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The continual introduction of new chemicals into the market necessitates fast, efficient

testing strategies for evaluating their toxicity. Ideally, these high-throughput screening

(HTS) methods should capture the entirety of biological complexity while minimizing

reliance on expensive resources that are required to assess diverse phenotypic

endpoints. In recent years, the zebrafish (Danio rerio) has become a preferred vertebrate

model to conduct rapid in vivo toxicity tests. Previously, using HTS data on 1060

chemicals tested as part of the ToxCast program, we showed that early, 24 h

post-fertilization (hpf), behavioral responses of zebrafish embryos are predictive of later,

120 h post-fertilization, adverse developmental endpoints—indicating that embryonic

behavior is a useful endpoint related to observable morphological effects. Here, our goal

was to assess the contributions (i.e., information gain) from multiple phenotypic data

streams and propose a framework for efficient identification of chemical hazards. We

systematically swept through analysis parameters for data on 24 hpf behavior, 120 hpf

behavior, and 120 hpf morphology to optimize settings for each of these assays. We

evaluated the concordance of data from behavioral assays with that from morphology.

We found that combining information from behavioral and mortality assessments

captures early signals of potential chemical hazards, obviating the need to evaluate a

comprehensive suite of morphological endpoints in initial screens for toxicity. We have

demonstrated that such a screening strategy is useful for detecting compounds that

elicit adverse morphological responses, in addition to identifying hazardous compounds

that do not disrupt the underlying morphology. The application of this design for rapid

preliminary toxicity screening will accelerate chemical testing and aid in prioritizing

chemicals for risk assessment.

Keywords: zebrafish behavior, high-throughput screen, zebrafish neurotoxicity, chemical hazard assessment,

hazard identification, in vivo screening

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org/journals/toxicology#editorial-board
https://www.frontiersin.org/journals/toxicology#editorial-board
https://www.frontiersin.org/journals/toxicology#editorial-board
https://www.frontiersin.org/journals/toxicology#editorial-board
https://doi.org/10.3389/ftox.2021.670496
http://crossmark.crossref.org/dialog/?doi=10.3389/ftox.2021.670496&domain=pdf&date_stamp=2021-06-15
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:dmreif@ncsu.edu
https://doi.org/10.3389/ftox.2021.670496
https://www.frontiersin.org/articles/10.3389/ftox.2021.670496/full


Thunga et al. Integrating HTS Behavior and Mortality

INTRODUCTION

New chemicals are continually introduced into commerce and
the environment. Numerous efforts have been made by the U.S.
Environmental Protection Agency (EPA) and other regulatory
agencies to assess hazards and exposures of these emerging
chemicals and the huge backlog of untested chemicals (Pool
and Rusch, 2014). ToxCastTM and Tox21TM use a wide variety
of in-vitro (biochemical and cell-based) assays, and in-silico
methods for testing large compound libraries for their potential
toxicity (US EPA, 2015). Such in-vitro high-throughput screening
(HTS) methods are useful because they are quick, relatively
cheap and reduce the need for traditional animal-based toxicity
testing. They have the potential to consider multiple cell types,
assess the effects of mixtures, and test effects at several different
doses. However, these approaches cannot capture all potential
effect pathways and do not account for realistic exposure
routes (National Research Council, 2007). Toxicity testing using
zebrafish can inform adverse outcome pathways by capturing
relevant biology from a broad spectrum of observable phenotypes
across developmental stages. Data collected from such whole
animal studies carry information that helps us in understanding
the full implications of these chemicals in an organism. Several
studies have shown that the morphological effects of chemical
exposure in zebrafish increase in severity and frequency in a dose-
dependent manner (Carvan et al., 2004; Dubińska-Magiera et al.,
2016; von Hellfeld et al., 2020). However, detailed morphological
evaluations can be resource-intensive, time-consuming, and
expensive. This is especially true in an initial screening context,
where evaluation of multiple endpoints is necessary to screen
for all possible adverse outcomes. Given the large number of
chemicals that need to be evaluated, the time and costs associated
with generating such hazard data are significant and can be
difficult to systematically implement.

