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Motor imagery-based brain-computer interface (MI-BCI) has been largely studied to

improve motor learning and promote motor recovery. However, the difficulty in performing

MI limits the widespread application of MI-BCI. It has been suggested that the usage of

sensory threshold somatosensory electrical stimulation (st-SES) is a promising way to

guide participants on MI tasks, but it is still unclear whether st-SES is effective for all

users. In the present study, we aimed to examine the effects of st-SES on the MI-BCI

performance in two BCI groups (High Performers and Low Performers). Twenty healthy

participants were recruited to perform MI and resting tasks with EEG recordings. These

tasks were modulated with or without st-SES. We demonstrated that st-SES improved

the performance of MI-BCI in the LowPerformers, but led to a decrease in the accuracy of

MI-BCI in the High Performers. Furthermore, for the Low Performers, the combination of

st-SES and MI resulted in significantly greater event-related desynchronization (ERD) and

sample entropy of sensorimotor rhythm than MI alone. However, the ERD and sample

entropy values of MI did not change significantly during the st-SES intervention in the High

Performers. Moreover, we found that st-SES had an effect on the functional connectivity

of the fronto-parietal network in the alpha band of Low Performers and the beta band

of High Performers, respectively. Our results demonstrated that somatosensory input

based on st-SES was only beneficial for sensorimotor cortical activation and MI-BCI

performance in the Low Performers, but not in the High Performers. These findings help

to optimize guidance strategies to adapt to different categories of users in the practical

application of MI-BCI.
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INTRODUCTION

Brain-computer interface (BCI) constructs a communication
pathway and control channel between brain activity and various
devices, which enables users to interact with the external
environment without relying on the muscle tissues (Wolpaw
et al., 2002; Wang et al., 2019). In particular, BCIs based on
electroencephalography (EEG) signals have been developed for
different tasks and applications. The popular EEG-based BCI
paradigms include steady state visual evoked potential (SSVEP),
P300 event-related potential (ERP), motor imagery (MI), etc
(Wang et al., 2019). As a mental rehearsal of limb movement,
MI can induce neural activations over sensorimotor regions.
The cortical activities generated by MI are usually observed
as event-related desynchronization (ERD) or synchronization
(ERS) in alpha and beta rhythms that can be detected and used
for BCI control (Pfurtscheller and Neuper, 2001; Jeon et al.,
2011). The BCIs based on MI (MI-BCIs) promote motor-related
cortical plasticity and have been widely used in the field of
motor rehabilitation and motor learning. Several studies have
shown that MI-BCIs are effective in functional improvements of
limb and drive significant recovery in stroke patients (Mrachacz-
Kersting et al., 2016; Biasiucci et al., 2018).

Although MI-BCIs have a promising prospect in stroke
rehabilitation, many users seem unable to produce ideal brain
activity for the BCI control. There is about 15–30 percent of
subjects are incapable of controlling a BCI at all, this lack
of control is termed as “BCI illiteracy” or “BCI inefficiency”
phenomenon (Allison and Neuper, 2010). Meanwhile, the
MI-BCI performance of the most of remaining BCI literate
participants was also mediocre (Jeunet et al., 2014). Therefore,
various strategies need to be developed to improve MI-BCI
performance and facilitate the practical applications of MI-BCI.
In recent years, many researchers have devoted themselves to
developing advanced machine learning algorithms to increase
the decoding accuracy of brain signals. As invented for binary
classification problems, Support Vector Machine (SVM) is
capable of separating EEG signals between two classes by
building a hyperplane with the largest margin (Bhuvaneswari
and Kumar, 2013). In addition to traditional algorithms, deep
learning methods are also introduced in MI-BCI to increase
the classification accuracy (Zhao et al., 2019). Although, these
advanced algorithms have achieved a slew of promising results
in MI patterns recognition applications, the achievement of
higher decoding accuracy is still limited by the inability of
some subjects to produce reliable EEG responses (Ren et al.,
2020; Li et al., 2021). This may be due to the subjects’ inability
to perform MI tasks properly. Therefore, several research
works focused on developing appropriate MI guidance strategies
to assist subjects to perform MI efficiently and accurately.
Choi et al. found that providing a virtual reality (VR) as
guidance induces neural patterns with greater discriminability
(Choi et al., 2020). Similar results were also reported by
Škola et al. where VR-based visual guidance succeeded in
the improvement of the MI-BCI performance (Škola et al.,
2019). In addition, somatosensory afference, which is essential
for building internal body representation in MI tasks, has

