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CTGF is a multifunctional protein and plays different roles in different cells and

under different conditions. Pamrevlumab, a monoclonal antibody against

CTGF, is an FDA approved drug for idiopathic pulmonary fibrosis (IPF) and

Duchenne muscular dystrophy (DMD). Recent studies have shown that CTGF

antibodies may potentially serve as a new drug for osteoarthritis (OA).

Expression of CTGF is significantly higher in OA joints than in healthy

counterparts. Increasing attention has been attracted due to its interesting

roles in joint homeostasis. Joint homeostasis relies on normal cellular functions

and cell-cell interactions. CTGF is essential for physiological activities of

chondrocytes. Abnormal CTGF expression may cause cartilage degeneration.

In this review, the physiological functions of CTGF in chondrocytes and related

mechanisms are summarized. Changes in the related signaling pathways due to

abnormal CTGF are discussed, which are contributing factors to inflammation,

cartilage degeneration and synovial fibrosis in OA. The possibility of CTGF as a

potential therapeutic target for OA treatment are reviewed.
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Introduction

Connective tissue growth factor (CTGF), also named as HCS24, Ecogenin, Regenerin

and CCN2, is a member of the CCN family (CTGF, Cyr61, NOV). CTGF is a

multifunctional secretory protein in a variety of fibrous tissues, and involved in

numerous physiological and pathophysiological processes including embryonic

development, tumor formation and osteoarthritis (OA) progression (1).

CTGF, 38 kDa, consists of 4 domains, including insulin-like growth factor binding

protein domains (IGFBP), von Willbrand factor C-type repeat domains (VWC),

thrombospondin type-1 repeat domains (TSP-1) and cysteine knot-containing domains

(CT) (2). IGFBP and VWC constitute the N-terminus of CTGF. TSP-1 and CT constitute

the C-terminus of CTGF. Non-conserved protease-regulating hinge connects the N-
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terminal and C-terminal. All the domains have distinctive

functions (3). The distictive structure provides CTGF the

capability to participate in various biological processes (4).

OA is a common joint disease, mainly featured as cartilage

degeneration, subchondral sclerosis and synovial inflammation

(5). CTGF is involved in chondrogenesis and OA processes (6).

The roles of CTGF in OA are complicated (7–9). This review

summarizes the current understanding of the physiological roles

of CTGF in chondrocytes and the related mechanisms for OA.

The potential of CTGF as a therapeutic target for OA treatment

is also briefly reviewed.
Under the physiological condition

Under the normal physiological condition, CTGF can

mediate chondrocyte activities and cartilage matrix synthesis,

sense environmental stimulation, and promote celluar

communication. The roles and related mechanisms of CTGF

in chondrocytes under the normal physiological condition better

illustrate its multifunctional attributes.
Involvement in chondrocyte activities

CTGF can boost chondrocyte proliferation. Overexpression

of Ctgf or treatment with recombinant CTGF (rCTGF) leads to

increased proliferation of HCS-2/8 chondrocytes (10, 11). The

similar results were observed in rabbit chondrocytes (12).

Proliferation cell nuclear antigen (PCNA) is closely related to

DNA synthesis and is a specific proliferation marker (13). A

large number of PCNA positive chondrocytes were observed in

the epiphyseal proliferation zone of Col2a1-ccn2 transgenic mice

(14). CTGF was considered to regulate chondrocyte proliferation

viaMAPK and PI3K/Akt signaling pathways (15–18). The main

branches of the MAPK signaling pathway include the JNK, ERK

and p38MAPK pathways (19). CTGF stimulates proliferation of

HCS-2/8 chondrocytes and rabbit growth plate chondrocytes

through ERK (15, 16). CTGF was reported to activate the ERK

signaling pathway through PKC and MEK1/2 (16). On the other

hand, CTGF can form complexes by combining with cytokines

directly, such as BMP2 and FGF2 (20–22). It is worth noting that

responses of chondrocytes change with different complexes with

FGF2. The heterocomplex formed by CTGF and FGF2 can

promote proliferation of chondrocytes due to the ability to

interact with FGFR1. However, the heterocomplex formed by

CT module and FGF2 inhibits proliferation of chondrocytes

possibly due to the inability of the CT module to bind to

FGFR1 (22).