Behavioral assays, on the other hand, are non-invasive,
scalable, and relatively inexpensive (Levin and Cerutti, 2009).
These responses are consequences of the integration of
multiple levels of biological outcomes such as biochemical
and physiological processes (Russell et al., 1990). Previously,
using concentration-response behavioral profile data generated
across 1060 ToxCast chemicals, we showed that chemicals
altering behavioral responses at an early, 24 hpf time point
can manifest in some combination of 18 specific developmental
endpoints measured at 120 hpf. A majority of these chemicals
that induced aberrant behavioral responses progressed from
subtle effects detectable at lower concentrations of toxicant
to clear impairment of movements at higher concentrations.
Using morphological endpoints alone, the toxicity of many of
these chemicals were not detected until higher concentrations,
while some went unidentified, demonstrating the value of using
behavioral assays in combination with other screening endpoints
(Reif et al., 2016).

In this study, we systematically assess the usefulness of
behavioral assays as a standalone evaluation method for HTS of
chemicals, with the goal of minimizing the reliance on resource-
intensive testing approaches. We investigate the effects of varying
analysis parameters on the sensitivity achieved by our behavioral

assays. We compare and characterize the value of information
gained from different morphological endpoints and test for
associations between the occurrence of adverse effects on these
endpoints and behavioral responses. We implement benchmark
dose (BMD) methodology to determine a point of departure
and demonstrate the applicability of our behavioral data for
risk assessment. Finally, we synthesize results to propose an
integrated framework for efficient high-throughput screening of
diverse chemical sets.

METHODS

Data
The data used for this analysis include morphological
assessments of 18 different endpoints recorded at 120 hpf,
plus 24 hpf and 120 hpf behavioral response profiles of
embryonic zebrafish that were generated across 1060 EPA
ToxCast chemicals. Each chemical was tested at five different
concentrations (ranging from 6.4 nM to 64µM) in single embryo
wells, with n= 32 replicates per concentration. The experimental
design for photomotor response (PMR) assay and evaluation
of multiple different endpoints are detailed in Reif et al. (2016)
and Truong et al. (2014). Briefly, dechorionated embryos were
distributed into the wells of 96-well plates and a total of 850
frames of digital video was recorded at 17 frames per second. The
video recording included 30 s of background followed by a short
pulse of light, then 9 s of dark before the second light stimuli was
presented, and then 10 s of dark. These intervals were divided
into separate activity periods for analysis, as described in section
Sensitivity Analysis of Behavioral Responses of Methods.

Approach
To demonstrate the value of information carried by the
morphological endpoints, we quantified the change in entropy
(explained in detail under section Value of Information of
Morphological Endpoints) caused by removing data from one
endpoint at a time. For the rest of this study, the chemical hit calls
made using all the morphological endpoints were treated as the
truth set (i.e., the set of chemicals that are known to cause adverse
effects upon exposure). We utilized a statistical framework
described in Reif et al. (2016) and conducted scenario analysis
to probe the sensitivity of behavioral assays in detecting chemical
hazards. Then, we subjected behavioral data to BMDmodeling to
comprehensively evaluate the response patterns before proposing
an integrated framework that optimized sensitivity for chemical
hazard identification. Utilizing the morphological screen as the
“truth set” and tuning the behavioral assays to pick up these
compounds ensures a robust, biologically relevant screen.

Value of Information of Morphological Endpoints
Entropy is a fundamental concept in information theory that
quantifies the amount of information carried by any given
random variable (Shannon, 1948). Previously, using Aggregate
Entropy (AggE), an information theory-based method, we
generated 10 Super Endpoints by clustering 18 distinct 120 hpf
developmental endpoints (Mortality, Yolk Sac Edema (YSE),
Pericardial Edema (PE), Axis, Eye, Snout, Jaw, Brain, Otic Vessel,
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Pectoral Fin, Somite, Caudal Fin, Pigment, Circulation, Trunk,
Swim bladder, Notochord, Touch Response) based on the high
mutual information shared between them.

As per (Zhang et al., 2016), the Super Endpoints are: SE1 =

Mortality, SE2 = Craniofacial endpoints (Eye, Snout and Jaw),
SE3 = Axis, SE4 = Edema (YSE and PE), SE5 = Upright body
(Swim Bladder, Somite and Circulation), SE6= Touch Response,
SE7 = Pigment, SE8 = Brain (Brain, Otic Vesicle and Pectoral
Fin), SE9=Notochord distortion and SE10= Trunk (Trunk and
Caudal Fin). Briefly, AggE is a continuous value that summarizes
endpoint responses for any given chemical, C, as:

AggE = −

32
∑

i = 1

10
∑

j = 1

p
(

Bj
∣

∣C, Xi ) loge { p(Bj | C, Xi ) }

Where Xi represents replicate i with i = 1, . . . ,32
and Bj represents biological state (super endpoints) j with j = 1,
. . . ,10. The probability mass function is given by:

p(Bj |C, Xi) =
xij

10

The threshold for AggE is a function of observed incidences
over many individuals. Specifically, the concentration-wise AggE
threshold is the critical value of a one-sided chi-square test with
a significance level of 0.05. Any chemical with an aggregate
entropy higher than the threshold is flagged as a “hit,” as it
elicits responses across tested endpoints. To capture the value
of information gained from each of these super endpoints,
we calculated the change in AggE caused by removing each
of the super endpoints, one at a time, for all chemicals.
Kolmogorov–Smirnov (KS) test was used to compare the
empirical cumulative distribution functions (eCDF) of the
resulting aggregate entropies and identify statistically significant
differences in the distribution of AggE caused by the removal
of any given endpoint. This was done independently for every
concentration. The level of reduction in the entropies or the
extent of the shift in its overall distribution would directly
correspond to the amount of information carried by that
super endpoint.

Concordance of Behavioral Responses and

Morphology Super Endpoints
In this section, we investigated the sensitivity of behavioral
assays in detecting chemicals that elicited an adverse response
in any one super endpoint (SE) at a time. Each of the 10 SE
was used as the truth set, in turn, to evaluate performance
across SEs. A chemical was considered a “hit” using a super
endpoint if the incidence of malformations in that super
endpoint significantly exceeded (Fisher’s exact test p-value <

0.05) the background (control) incidence rate for the same.
Methods used to consider a given chemical as a “hit” in the
behavioral assays are detailed in section Sensitivity Analysis of
Behavioral Responses.

Sensitivity Analysis of Behavioral Responses
120 hpf morphological data was analyzed using contingency
tables and Fisher’s exact test to check if the proportion of fish

with adverse endpoints among the controls significantly differed
from that of the treated samples (Reif et al., 2016). A chemical
was considered a hit if it affected any endpoint(s) significantly
and passed the p-value threshold set for the Fisher’s test.

Early embryonic behavioral profiles were analyzed by
partitioning them into three separate intervals: Background
(basal activity observed before first light pulse), Excitatory (a
single peak movement in response to first light pulse) and
Refractory (period of inactivity observed after second pulse
of light). Chemicals that elicited adverse behavioral responses
in any of these intervals, at any concentration, constituted
the list of hits called using 24 hpf behavioral data. For every
concentration, the behavioral response patterns of the treated
samples within each interval was compared to that of the controls
using the Kolmogorov–Smirnov test (Bonferroni-corrected p-
value threshold = 0.05 /5 concentrations = 0.01). If the
percent change in activity patterns of the treated wells when
compared to that of the controls exceeded hyper- or hypoactivity
thresholds, it was considered a hit. Parameters used in the
methods described above were tuned to achieve improved
sensitivities in chemicals’ detection. We systematically swept
through a defined range of values for 4 main parameters: (a)
the percent-change threshold for hypo activity, (b) the percent-
change threshold for hyperactivity, (c) number of significant
morphological endpoints used to call hits on chemicals and
lastly, (d) the p-value threshold used for the Fisher’s test to
correct for testing of multiple of endpoints in morphology. The
sensitivity and specificity of the behavior data to detect chemicals
that elicit adverse morphological responses were recorded in
each case.

Benchmark Dose (BMD) Modeling of Behavioral Data
We carried out quantitative dose-response analysis of behavioral
data using US EPA’s BMDExpress (Version 2.3) to estimate
points of departure of various chemicals (Martin et al., 2009;
Davis et al., 2011; Phillips et al., 2019). Each chemical set was
subjected to a benchmark dose (BMD) analysis independently.
For data evaluation and model selection, a general framework
as described in the Benchmark Dose Modeling Technical
Guidance Document (Davis et al., 2011; US EPA, 2012) was
followed for every chemical set. To prevent fitting models
to non-responsive data, William’s Trend test was first carried
out with FDR adjusted p-value cutoff of 0.05. A benchmark
response (BMR) was defined as a 10% change relative to the
background response. A low BMR such as this was chosen
because we wanted the POD estimation to be lenient to
reduce the number of false negatives while broadly screening
for potential toxicities of chemicals. Then, BMD estimation
was done by subjecting the filtered data to a parametric
curve-fitting process using all non-linear continuous models
available in the software. From this suite of models, a winning
model was chosen for each chemical independently based on
multiple criteria such as goodness of fit, the uncertainty around
the BMD estimates, range of the benchmark dose estimate,
and so on. Specifically, models with a goodness of fit p-
value below the significance level (p < 0.1), BMD/BMDL
ratio >20, and BMD estimates falling outside the minimum
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FIGURE 1 | Kernel density plot of Aggregate entropies (AggE) of 1060 ToxCast chemicals before and after removing mortality information. The density histogram plots