also attracted much attention recently. Compared with visual
guidance, somatosensory afference is a more natural guidance
strategy for subjects (Cincotti et al., 2007). Yao et al. demonstrated
that enhancement of MI-BCI performance can be achieved by
using tactile stimulation to optimize guidance strategy (Yao
et al., 2013). Shu et al. showed in stroke patients that the
application of tactile stimulation to the ipsilateral wrist achieved
stronger motor-related cortical activation (Shu et al., 2018a).
As a promising tool for motor rehabilitation, neuromuscular
electrical stimulation (NMES) can induce muscular contraction
and convey somatosensory afference. Yi et al. demonstrated
that electrical stimulation combined with MI can increase
the decoding accuracy of neural patterns (Yi et al., 2017).
Reynolds et al. showed that the combination of MI and NMES
induces a stronger sensorimotor rhythms ERD than MI alone
(Reynolds et al., 2015). Although somatosensory stimulation is
appropriate to improve motor imagery patterns, stimulation with
excessive intensity may interfere with MI patterns and makes
users unable to concentrate on imagining movement (Corbet
et al., 2018). Recently, Tu-Chan et al. showed that sensory
threshold somatosensory electrical stimulation (st-SES) can
modulate activity in the sensorimotor cortices, and thus promote
the recovery of hand motor function (Tu-Chan et al., 2017).
NMES involves the application of repetitive transcutaneous
electrical stimulation to superficial skeletal muscles, with the
main objective to generate visible muscle contractions by
depolarizing motor axons. In the same way that motor axons
are recruited by NMES, sensory axons are also depolarized
(Bergquist et al., 2011). However, devices such as NMES units
can also deliver sensory threshold stimulation. Compared with
conventional NEMS, st-SES can convey proprioceptive signals
primarily by activating sensory axons without triggering large
muscular contraction. Veldman et al. observed that a larger
activation of sensorimotor regions and cortical connectivity
was associated to somatosensory inputs in the form of st-
SES (Veldman et al., 2018). Corbet et al. showed that st-SES
during MI increased connectivity between the frontal-parietal
network and significantly improved the accuracy of classifier
for discriminating MI from resting state (Corbet et al., 2018).
These studies demonstrated that st-SES is an effective way
to modulate the brain patterns of somatosensory cortices and
promote BCI performance.

Although past studies have shown that the guidance based
on somatosensory afference contributes to the improvement
of BCI performance, somatosensory afference guidance does
not appear to be effective for all subjects. Park et al. reported
that BCI illiterate subjects achieve significantly higher MI-
BCI classification accuracy when subjects are asked to perform
the somatosensory-motor imagery, but BCI literate subjects
experience a slight decrease in classification performance (Park
et al., 2021). In addition, Kaiser et al. showed that cortical effects
of BCI training are only found in BCI illiterate subjects but not in
BCI literate subjects (Kaiser et al., 2011). This means that some
guidance strategies may not be suitable for all users. However,
most of the previous studies have not explored the impact
of somatosensory afference guidance on different categories of
subjects. To our knowledge, no study has reported the different
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effects of somatosensory stimulation on MI performance in high
and low BCI performers, which is not conducive to adapt the
guidance strategy to each user. Therefore, although st-SES has
shown great potential in fostering BCI performance, it is worth
exploring whether st-SES is appropriate to assist subjects with
different BCI performance.

In this study, we aim to investigate the effect of combining
MI and st-SES on cortical activation and MI-BCI classification
performances in high and low BCI performers. Considering the
physical and psychological differences between high and low BCI
performers (Shu et al., 2018b), we presume that st-SES have
different effects on the two categories of subjects. In addition,
Corbet et al. demonstrated the st-SES is feasible in improving
the accuracy of discriminating MI combined with st-SES and
resting state (Corbet et al., 2018). However, the stimulation effect
of st-SES on a brain-switch BCI used to distinguish between task
state and resting state is still unclear. Thus, the current study
focused on evaluating brain-switch BCI performance when st-
SES was constantly applied during both MI task and resting
state. Offline BCI performances were evaluated with or without
st-SES modulation. Further, to investigate the effect of st-SES
on cortical activation, we compared the activation intensity of
the sensorimotor cortex between MI combined with st-SES and
MI alone.

