion complex (IEC). This phage has 
been reported to be more common in isolates recovered from 
human sources and is often absent from those recovered 
from animal sources [47]. Additionally, isolates from the 
two squirrels have a different combination of IEC genes (sak, 

Fig. 2. Phylogeny constructed using a core-gene alignment from Roary of publicly available genomes of S. aureus ST133 and genomes 
of isolates from red squirrels on the Isle of Arran (mauve) and Brownsea Island (green). Red bar marks the clade with isolates which do 
not contain the lukM phage. This tree is available on Microreact: https://microreact.org/project/n4biBCzju.

https://microreact.org/project/n4biBCzju


7

Fountain et al., Microbial Genomics 2021;7:000565

chp and scn, or sak and scn), which again is consistent with 
independent acquisitions from human sources.

From all geographic locations, 19 out of 26 healthy squirrels 
(73 %) that carried S. aureus had strains that are typically 
associated with carriage by sheep or other small ruminants 
(ST133, 130 and 2328) [48].

From a phylogeny of a core-gene alignment of ST133 isolates 
from red squirrels and public databases we infer that squirrels 
on the Isle of Arran and Brownsea Island acquired ST133 
independently, and that following acquisition there has been 
onward squirrel-to-squirrel transmission within each popula-
tion (Fig. 2). However, while ST133 is a well-sampled lineage, 

Fig. 3. Phylogeny of all publicly available ST49 isolates and isolates from red squirrels in this study constructed using a core-
gene alignment from Roary. Leaf label text colours (host): dark blue=red squirrels, pink=bank vole, turquoise=human, green=pig, 
black=unknown. Background leaf labels (Island): red=Jersey, blue=IOW, green=Isle of Arran. Available on Microreact: https://microreact.
org/project/82bXHY4VNrD7vid7wgXniQ.

Table 2. Presence or absence of selected mobile genetic elements in the ST133 reference strain genome ED133 from a sheep, and ST133 and ST2328 
isolates from red squirrels

Ovine-related phages Hlb-converting phage Ovine pathogenicity islands Ovine-related virulence factors

ED133 Phi SaOv1, 2, 3 (lukM) No SaovPI1, 2 sec, sell, tsst

ST133 squirrel No Yes No No

ST2328 squirrel Arran No Yes SaovPI1, 2 sec, sell, tsst

ST2328 squirrel Jersey No No No No

https://microreact.org/project/82bXHY4VNrD7vid7wgXniQ
https://microreact.org/project/82bXHY4VNrD7vid7wgXniQ
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we cannot completely rule out multiple transmissions from 
unsampled hosts, which do not appear in our phylogeny. For 
most of the publicly available genomes there is no information 
as to the host from which they were isolated, which limits 
the power of this analysis to identify possible reservoir hosts. 
To address this, we mapped those genomes for which host 
metadata was available against our closed ST133 assembly 
(from the Isle of Arran) and reconstructed a phylogeny 
based on genome-wide SNPs (Fig. S1). However, there is 
no clear correlation between phylogeny and host species, 
and we cannot infer the source of the isolates carried by red 
squirrels. However, this analysis does confirm that there are 
three distinct sub-clusters and greater overall diversity in the 
isolates from the Isle of Arran than those from Brownsea 
Island suggesting that these squirrels have been carrying these 
strains for longer.

Mobile genetic elements in CC133
Mobile genetic elements (MGE) such as phages and patho-
genicity islands often carry genes that contribute to host 
adaptation and an examination of these elements could 
assist with identifying the host source of isolates found in 
red squirrels, and to assess the extent to which these isolates 
might have become adapted to squirrels. Carriage of the lukM 
phage has been reported to be common in the genomes of 
ruminant strains from multiple lineages, in which it helps S. 
aureus evade the bovine immune system and contributes to 
its virulence [12]. None of the ST133 isolates from squirrels 
contained this phage, however neither do other isolates in the 
same clade in the phylogeny (Fig. 2 marked with red bar) [13]. 
Phages and pathogenicity islands of ovine strains have previ-
ously been characterized primarily using the closed genome 
ED133 as an ST133 reference genome [49], and this and other 

sheep-derived isolates have been reported to carry specific 
ovine phages (including a lukM phage) and pathogenicity 
islands. We examined squirrel isolates in ST133 and ST2328 
for the presence or absence of these elements and found them 
to be absent except in ST2328 isolates from the Isle of Arran 
(Table 2). However, as with the lukM phage we also found 
that other isolates within the clade lack these elements, it 
is therefore not clear if the isolates lost them before or after 
transmission to squirrels from another host (Fig. 2).