AggE on the horizontal axis. The red line represents the distribution of AggE for chemicals obtained by summarizing information from all Super Endpoints (all SE) and

the blue line represents AggE of chemicals after excluding data from mortality endpoint.

and maximum (0 and 64, respectively) doses were removed.
From the remaining models, the one with the lowest Akaike
Information Criterion (AIC) was chosen as the best model and
its BMDL was used as a POD estimate. Finally, a chemical
with a POD estimate within the tested range of doses was
considered a hit.

Evaluation of Behavior and Mortality in Predicting

Morphological Effects
To assess reliability of calls made using behavioral responses,
the chemical hit calls made using all morphological endpoints
were treated as the truth set. Then, we combined data from
both 24 hpf and 120 hpf behavioral assays with mortality
to assess concordance between the combined assay and
morphology assessments at each concentration. F1 score was
calculated as 2∗PP

2∗PP + PN + NP and Concordance was calculated as
PP + NN

PP + NN + PN + NP , where PP is a hit in both morphology and the
combined assay (behavior + mortality); NN represents no hit in
either assay; NP represents a negative or no call in morphological
assessment and hit using the combined assay, and PN is a hit in
morphological assessment but not in the combined one.

RESULTS

Value of Information of Morphological
Endpoints
Every super endpoint, upon its removal, caused a statistically
significant change in the distribution of the resulting aggregate
entropies in at least one concentration. Importantly, removing
mortality information resulted in the highest shift in the
distribution of AggE even at the lowest tested concentration
(Figure 1). This indicates that this endpoint is data rich and
therefore will be most suitable for quick preliminary screening of
a diverse chemical set across a range of concentrations. However,
this simple assay screening for just mortality alone would fail to
capture chemicals that disrupt the underlying physiology but do
not result in death.

The shifts in distribution resulting from removing other
super endpoints, although statistically significant, were less
dramatic. We hypothesized that the effects of these endpoints
might appear diminished when compared with mortality, since
the frequency of mortality was much higher than the frequency
of occurrence of adverse effects in any other endpoint. To correct
for this, we removed individuals showing mortality and re-did
the analysis with the remaining super endpoints. This resulted
in noticeable shifts in entropies for every super endpoint,
in at least one concentration (Supplementary Figures 1–
9). For instance, removing information from Edema (SE4,
Supplementary Figure 3) caused statistically significant changes
in distribution of AggE even in the lowest tested concentration
(KS test p-value < 0.05). Quantifying the change in AggE in this
manner highlights the importance of integrating data from a rich
suite of endpoints for characterizing chemical hazards. However,
screening thousands of chemicals by detailed evaluations of
every super endpoint described above can be time-consuming
and resource-intensive. Therefore, we need scalable assays that
are representative of such diverse biological endpoints, which
when coupled with mortality can maximize the sensitivity of
chemical hazard identification.

Concordance of Behavioral Responses
and Morphology Super Endpoints
Using approaches detailed in sections Value of Information of
Morphological Endpoints and Sensitivity Analysis of Behavioral
Responses under Methods, we compared the sensitivities of
behavior in detecting chemicals that elicited adverse effects in
each Super Endpoint (SE) separately. When mortality (SE1)
was treated as the truth set, we found that both 24 hpf and
120 hpf behavioral assays have sensitivities of 0.65 and 0.7
respectively. Across all SE, we observed that 120 hpf behavior
showed higher sensitivities in detecting chemicals that elicited
morphological malformations when compared to 24 hpf behavior
(Wilcoxon rank sum test p-value < 0.05) (Figure 2). The
former was most sensitive in picking up hits made using super
endpoints 10 (# of compounds that showed adverse effects in
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FIGURE 2 | Sensitivity of 24 hpf and 120 hpf behavior in detecting chemicals that affect each morphological super endpoint. Error bars represent 95% confidence

intervals.