MATERIALS AND METHODS

Participants
Twenty able-bodied subjects (11 males, mean age 23.4 ± 0.6,
right-handed) participated in this study. All participants have no
history of neurological or psychiatric disorders. The experimental
procedure described in this study was approved by the ethical
committee of Tianjin University. The detailed process of the
experiment was clearly explained to each participant before
experimental data were recorded. All participants signed an
informed consent form.

EEG Recording and St-SES Intervention
During the whole experiment, subjects were instructed to sit in
a relaxed position about 1.5m in front of the screen with palms
facing up. EEG signals were recorded using the SynAmps2 system
(Neuroscan, Victoria, Australia) with 60 standard Ag/AgCl
electrodes, which were placed on the scalp according to the
international 10–20 system. A ground electrode was placed on
the forehead and a reference electrode was placed on the nose.
EEG signals were recorded at a sampling rate of 1,000Hz and a
notch filter with 50Hz was used in the acquisition process. The
impedances were kept under 10 kΩ during the data acquisition.

St-SES was generated using VitalStim Therapy (Chattanooga
Group, TN, USA). Two electrodes were placed on the
participants’ flexor digitorum superficialis at the anterior face
of the right forearm. The frequency of stimulation was set
to 30Hz for all participants. The stimulation amplitude of st-
SES was individually evaluated for each participant before EEG
recordings. The amplitude was gradually increased from 0mA
until the participants reported a closure sensation of the affected
hand, while the amplitude was adjusted to avoid eliciting any

visible movement. The stimulation intensity varied between 4
and 6mA according to the subject-dependent sensory threshold.

Design of the Experimental Paradigm
This study contained four different experiment conditions
(MI, SES, MI-SES, and Rest). Before the experiment began,
participants performed gripping movements to familiarize
themselves with the imaginary proprioceptive sensations. For
MI and MI-SES conditions, the instructions given to the
participants were the following: “You have to perform kinesthetic
imagery of right-hand grasp movement (RH-MI) while seeing
the visual guidance on the screen. During the task period,
you should imagine the proprioceptive sensation of the hand
closing without eliciting any muscular contraction. You should
perform continuous MI instead of repetitive MI and keep a
consistent MI strategy across trials.” For SES and Rest conditions,
the instructions were the following: “You should keep fully
relaxed and avoid any movement of limbs. You have to avoid
paying attention to your hands and should not think about
your hands.” In SES condition, the participants received st-SES
and were instructed to remain at rest. In the MI-SES condition,
the participants were instructed to perform RH-MI and st-SES
was applied on the participants’ forearms during MI. In MI
and Rest conditions, even if the st-SES was not applied, the
electrodes were anyway placed on the skin to ensure consistent
tactile stimulation.

The experiment included four runs. Each run consisted of four
conditions (10 trials per condition) and trials were performed
in random order, with 40 trials per condition at the end of
the experiment. The number of trials for each condition was
consistent with Corbet et al.’s study to eliminate discrepancies in
results that might be caused by trial size (Corbet et al., 2018). The
experimental paradigm of each trial is represented in Figure 1.
The trial began with a green cross which appeared on the center
of the screen as a preparation cue for the task and lasted for
1 s. Then, an initiation cue in the form of a green cross with or
without a red arrow is presented in the middle of the screen for
4 s, indicating the onset of the task period. During this period,
participants should perform RH-MI (red arrow on the green
cross) or stay at rest (green cross alone) until the cue disappeared.
In order to prevent the attention on MI from being disturbed by
st-SES in MI-SES condition, st-SES was not activated until 2 s
after the task period onset. Similarly, in the SES condition, st-
SES was activated 2 s after the task began. When the initiation
cue disappeared, the screen turned black. The time interval
between trials varied randomly between 3 and 5 s to prevent
adaptation. The participants were advised to restrict movements
such as blinking or swallowing during the task period which may
produce artifacts.