CTGF participates in several essential processes including

mesenchymal cell (MSC) aggregation and terminal
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differentiation. In vitro culture of C3H10T1/2 cells showed that

CTGF could induce MSC aggregation and upregulate expression

of Sox9, a marker of chondrogenic differentiation (23). The roles

of CTGF in chondrocyte differentiation depend on the specific

types of cells. Under stimulation with rCTGF, COL-X and ALP,

the two markers of terminal differentiation, were detected in the

growth plate chondrocytes, but not in the articular chondrocytes

(11). Hypertrophic differentiation of chondrocytes is highly

related with endochondral osteogenesis. CTGF was proven to be

an “ecogenin” (endochondral ossification genetic factor) (1, 10,

11). The expression of ALP can be increased by CTGF through

p38MAPK pathway and PI3K pathway, thereby promoting

endochondral ossification (15).
Sensing environmental stimulation

Chondrocytes are regulated by mechanical stimuli, which

are eventually converted into biological effects by inhibiting or

activating signaling pathways (24). Abnormal mechanical

loading causes imbalance of chondrocyte homeostasis and

promotes the occurrence and development of OA 25. CTGF is

one of the “mechanical stimulation receptors” of chondrocytes

(7). Significant differences were observed in the distribution and

expression of CTGF at different stages of OA and in different

regions of cartilage which reflected different loading conditions

(26). The expression of CTGF in articular cartilage was inhibited

after 4 h of cyclic loading 27. Tensile stress can induce

significantly higher expression of CTGF than hydrostatic

pressure (28). Different intensities of pulsed ultrasound have

various effects on the production of CTGF (29).

In chondrocytes, CTGF not only senses mechanical

stimulation, but also participates in transferring mechanical

signals into biochemical signals in chondrocytes. CTGF

transmits mechanical signals through molecules which are

distributed in the cell membrane, thereby activating or

inhibiting downstream signaling pathways (30–32). CTGF, as

a ligand of integrins, also regulates cellular activities induced by

mechanical loading through integrin pathways (7). Another way

for CTGF to convert mechanical cues into biochemical signals is

to activate Smad2/3 signaling in articular cartilage (33).

Expression of CTGF in chondrocytes demonstrates rhythmic

changes, possibly responsible for the circadian rhythm of

chondrocytes (34). During the diurnal cycle, cartilage and

chondrocytes experience cyclic high- and low-intensity loadings,

which is reflected by the diurnal variation in cartilage thickness at

the distal femur 35. Rhythmic changes were also observed in pain

and in the expressions of chondrocyte-related markers such as

ACAN, COL-II, COMP (36). Proteomic sequencing of mouse

articular cartilage showed that, among the 146 proteins, only

expression of CTGF fluctuated with a cycle of 16 hours (34).
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Mediating cartilage matrix synthesis

Cartilage is in a dynamic balance between extracellular

matrix (ECM) synthesis and decomposition. Under the normal

physiological condition, CTGF is a matrix protein involved in

extracellular matrix protein synthesis (37). By knocking out

Ctgf in chondrocytes, synthesis of COL-II and proteoglycan

(PG) in ECM was reduced (10). Several researches reported

that CTGF can combine with different molecules to directly or

indirectly regulate synthesis and degradation of cartilage ECM.

The CTGF and MMP family can synergistically function in

cartilage ECM (38). Cotransfection of Ctgf and Timp-1 (MMP-

specific inhibitory gene) can significantly promote the

expression of PG and COL-II (39). By cutting the hinge

between VWC and TSP1 in CTGF, MMPs release C-terminal

fragments, which can activate Akt and ERK pathways (40, 41).

CTGF, the downstream of the TGF-b signaling pathway, can

also interact with the TGF-b family to influence cartilage ECM

synthesis (42).

CTGF can regulate ECM formation by directly binding to

ECM proteins or through cellular energy metabolism.

Destruction of the interaction between CTGF and ACAN can

lead to inhibition of chondrogenesis (43). The IGFBP-VWC

region of CTGF promotes the synthesis and deposition of

ACAN by connecting to the ACAN G3 domain (44).

However, binding with the CT domain might be independent

of ECM protein synthesis (45). ECM protein synthesis requires

energy consumption. Adenosine triphosphate, also known as

ATP, is a characteristic molecule representing energy in cells.

Since cartilage is an avascular tissue, its main type of

metabolism is glycolysis (46). ATP in chondrocytes can be

effected by glycolysis and availability of free amino acids. In

Ctgf-null chondrocytes, the free amino acid can not be

captured by CTGF and glycolysis is impared, causing ATP

shortage and energy production decrease (47, 48).