SE10 = 56), obtained by collapsing CFIN and TRUN, and
super endpoint 9 (# of compounds that showed adverse effects
in SE9 = 13) which represents Notochord distortion. These
results reinforce the idea that behavior is a direct indicator of
underlying physiology.

Sensitivity Analysis of Behavioral
Responses
We tested a total of 416 different scenarios by sweeping
across values ranging from 0.1 to 0.75 for hypo and hyper-
activity thresholds, minimum number of adversely affected
morphological endpoints varying from 1 to 10 and used
significance levels for Fisher’s test between 0.05 and 0.002 in order
to correct for testing of multiple of endpoints. We found that
the sensitivities of both 24 hpf and 120 hpf behavior were not
altered drastically by the choice of parameters (Figure 3). We
did not identify any combination of values for these parameters
that would either inflate or diminish the sensitivity of chemicals’
detection by a large extent.

Next, we compared the sensitivities of behavior in picking up
chemicals with existing hazard information fromEPA’s CompTox
Chemicals dashboard (Supplementary Table 1). These included
subsets of the Phase 1 and Phase 2 ToxCast chemicals that were
listed under six different categories: NeuroTox (chemicals
demonstrating effects on neurodevelopment), Dev_NT
(chemicals triggering developmental neurotoxicity), human
neurotoxicants, Bisphenols, Eu Biocides, and Pesticides
(compounds used as active ingredients in pesticides and
biocides). Although 120 hpf behavior showed higher sensitivities
across most categories, 24 hpf behavior consistently picked
up more unique hits that were not picked up by the other
two assays. This highlights the value of combining data from
both behavioral assays in picking up additional information
that might otherwise be missed in conventional morphological
phenotypic assessments.

Benchmark Dose Modeling of Behavioral
Data
Both early time point embryonic responses and 120 hpf
movement profiles were subjected to BMD analysis
independently. As we previously showed that the excitatory
interval is most sensitive to chemical perturbations (Reif et al.,
2016), within this interval, the distance moved was summed
across all time points for every replicate and used as the
continuous response input for BMD analysis. Using 24 hpf
behavioral data that was available for 1060 ToxCast chemicals,
we found that 278 chemicals passed the trend test indicating
the presence of a dose response effect, 241 of which met all
the criteria described in section Benchmark Dose (BMD)
modeling of Behavioral Data under Methods. These chemicals
were considered as hits. Similarly, using data from the 120 hpf
assay, 256 chemical hit calls were made. One hundred and ten
chemicals showed up as hits in both behavioral assays of which
86 showed adverse morphological effects. Figure 4 shows a QQ
plot comparing the BMDL estimates for the 110 compounds that
were picked up by both behavioral assays. The skewness in the
data indicates that chemicals elicited a 10% change in responses,
relative to the background, at slightly lower doses at 24 hpf when
compared to 120 hpf (refer to Supplementary Table 2 for actual
doses). However, this could be a consequence of different models
with varying parameters being fit to the individual data sets. By
integrating information from both behavioral assays, we were
able to capture 223 out of the 339 (∼65%) chemicals that elicit
5 dpf developmental abnormalities (Figure 5). In addition, we
found 164 chemicals displaying behavioral abnormalities yet no
significant alterations in morphology. However, these assays put
together still do not capture the entirety of compounds resulting
in adverse morphological effects. In the following section, we
assess the added value of utilizing information from mortality
screen together with these behavioral assays in identifying
chemical hazard.

Frontiers in Toxicology | www.frontiersin.org 5 June 2021 | Volume 3 | Article 670496



Thunga et al. Integrating HTS Behavior and Mortality

FIGURE 3 | Sensitivity analysis of behavioral endpoints. Each point on the plot

represents the sensitivity and specificity of these assays when using a

combination of parameters described in section Sensitivity Analysis of

Behavioral Responses of Methods to call hits using behavior and morphology

(Parameters include the number of endpoints used to make “affected” calls in

morphology, p-value threshold for Fisher’s exact test, percent change

thresholds for hypo and hyper-activity).

FIGURE 4 | QQ plot comparing the Benchmark Dose potency estimates for

110 chemicals that were picked by both 24 hpf and 120 hpf behavioral data.

Evaluation of Behavior and Mortality in
Predicting Morphological Effects
Table 1 compares concordance of results between the combined
assay (24 hpf behavioral assay, 120 hpf behavioral assay,

FIGURE 5 | Venn diagram comparing hits made using behavioral assays when

subjected to BMD modeling to those made using morphology screen.