Other phages
Further examination of phages in isolates from red squirrels 
in ST133 and Arran ST2328 found that there is an intact 
phage inserting into the hlb gene (Table 2), but the phages 
from each lineage only share around 30 % blast similarity 
with each other (Fig. S2). The hlb gene is the usual site of 
integration of the S. aureus phage 3, which carries the human 
IEC genes, and phage insertion will result in loss of function 
of this gene, but the hlb-converting phages in the red squirrel 
isolates do not carry any IEC-like genes in the expected site 
next to the amidase/holin module. ED133 does not carry 
this or any other phage at this site, and neither do the Jersey 
ST2328 isolates.

Genome wide association study in ST133
When bacteria switch to a new host from a host species to 
which they are adapted, a period of rapid adaptation may 
ensue. Previous studies have described an initial loss of 
genetic material following host switching, particularly of 
MGEs, but other adaptations including SNPs, insertions or 
recombinations have also been described [50]. Because the 
phylogeny of ST133 strains suggested that there is likely to 

Fig. 4. Manhattan plot of significant k-mers in squirrel isolates from a linear mixed model GWAS of isolates in ST133 using pySEER, 
plotted against the closed genome (AR39_merged_O1) visualized using Phandango [72]. The x-axis is the genome with open reading 
frames (top) and the y-axis is the P-value -log

10
. Red arrows indicate most significant kmers.
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have been independent introductions of this lineage into 
the squirrel populations of the Isle of Arran and Brownsea 
Island, we carried out a GWAS to establish if there was 
genomic variation specific to both of these squirrel popula-
tions but absent from other ST133 genomes. We included 
241 publicly available genomes, 15 squirrel isolate genomes 
from the Isle of Arran and nine from Brownsea Island. We 
used pySEER with a linear mixed model and k-mers [46]. 
Significant k-mers were filtered using a P-value of 2.80E-07 
(determined from the number of unique k-mer patterns) and 
mapped against the closed genome in ST133 from this study 
(AR_39_merged_O1) (Fig. 4).

This highlighted significant hits in 11 genes spread across 
the length of the genome, of which six coded for cell-wall 
metabolism or transporter proteins, one coded for staphylo-
coagulase (coa), which interacts with host prothrombin, three 
coded for proteins in metabolic pathways, one was a urea 
transporter and one coded for a hypothetical protein, which 
was located between two membrane-associated operons 
(Table 3). This prominent representation of cell-wall protein 
genes may suggest host adaptation, as these proteins are likely 
to interact strongly with the host immune system. However, 
all except one of these 11 gene variants were found only in 
isolates from the Isle of Arran, not from Brownsea Island, 

and there were no common variants detected. Moreover, the 
single variant associated with the Brownsea Island population 
is synonymous, whereas 8/10 of the Isle of Arran SNPs are 
non-synonymous, which is consistent with a role in adapta-
tion. The variants reported here were present in all the isolates 
from the Isle of Arran (or Brownsea), and in none of the other 
isolates in the analysis.

ST692 strains have previously been recovered from game 
birds and are part of the clonal complex CC385, which is an 
avian-specific clade. A previous study reported a set of genes 
that were unique to avian strains of S. aureus, including those 
within CC385 (Table S4) [51]. The authors kindly provided 
the sequences for these genes and we undertook a blast 
search for them in ST692 strains isolated from four squirrels 
on Brownsea island and found that some, but not all of the 
avian-unique genes were present, suggesting that these strains 
were likely acquired by red squirrels from avian sources but 
might have subsequently undergone some adaptation to 
squirrels [43].