Metabolomics and transcriptome sequencing of Ctgf-null

chondrocytes also revealed low levels of ATP, ENO1 (one of

the glycolysis enzymes) and ACAN (47).
Regulating communication among cells

CTGF is also known as cellular communication network

factor 2 (CCN2), which acts as a signal conductor for

communication among chondrocytes by intercellular junctions

between chondrocytes (49). Under rCTGF intervention, the

migration efficiency of chondrocytes increased in a

concentration-dependent manner, and the formation of

intercellular junctions of chondrocytes were significantly

increased. Cx43, as the main connexin of chondrocytes, is one

of the semichannel structures of gap junctions (50). CTGF can

induce Cx43 opening to promote the exchange of miRNA, ATP

and Ga+, through the PI3K/Akt signaling pathway (49).
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CTGF can also mediate communication between

chondrocytes and other types of cells, for example, osteoclast,

osteoblast, and endotheliocyte (1, 51, 52). Increased secretion of

CTGF in OUMS-27 cells (a human chondrocyte cell line) due to

TNF-a treatment has a synergistic effect on osteoclastogenesis in

coordination with M-CSF/RANKL. The possible mechanism was

proposed that CTGF from chondrocytes can activate FAK and

ERK1/2 through binding to aVb3 on osteoclasts (53). CTGF

secreted by chondrocytes can also act on osteoblasts close to the

hypertrophic zone of cartilage in a paracrine manner during

endochondral osteogenesis (54).
Under the OA condition

OA is a common chondro-related degenerative disease.

Chondrocytes are the main cell in cartilage. Phenotypic

changes of chondrocytes are the important characteristics of

OA. CTGF is gradually recognized as an important mediator of

chondrocyte activities. There are growing interests in identifying

the role of CTGF in OA recently. Several studies have reported

an abnormal increase in CTGF expression in OA cartilage (55)

and OA synovium (6). The role of CTGF in OA is still in debate.

The functions and pathways of CTGF in OA development are

summarized in Figure 1.
Cartilage degeneration

As mentioned above, CTGF mediates cartilage ECM

synthesis through multiple pathways. However, whether CTGF

can repair or aggravate cartilage degeneration is still unclear. The

different opinions were based on in vivo studies and their designs

are summarized in Table 1. The inconsistent conclusions might

result from differences in types of techniques for CTGF deletion,

OA models, animal species/ages/genders, experimental

schedules, and OA scoring systems used in those studies.

CTGF are widely distributed in other joint tissues such as

synovium and bone (63). Selective deletion of CTGF might

have different effects from global deletion (56). Different types

of OA models represent different pathologies which might affect

the microenvironment of CTGF. Proliferative activity of

chondrocyte varies with different stages and status (64, 65).

Thus, the ages of animal and the schedule of intervention may

influence how CTGF functions. CTGF might be sensitive to

microenvironment determined by multiple factors.

CTGF is essentially a multifunctional molecule that can

combine with different cytokines and receptors. CTGF can

combine with TGF-b to form a complex through disulfide

bonds in chondrocytes (57). After abnormal mechanical

stimulation, the complex binds to the TGF-b receptor, activates

Smad2/3, and releases CTGF from the complex. When Ctgf is

specifically knocked out, the progression of OA will be inhibited.
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Tang et al. mentioned that CTGF release may be related to sodium

ions, which was proven in Keppies experiment (66). CTGF also

controls ECM synthesis by interacting with other molecules, such

as Rab14 (67) and Wif-1 (68).
Synovial fibrosis

Synovial fibrosis is one of the characteristics of OA. CTGF is

a profibrotic protein, and is considered to be the main driver of

many fibrotic diseases (69). Liao have proposed that CTGF is a

highly discriminatory biomarker of synovial fibrosis in OA (70).

Adenovirus-Ctgf was transfected into the mouse knee synovium,

which exacerbated synovial fibrosis (39). Currently, the

regulatory mechanisms by which CTGF induces synovial

fibrosis in OA remain largely unrevealed. Remst found that

TGF-b induces Lysyl hydroxylase 2b in fibroblasts via ALK5

signaling (71). CTGF may associated with TGF-b-mediated

synovial fibrosis (70). CTGF can induce vascular endothelial

growth factor (VEGF) production and angiogenesis in synovial

fibroblasts by raising miR-210 expression via PI3K, AKT, ERK

and NF-kB/ELK1 pathways, leading to aggravated synovial

fibrosis (72).
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Inflammation

OA has been considered a low-grade inflammatory disease.