Pre-Processing
For decoding analysis, EEG signals were only filtered into
8–28Hz and down sampled to 250Hz. For the rest of the
analysis, raw EEG data were firstly band-pass filtered in the
frequency band between 0.5 and 100Hz to remove high-
frequency noise and baseline drift. The signals were then down
sampled to 250Hz. Independent component analysis (ICA)
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FIGURE 1 | The task procedure of experimental condition. (A) MI condition. In each trial of MI condition, the subjects were required to perform MI task according to

the cue. (B) SES condition. In each trial of SES condition, the subjects were asked to remain at rest and received st-SES intervention. (C) MI-SES condition. In each

trial of MI-SES condition, the subjects were instructed to perform MI task according to the cue and st-SES was applied to subjects during MI. (D) Rest condition. In

each trial of Rest condition, the subjects were asked to remain relax.

was applied to filter out the components related to ocular
and electromyographic artifacts. The rank-deficiency problem
was accounted for by reducing the number of ICs. We then
performed the surface Laplacian transform to eliminate the low-
frequency coupling among electrodes. After that, the noisy trials,
which were detected post-experiment by visual inspection, were
discarded in the analysis.

Classification Analysis
EEG features of each condition were extracted by the common
spatial pattern (CSP) algorithm. The CSP algorithm is commonly
used to extract discriminative spatial features from EEG by
maximizing the variance difference between two classes. The data
of the period from 1 to 5 s after the preparation cue appeared were
utilized for decoding analysis. The features were extracted from
the frequency band between 8 and 28Hz which was associated
with sensorimotor rhythm. The log-variance of the first and
last four components generated by CSP filters were selected
to construct feature vectors. After that, a SVM classifier with
a linear kernel was used to classify the users’ neural patterns,
with the regularization parameter C of the classifier set to the
default value of 1. One classifier was trained to discriminate
MI-SES condition from SES condition, and another classifier
was used to discriminate MI condition from Rest condition. In
addition, we also investigated the accuracy of each of the two class
classifiers that discriminates MI-SES or SES conditions from the
Rest condition. All classifiers were evaluated through the leave-
one-out cross-validation method. The 80 trials of two class were
randomly divided into forty sets. Each set included one sample of
each class. In each fold, one set was selected as the testing set and
the remaining samples as the training set. The final classification
accuracy was the average of all fold classifications.

The participants were assigned to Low and High performers
based on their classification accuracy in discriminating MI
condition from Rest condition described in the previous
paragraph. In this study, High performers were defined as those

with a classification accuracy of more than 80%. According to
the decoding accuracy, 10 participants were assigned to High
performers group, and the other 10 participants were assigned
to the Low performers group. Previous studies typically set the
inefficiency threshold for two-classMI-based BCI (distinguishing
two brain states) at 70% accuracy (Brunner et al., 2010; Shu
et al., 2018b). However, Allison and Neuper showed that the
inefficiency threshold should be determined based on the type
of BCI (Allison and Neuper, 2010). Compared with two-class
BCI, brain-switch BCI is designed to detect only one brain state
(Pfurtscheller et al., 2010). In addition, some studies suggested
that a threshold of at least 80% should be used to determine BCI
literate subjects (Kaplan et al., 2016; Horowitz et al., 2021). Thus,
we used a threshold of 80% in the brain-switch BCI.

Time–Frequency Analysis
In order to evaluate the effect of somatosensory input on cerebral
cortex activity, we computed event-related spectral perturbation
(ERSP) for three conditions (MI, SES, and MI-SES). ERSP
describes the power changes of EEG signals in the time-frequency
domain (Makeig et al., 2004). The increase or decrease of
power relative to baseline in a specific frequency band can be
represented in the form of ERS or ERD. Some studies have
demonstrated that somatosensory input has a significant effect on
cortical activation of MI. In this study, we mainly compared the
differences in ERSP values between MI and MI-SES conditions
for each group. The calculation formula of ERSP for n trials was
defined as follow:

ERSP
(

f , t
)

=
1

n

n
∑

k=1

Fk(f , t)
2 (1)

where Fk(f , t) represents the spectral estimation of kth trial at
frequency f and time t. The short-time Fourier transform (STFT)
with a Hanning-tapered window from EEGlab was applied to
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compute the ERSP (dB) (Delorme and Makeig, 2004). Window
width was set as 256 sampling points (Yi et al., 2017). The ERSP
values were normalized by subtracting the mean power changes
during a baseline period of [−1−0.2] s. The average ERSP values
across all subjects at key channel C3 were mainly analyzed. For
quantifying the cortex activation in each condition, ERSP values
at channel C3 were averaged over task time (3–5 s) and within
alpha (8–13Hz) and beta (14–28Hz) rhythm bands. A paired
t-test be used to compare the averaged ERSP values between MI-
SES and MI conditions in each rhythm band for each group
only if the normality test (Shapiro–Wilk test) was satisfied. If
the normality was not satisfied, the Wilcoxon signed-rank test
was used.