S. aureus ST49 was isolated from red squirrels on Jersey and 
IOW with clinical signs typical of FED. The single locus 
variant ST1957 was isolated from a squirrel on IOW with 
FED, but is not included in the phylogeny (Fig. 3). ST49 was 
also isolated from one apparently healthy red squirrel on the 

Table 3. Top hits from a GWAS of isolates in ST133 using pySEER plotted against the completed genome AR39_merged_O1. The protein product is as 
predicted by Prokka and the likely functional category of the protein is inferred from the available literature on these or similar proteins. Variant type 
is synonymous (s) or non-synonymous (ns) SNP. AR=Isle of Arran isolates only. BI=Brownsea Island isolates only

Gene Annotation Predicted product Category Notes Variant

AR39merged_00164 coa_4 Staphylocoagulase precursor Virulence Interaction with host 
prothrombin

AR nsSNP

AR39merged_00187 tarK Putative polyribitolphosphotransferase  �  Cell wall synthesis. Immune 
evasion.

AR sSNP

AR39merged_00191 tarL Putative polyribitolphosphotransferase  �  Cell wall synthesis. Immune 
evasion.

BI sSNP

AR39merged_00425 murJ MOP superfamily PST family 
polysaccharide transporter

Carbohydrate 
metabolism

Membrane AR sSNP

AR39merged_00634 fruA PTS system d-fructose-specific 
transporter

Carbohydrate 
metabolism

Membrane AR nsSNP

AR39merged_00809 cdr Coenzyme A disulfide reductase Metabolism  �  AR nsSNP

AR39merged_01042 carB_1 Putative carbamoyl phosphate 
synthase

Amino acid 
metabolism

 �  AR nsSNP

AR39merged_02040 htsC Iron-binding ABC superfamily ATP-
binding cassette

Iron metabolism Transmembrane transport of 
staphyloferrin

AR nsSNP

AR39merged_02117 fmhB_1 Peptidoglycan pentaglycine 
interpeptide biosynthesis

Metabolism Cell wall synthesis AR nsSNP

AR39merged_02141 utp_1 Membrane-bound urea transporter Metabolism Membrane AR nsSNP

AR39merged_02211  �  Hypothetical protein  �  Between tca (membrane-
associated) and hss (trans-
membrane haem sensing) 

operons.

AR nsSNP

Abbreviations; MOP; multidrug/oligosaccharidyl-lipid/polysaccharide, PST; polysaccharide transport, PTS; phosphotransferase system.
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Isle of Arran which was caught and released, so we cannot be 
sure that it did not subsequently develop disease.

The publicly available genomes, representing isolates from 
humans, pigs and other unknown sources, are distinct 
from the squirrel isolates on the ST49 phylogeny (Fig. 3), 
and none of these 26 isolates contain the lukM phage. In 
contrast, this phage is present in all but four of the 107 
squirrel isolates plus the isolate from a bank vole (DIP), and 
the four exceptional isolates were obtained from one swab 
from each of two squirrels. The genome content of the lukM 
phage is nearly identical (99 % identity) where it is present 
and will be fully described elsewhere. A further distinction 
is that the ST49 isolates from squirrels have no plasmids 
whereas the publicly available reference ST49 isolates have 
between 1 and 4, many of which are previously described 
(Table S5).

A phylogeny of the clade containing the squirrel and bank 
vole isolates was then constructed using a whole-genome 
alignment of isolates mapped to the closed assembly from 

a squirrel, which contained the lukM phage (JW31330_O1_
dhc) (Fig. 5).

From Fig. 5 it is clear there have been limited introductions 
in each geographic site, and no migration between them. 
In order to explore transmission within Jersey between 
individual squirrels, we undertook a principal component 
analysis using SNP distances on each of the two separate 
clades of isolates from Jersey in the tree (Fig. S3). This 
showed four pairs of isolates, which clustered together, 
and the distances between each pair were between three 
and 23 SNPs (3–5, 5–6, 9–10 and 23), whereas the within-
host diversity was less than three SNPs. Each of these pairs 
of isolates were recovered from squirrels found in similar 
geographical locations. Therefore, for three of these pairs 
it is not possible to rule out a squirrel-to-squirrel transmis-
sion, however we might also expect to see this pattern of 
SNP distances and topology of the phylogeny if squirrels 
were acquiring infection from an unsampled reservoir host 
in the same location.