Synovial inflammation is realized to play an important role in the

development of OA. CTGF, as an inflammatorymediator, is involved

in synovial inflammation, inducing synovial cells to produce

inflammatory cytokines (73). After treating synovial cells with 0.1

mg/mL sodium hyaluronate, the expression of CTGF was

significantly decreased, and the degradation of cartilage was

significantly inhibited (74). Monocyte migration can also stimulate

production of inflammatory factors. CTGF can induce monocyte

migration inOA by activating the downstream FAK,MEK, ERK, and

NF-kB signaling pathways through interaction with integrin avb5,
and by enhancing generation and activation of CCL2, a promotor for

monocyte migration (75). When synovial fibroblasts are treated with

rCTGF, CTGF and integrin avb5 jointly activate the p38 MAPK and

JNK pathways, and increase the entry of p65 NF-kB and C-Jun into

the nucleus to induce IL-6 expression (76). CTGF can also activate

the ERK1/2, p38 MAPK and p65 NF-kB signaling pathways and

increase the production of inflammatory factors and chondrocyte

catabolic markers through synergistic interaction with IL-1b (77).

These findings imply that CTGF acts as an inducer of inflammatory

cytokines and promoter of inflammation in OA.
FIGURE 1

Functions and pathways of CTGF in OA development. CTGF is involved in promoting inflammation, matrix degradation and synovial fibrosis in
articular joints. Created with biorender.com.
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Current therapeutic strategy
targeting CTGF

CTGF plays a critical role in the physiological and pathological

states of cartilage, indicating it may be a therapeutic target for OA.

Although some scholars have considered rCTGF as a cartilage

regeneration strategy (78, 79), a large amount of recent data have

proven that suppressing CTGF expression and antagonizing CTGF

activities are effective in combatting OA. Antibodies, natural

compounds, gene knockout and other interventions were used to

target CTGF for OA treatment.

At the protein level, the therapeutic effects of targeting

CTGF are most focused on CTGF antibody. Pamrevluma (FG-

3019), a monoclonal antibody against CTGF, has already been in

phase II clinical trials for treatment of PIF and DMD (80). Its

application to OA treatment has not yet been reported. Miniato

developed CTGF antibodies against four different modules of

CTGF. Among them, IGFBP, VWC and CT module-specific

antibodies can promote PG synthesis (81). Other inhibitors of

OA that target CTGF include sodium hyaluronate (73), PGE2
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(Prostaglandin E2); (82), AP-1 inhibitor (Curcumin), IL-1b
inhibitor Berberine (59), CTGF upstream inhibitor ROCK

inhibitor (Y27632) and CTGF downstream inhibitors, such as

avb5 integrin-neutralizing antibody and NF-kB inhibitor IKK

(76). Berberine, is the main anti-inflammatory component of the

Chinese herb Rhizoma coptidis (Huanglian). Thirty-day

injection of Berberine was able to inhibit the expression of IL-

1b and cartilage degeneration induced by the collagenase (59).

Great advancements in gene therapy for OA has been

achieved through preclinical and clinical studies (83). Target

CTGF for OA treatment at the gene level were also investigated

recently. Caos study showed that miR-296-5p could inhibit the

abnormal increase in CTGF expression, preventing

chondrocyte apoptosis and cartilage matrix degradation in

IL-1b induced OA (77). LncRNA Pvt1 knockdown can

effectively improve collagen degradation caused by

abnormally elevated CTGF in diabetes-mediated OA (84).

Knocking out Ctgf by genome editing technology can

significantly inhibit the OA process (57). Gene therapy

targeting CTGF will be a promising strategy for OA.
TABLE 1 Different effects of CTGF on cartilage degeneration in vivo.

OA model Gender Suppress-/promote+
CTGF Expression

Experimental Schedule Scoring
System

Effect of
CTGF on
cartilage

Reference

Non-invasive PTOA
model/mice

Male – Lesion
severity

Not
Significant

(56)

DMM-induced OA
model/mice

Male – Lesion
severity

Not
Significant

(56)

DMM-induced OA
model/mice

Male/
female

– OARSI
score

Negative (57)

Collagenase-induced OA
model/mice

Male – Erosion
severity

Negative (58)

Collagenase-induced OA
model/rat

Female – Staining
intensity

Negative (59)

Surgery-induced cartilage
defect OA model/rat

Male + Lesion
severity

Positive (60)

MIA-induced OA model/
rat

Male + Lesion
severity

Positive (60)

MIA-induced OA model/
rat

Male + Wakitani
Scores

Positive (61)

Age-related OA model/
mice

Male + Staining
intensity

Positive (62)
fro
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Conclusion

CTGF is a multifunctional molecule that has great potential as

a diagnostic marker and therapeutic target in OA. As an

inflammatory factor, although CTGF plays an irreplaceable role

in promoting chondrogenesis, it also serves as a driving factor for

pathological changes in OA. It is far from clear why CTGF

functions differently and how it works. Other than exploring the

complex signal transduction and the different microenvironment,

investigating different binding targets and different distribution of

binding sites probably can explain varying effects of CTGF on

chondrocytes, and shed more lights on how can we target CTGF

as a treatment of OA.
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