Further, the coefficient of determination r2 was calculated to
assess the differences in signal spectra between MI and resting
state with or without st-SES modulation. The r2 value is between
0 and 1, where r2 value close to 1 indicates that two states are well
discriminative, and r2 value close to 0 indicates that two states can
be difficult to distinguish (Meng et al., 2018). For each subject, r2

value of each channel was averaged over the frequency band of
[8 28] Hz and time interval of [3 5] s, and then averaged across
all subjects.

Signal Complexity Analysis
The brain is a complex non-linear system, and neural activity
measured by EEG signals exhibits non-linear dynamic properties.
To estimate the complexity of the EEG signal, the sample entropy
of EEG data for MI-SES and MI conditions was calculated.
Sample entropy (SampEn) is the negative natural logarithm of
the conditional probability that two data sequences are similar
for lengthm remain similar for lengthm+ 1, where a larger value
corresponds to the greater probability of generating new patterns
in time series and the higher complexity in sequences (Richman
and Moorman, 2000). Therefore, SampEn can be used to assess
the complexity of EEG during motor imagery. The SampEn was
computed as follow:

For a time series X with N data points, m consecutive X data
points were extracted from that to form a sequence Xm (i ).

Xm (i) = {xi, . . . , xi + m − 1} , 1 ≤ i ≤ N − m (2)

where m is the embedding dimension, i represents starting
at the ith point. The distance between two sequence Xm(i)
and Xm(j) is denoted as d[Xm(i), Xm(j)] which is defined to be
the maximum absolute difference between their corresponding
scalar components. The number of all sequence pairs with the
d[Xm(i), Xm(j)] ≤ r is counted and represented as Bmi (r). The
r denotes the tolerance and is defined as r = g × SD, where SD
is the standard deviation of the time series X. Then, a parameter
Bm(r) can be defined as:

Bm (r) =
1

N − m

N−m
∑

i = 1

Bmi (r)

N − m − 1
(3)

After the embedding dimension is set to m + 1, the above
process is repeated to obtain Bm+1 (r). Finally, the SampEn of
time series is defined as:

SampEn (x,m, r) = − ln
Bm + 1 (r)

Bm (r)
(4)

Here, the embedding dimension was set as m = 2 and the
tolerance was set as r = 0.1 × SD. The baseline SampEn of each
trial was computed using EEG data in [−1, −0.2] s. To obtain
the relative SampEn, SampEn values within task period [3 5] s
were normalized by subtracting the baseline SampEn value and
divided by this same baseline SampEn value. Then the relative
SampEn values of the trials in each condition were averaged. The
relative SampEn values at channel C3 and within [8 28] Hz were
calculated for further analysis. Then, a statistical analysis was
performed to compare relative SampEn values between MI-SES
and MI conditions in each group.

Functional Connectivity Analysis
In order to inspect differences in brain area interactions between
High performers and Low performers, the weighted phase lag
index (wPLI) was used for functional connectivity analysis. The
wPLI is a method to estimate the asymmetry in the distribution of
instantaneous phase differences between two time series (Vinck
et al., 2011). The larger the wPLI value, the greater the phase
consistency between brain regions. The wPLI has been shown
to be insensitive to zero-lag phase relations typically caused by
contaminations from volume conduction. The wPLI is defined as:

wPLIxyt =
n−1 ∑n

t = 1

∣

∣imag
(

sxyt
)
∣

∣ sign(imag(sxyt))

n − 1
∑n

t= 1

∣

∣imag
(

sxyt
)∣

∣

(5)

whereby imag (sxyt) indicates the imaginary component of the
cross-spectrum between time series x and y at time point t, and
sign denotes the sign function (−1,+ 1 or 0).