Fig. 5. Phylogeny of ST49 isolates from red squirrels from a whole-genome-mapping alignment. Leaf label colours: red=Jersey red 
squirrels, dark blue=IOW red squirrels, mauve=Isle of Arran red squirrels, pink=Germany bank vole. The small branch lengths of the 
mini-clades illustrate the low within-host diversity in this collection. This tree is available on Microreact: https://microreact.org/project/
tcJGv5uKjAmMHWBTyGPxrV

https://microreact.org/project/tcJGv5uKjAmMHWBTyGPxrV
https://microreact.org/project/tcJGv5uKjAmMHWBTyGPxrV
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The red squirrel isolates from Jersey cluster into two sepa-
rate clades, which correspond to an east-west split of the 
location where the squirrels were found (Fig. 6). The SNP 
distances between isolates in these two clades are between 
250–300 SNPs, and blast analysis using BRIG demon-
strated that the SNPs are spread along the genome (Fig. S4)

In an earlier study as part of the Jersey red squirrel surveil-
lance project, 169 red squirrels had tissue samples taken 
for DNA and mitochondrial DNA sequencing revealing the 
existence of two mitochondrial control region haplotypes 
[52]. The geographical location of squirrels with these 
haplotypes shows a strong footprint, which is believed to 

result from the introduction of squirrels from either British 
or European stock (Fig. 7). While the two haplotypes are not 
completely separated, the east-west division strongly echoes 
the two clades of ST49 found in red squirrels (Fig. 6). The 
geography of Jersey clearly presents a barrier to mixing of 
animals from the east and west of the island. The barriers 
could be man-made, for example roads, or natural, such as 
breaks in woodland through which animals disperse.

Within-host diversity in ST49 infected red squirrels
Multiple sampling of several sites on a single host and of 
several isolates from each swab allows an estimation of the 

Fig. 6. Map of Jersey (Channel Islands) showing the locations red squirrels were found (top) and a phylogeny of ST49 isolates from a 
whole-genome-mapping alignment with the two Jersey clades coloured (bottom). Clear circles are isolates from IOW and Isle of Arran. 
(Same tree as Fig. 5.)
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within-host diversity. A host which has carried a strain for a 
longer time, has been infected with a more diverse inoculum 
or been infected on multiple occasions, would be expected to 
have a greater diversity of isolates [53]. We obtained multiple 
ST49 isolates from 14 red squirrels, so to estimate within-
host diversity a SNP distance matrix was constructed from 

the mapping alignment using snp-dists and approximate 
duration of carriage calculated based on published S. aureus 
mutation rates (Table 4) [54]. In general, within-host diversity 
appears very low (maximum 2–3 SNPs), which suggests that 
ST49 is typically not carried for more than 2 months within 
each squirrel. This is consistent with the lack of evidence of 

Fig. 7. Map of location of the two mtDNA haplotypes found in red squirrels on Jersey (Channel Islands). Haplotype 1 (white circles) is 
most similar to British haplotypes and haplotype 2 (black circles) is most similar to European haplotypes. The sites where red squirrels 
are documented to have been introduced are marked as follows: Rozel (r), La Hague Manor (h), La Moie House (m) and St Ouen’s Manor 
(o). Reproduced from Simpson et al. (2013) under Creative Commons License 3.0 [52].

Table 4. Number of SNPs in a core-genome alignment of ST49 multiple isolates cultured from single hosts to assess within-host diversity. Divergence 
time (years)=[maximum pairwise SNP distance/(mutation rate x number of sites in alignment)]/2. Number of sites in alignment is 2.726 Mbp. A 
mutation rate of 2.7 SNPs per MB per year is used to estimate the length of time carried [54].

ID No. of isolates Max SNP Min SNP Estimated length of carriage (years) Estimated length of carriage (days)

JW_32635 16 3 0 0.20 74

AR_056_18 3 0 0 0.00 0

JW_32660 17 2 0 0.14 50

JW_32979 5 2 0 0.14 50

JW_32476 2 1 0 0.07 25

JW_30866 6 2 0 0.14 50

JW_31330 14 1 0 0.07 25

JW_34223 8 1 0 0.07 25

JW_34783 3 2 1 0.14 50

JW_34662 5 0 0 0.00 0

JW_34602 3 1 0 0.07 25

JW_34680 4 2 0 0.14 50

JW_34594 2 0 0 0.00 0

IOW_HB733 13 0 0 0.00 0
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squirrel-to-squirrel transmission in the phylogeny and also 
with the clinical time-frame of the disease in which death 
occurs in days once the squirrel has become sick enough to 
be captured.