TABLE 1 | Showing performance evaluations of the combined assay (24 hpf and

120 hpf behavior, and mortality) and detailed morphological screen.

Concentration PP PN NP NN F1 score Concordance

0.0064 uM 44 4 2 1008 0.936 0.994

0.064 uM 18 5 2 1033 0.837 0.993

0.64 uM 33 10 7 1008 0.795 0.984

6.4 uM 32 22 39 965 0.512 0.942

64 uM 161 52 106 739 0.671 0.851

Overall 279 60 88 631 0.79 0.86

PP represents a hit in both assays; NN represents no hit in both assays; NP represents a

negative or no call in morphological assessment and hit using behavior and mortality, and

PN represents the opposite.

and mortality) and a detailed morphological screen. Across
all concentrations, we found that data from both behavioral
responses, when combined with the hits made using mortality,
comprises 83% of the chemicals that resulted in adverse
morphological effects. This combined assay has a sensitivity of
0.76 (Table 1, True Positive= 279; False Negative= 60).

DISCUSSION

Our results have demonstrated that concurrent evaluation of
mortality and behavioral responses is a fast and efficient testing
approach for high-throughput chemical hazard identification.
Using this framework, we can achieve high sensitivity and
specificity in detecting chemicals that exhibit heightened
bioactivity. We have shown that behavioral assays are also
useful in picking up compounds that do not otherwise elicit
any obvious morphological effects, and hence might be missed
in a conventional screening setup. Such chemicals manifesting
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only behavioral abnormalities should still be cause for additional
scrutiny. For preliminary screening of a vast number of
compounds, we propose that acute toxicity can be determined
based on a positive outcome in any one of the three assays
described in this study (24 h post-fertilization behavior, 120 h
post-fertilization behavior and mortality).

Several chemicals went undetected in our morphology screen
indicating the need to expand our net for chemical hazard
identification (Supplementary Table 1). An ideal screening
platform should be efficient with regard to time and costs, and
easy to scale while still having biological relevance. From a HTS
context, this combined assay reduces the need for carrying out
detailed evaluations of morphology, thereby diminishing the
effects of any bias or variability resulting from those evaluations
and helps improve concordance across multiple labs.When study
goals differ from screening, then the relative merits of detailed
evaluation versus scalability in concentration range and replicates
may differ in the hazard identification context discussed here,
multiple concentrations and robust replicate count are critical
to dose response modeling of such data to holistically evaluate
patterns in behavior and identify any deviations in responses.
To obtain reliable estimates of the BMD and avoid interpolation
at the BMR, it is important to have studies, similar to this
one, with multiple doses, several of which are near the level
of the BMR. In fact, working with additional concentrations
may have allowed us to capture chemicals that were otherwise
missed in the current screening set up. The BMDmethodology is
convenient for analyzing behavioral data for many reasons. Using
the BMD approach allows for a comprehensive analysis of the
behavioral response profiles by paying attention to the treatment
group variability while assessing model fits. We used low BMR
thresholds as a basis for the analysis to increase the sensitivities of
chemicals’ detection because this is a screening-level assessment.
Although additional careful considerations need to be carried
out while using modeling to report safe levels of exposure of
chemicals, here, we illustrate the usefulness of benchmark dose
analysis in obtaining the preliminary point of departure estimates
from behavioral studies for screening purposes. In addition,
to utilize behavioral assays as a standalone assessment tool,
these assays should be adjusted—by adding additional doses
and, replicates per dose—to increase sensitivity while ensuring
sufficient signal to background.

To summarize, we have shown that early time point
behavioral responses and mortality are indicative of acute
toxicity of chemicals. Previously, we have demonstrated
the added value of integrating information from these

behavioral assays with other in vitro studies in elucidating
important biochemical targets (Reif et al., 2016). In addition,
due the non-invasive and non-destructive nature of this
screening framework, chemicals showing evidence for hazard
in early life stages can even be followed up with targeted
studies and/or experimental interventions in later stages of
development to better understand mechanisms of toxicity.
Therefore, this low-cost, sensitive hazard identification step,
when combined with more sophisticated confirmatory assays
using tiered approaches such as those described within
the Integrated Approaches to Testing and Assessment
(IATA) framework, will augment the chemical hazard
characterization process and guide regulatory decisions
(Tollefsen et al., 2014).
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