DISCUSSION
The carriage rate of S. aureus in red squirrels in this study 
varies according to the island location (12–32 %). However, 
in healthy squirrels on the Isle of Arran and Brownsea Island 
the rate was between 25–30 %, which is comparable to that 
reported in humans [55]. The strains carried also showed 
considerable variation dependent on the island and the pres-
ence of sympatric species. This tendency to acquire strains 
from other hosts in the environment has also been reported 
in wild and captive rats in Europe, and in that case the clones 
also included CC49 and CC130 [8]. However, the evidence in 
red squirrels here points to both recent spillover events, and 
possible host switches involving a longer time scale and some 
genomic adaptation to the new host [50].

Healthy red squirrels on the Isle of Arran (14/44) were found 
to carry STs 133, 2328 and 49 (Table 1). ST133 is commonly 
isolated from small ruminants, especially sheep, but also other 
hosts including cattle and wildlife [56, 57]. ST2328 is a double-
locus variant of ST133, which is a rarely reported isolate of 
sheep [17]. It is noteworthy that in our limited sampling of 
sheep and deer close to the red squirrel sampling site on the 
Isle of Arran we did not recover any ST133 isolates, which 
may point to a host switch occurring prior to the red squirrels’ 
introduction to the island, anecdotally reported in the 1930s 
and 1950s (P. Lurz. personal communication). The carriage 
rates of S. aureus in sheep (65 %) and red deer (80 %) appear 
to be high, but when the small sample sizes are accounted for, 
the rate in sheep is broadly consistent with reported rates of 
30–45 %, and a study in free-ranging red deer in Lombardy 
(Italy) also reported a nasal carriage rate of 91 % [58][59].

Healthy red squirrels on Brownsea Island (11/44) were found 
to carry ST’s 692, 133, 188 and 130. ST692 has been isolated 
from farmed game birds in the UK, and poultry meat in 
South Korea, and is part of the avian specific clade CC385 
[60, 61]. ST188 is geographically widespread and found in 
many different host species, including humans [62]. ST130 
is also predominantly associated with ruminants, although it 
is also found in humans, and was the main lineage found in 
hedgehogs in Sweden and rats in central Europe [63, 64, 8].

On Jersey, despite sampling over 100 healthy red squirrels, 
ST49 was not recovered as a normal carriage isolate. However, 
in contrast with other islands, no other S. aureus carriage 
isolates were recovered, apart from one squirrel carrying 
ST130 and two with skin lesions carrying ST2328, which 
means that around 88 % of squirrels were not colonized. 
Therefore, another explanation for the failure to find ST49 in 
red squirrels on other islands might be the possibly protective 
effect of carriage of less virulent strains such as ST133. This 
could be mediated through general immunity to S. aureus 
stimulated by the less virulent strains, or by direct inter-strain 

competition such as has been observed between S. epidermidis 
and S. aureus in humans [65].

On the Isle of Wight two out of three red squirrels with clinical 
signs of FED carried S. aureus, one ST49 and a second one 
the single locus variant ST1957, which was also reported in 
the 2013 study [6]. The significance of this apparent greater 
diversity of strains causing disease on IOW is unclear and 
merits further study.

Red squirrels on Brownsea Island are in close contact with 
other wild and farmed species, and are regularly fed by 
humans. Avian strains (ST692) found here are consistent with 
acquisition from feeders known to be shared with farmed 
game birds. The ST188 isolates recovered were possibly 
acquired from humans because strains isolated from humans 
usually contain a β-haemolysin converting phage carrying 
IEC genes, while similar strains isolated from animals do 
not [47, 54, 66]. However, the time scale of loss or gain of 
the phage is unclear, as experimentally it appears to be quite 
stable. A study transferring a human strain to gnotobiotic 
piglets found that while other genes were lost within hours of 
transfer, the β-haemolysin converting phage was still present 
after 16 h [67], and in a separate experiment, which passaged 
human strains in sheep it was still present after more than a 
year [68] (R. Fitzgerald, unpublished information). Hence we 
cannot be sure if ST188 strains were acquired recently, or even 
directly from humans.

The predominant strains carried by healthy red squirrels 
in this study (72 %) are typically associated with small 
ruminants (ST133, 2328 and 130)[48, 49]. This observa-
tion may reflect squirrels’ utilization of ruminant-grazed 
fields adjacent to woodland to bury caches of nuts during 
autumn. Alternatively, ruminant genome adaptations may 
also be conducive to the survival of S. aureus in red squir-
rels. Experimental evidence suggests that immediately 
following a host-switch, variation occurs in the MGE with 
loss or gain of phages and plasmids, however longer-term 
adaptation may involve fixation of mutations in the core 
genome [51, 67, 69, 68]. In a study of S. aureus strains 
infecting rabbits, a single non-synonymous SNP in the 
dltB gene appears to confer high infectivity for rabbits. 
The dltB gene encodes a cell-membrane-associated protein 
and alleles of this gene were found in other rabbit-infecting 
strains suggesting convergent evolution [69]. The GWAS 
on ST133 isolates carried by red squirrels in this study also 
highlighted variants in several genes encoding for cell-
membrane-associated proteins, which suggests a degree 
of host-adaptation in the strains we sampled, however it 
is not clear if this is a permanent host-switch, and we did 
not find the same variants in isolates from both the Isle of 
Arran and Brownsea Island. GWAS analysis in S. aureus is 
hampered by strong lineage effects, and in previous studies 
a false positive rate of up to 70 % was identified, so labora-
tory investigation to functionally verify the effect of the 
variants is needed [70].

The ST133 isolates recovered from red squirrels may have 
been acquired directly from small ruminants, or from an 
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unsampled secondary host. They cluster in the phylogeny 
with other isolates which have lost ovine-specific elements 
including the lukM phage. In contrast, in the phylogeny of 
ST49 isolates, those from squirrels all contain the phage, 
as does the isolate from a bank vole, which clusters closely 
(max SNP distance=~500) (Fig. 3), perhaps suggesting a 
role for the lukM phage in virulence in squirrels and in 
adaptation to bank voles. In a study of S. aureus in small 
mammals in Europe, ST49 was found in bank voles (Myodes 
glareolus) and yellow-necked mice (Apodemus flavicollis), 
however while the latter carried other strains, the bank vole 
carried ST49 exclusively [7].

There is considerable interest in methods to identify bacte-
rial transmission using genome sequence data [53]. Methods 
that utilize SNP thresholds can be misleading if within-
host diversity is not taken into account, however core SNP 
thresholds between 23 and 40 have been suggested, with 
pairs of isolates under the threshold regarded as transmis-
sion events [53]. For our ST49 data neither the topology of 
the phylogeny nor a principal component analysis using 
SNP distances was able to unequivocally demonstrate 
whether squirrels acquired infection from other squirrels 
or from an unsampled reservoir host in the same location.

Ongoing disease surveillance of red squirrels in Scotland has 
not recorded any cases of FED. Although bank voles live in 
woodland and are common throughout the UK, including 
IOW and on Jersey, which has its own subspecies [71], on 
the Isle of Arran they have been found only intermittently 
and in small numbers, and not at all on Brownsea Island 
(Dorset Wildlife Trust; personal communication) [71]. This 
pattern precisely mirrors our findings of ST49 in red squir-
rels, and supports the hypothesis that the bank vole is a 
reservoir host for ST49 infection in red squirrels, in which 
it is rapidly fatal. However, an unsampled host such as rats, 
which have been recorded carrying CC49 strains and are 
numerous on Jersey, is a plausible alternative [8]. Carriage 
sampling of small mammals at all locations is warranted to 
explore the significance of all these findings.

CONCLUSION
Red squirrels carry S. aureus strains usually associated with 
other species, primarily small ruminants, possibly as a result 
of an historic host-switch, however where squirrels are in 
close contact with birds or humans they will acquire strains 
from these species. We speculate that on Jersey and IOW 
red squirrels acquire S. aureus ST49 strains from a reservoir 
species, possibly the bank vole or rat, and rapidly develop fatal 
disease. There is little evidence of transmission of ST49 strains 
from squirrel to squirrel, and it was only recovered once from 
squirrels on other islands. The identification of the reservoir 
species on Jersey is a research priority for the development of 
mitigation measures to reduce the incidence of fatal exudative 
dermatitis in red squirrels on the island. The role of lukM/F 
genes in virulence in red squirrels and in adaptation to other 
small mammals remains to be elucidated.
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