In this case, the EEG of 30 channels overlying the frontal,
sensorimotor, and parietal areas was selected to construct a
connectivity network. These channels include F line channels
(F1–F6), FC line channels (FC1–FC6), C line channels (C1–C6),
CP line channels (CP1–CP6) and P line channels (P1–P6). Here,
wPLI values were calculated from EEG data within time period
of [3 5] s and frequency range of alpha (8–13Hz) and beta (14–
28Hz) by function ft_connectivity_wpli.m implemented in the
Fieldtrip toolbox (Oostenveld et al., 2011). After that, the wPLI
values in each pair of channels were normalized by subtracting
the mean wPLI value of baseline period [−1,−0.2] s and divided
by the standard deviation of wPLI value during the baseline
period. Then, the statistical significance of non-zero wPLI values
was assessed by a permutation test based on the t-statistic. The
significant functional connectivity between channels was defined
as the p-value below the critical threshold of 0.005 according to
previous studies (Jin et al., 2017; Li et al., 2020).
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RESULTS

Classification Performance
The offline accuracies of brain-switch BCI in High Performers
group and Low Performers group are presented in Figure 2.
The classification accuracies for both High and Low Performers
groups were normally distributed, as assessed by the Shapiro–
Wilk test (p > 0.05). We compared the performance of the
MI-SES vs. SES classifier and MI vs. Rest classifier. For High
Performers group, a paired t-test revealed a significant decrement
in classification accuracy for MI-SES vs. SES classifier compared
with MI vs. Rest classifier (0.83±0.07 vs. 0.89±0.03, p <

0.01). More specifically, nine out of 10 participants had lower
classification accuracy with the st-SES intervention. However, the
accuracy ofMI-SES vs. SES classifier was significantly higher than
that ofMI vs. Rest classifier in Low Performers group (0.74± 0.09
vs. 0.68± 0.07, p= 0.047). Most of the Low Performers achieved
better classification accuracy with the st-SES intervention, but
still, three out of 10 participants showed a slight reduction in
accuracy of MI-SES vs. SES classifier compared with MI vs.
Rest classifier.

Furthermore, we investigated whether somatosensory
input could make the neural pattern in the MI task more
distinguishable from that in the resting state. We compared
the classification accuracies of classifiers that distinguish three
conditions (MI-SES, MI, SES) from the Rest condition in each
group (Figure 3). Through one-way repeated measures ANOVA,
we found that there was a significant difference in accuracy
among the three classifiers in both High Performers (F(2, 18)
= 80.3, p < 0.01) and Low Performers (F(1.3, 11.67) = 24.78, p
< 0.01). In the High Performers group, the Bonferroni post-hoc
analysis indicated that the accuracy of both MI-SES vs. Rest and
MI vs. Rest classifiers was significantly higher than that of the
SES vs. Rest classifier (0.61 ± 0.06, p < 0.01 both comparisons).
However, there was no significant difference between MI-SES
vs. Rest classifier and MI vs. Rest classifier (0.87 ± 0.07 vs.
0.89±0.03). Specifically, only five out of 10 participants achieved
higher accuracy in MI-SES vs. Rest classifier as compared with
the performance in MI vs. Rest classifier. For the Low Performers
group, the Bonferroni post-hoc analysis demonstrated that
MI-SES vs. Rest classifier achieved significantly higher accuracy
than MI vs. Rest classifier (0.77 ± 0.06 vs. 0.68 ± 0.07, p <

0.01). All participants in Low Performers group achieved better
classification performance in MI-SES vs. Rest classifier than in
MI vs. Rest classifier. In addition, the classification performance
of both MI-SES vs. Rest and MI vs. Rest classifiers was greater
than that of the SES vs. Rest classifier (0.56 ± 0.11, p < 0.01 and
p = 0.025, respectively). From the results of these analyses, the
st-SES only improved the classification performance of the Low
Performers group, but not the classification accuracy of the High
Performers group.

Time-Frequency Results
In order to better understand the effect of somatosensory
stimulation on neural response during MI, we analyzed the band
power changes of EEG in the sensorimotor cortex under three
conditions (MI-SES, MI, SES). The average time-frequency maps

of ERSP values at channel C3 (in the contralateral hemisphere)
in each group are presented in Figure 4. The ERSP within
alpha and beta rhythms can be used as a measure of cortical
activation. As shown in Figure 4, ERD could be observed in
alpha and beta frequency bands for all conditions in both groups,
indicating that the sensorimotor cortex was activated in all three
conditions. However, more visible ERD was found in MI-SES
condition after st-SES was activated compared with MI and
SES conditions. This result is consistent with previous studies
showing that the motor cortex excitability can be improved
by the combination of MI and somatosensory stimulation
(Corbet et al., 2018; Vidaurre et al., 2019). In addition, the
ERD patterns during MI tasks indicated that motor cortex
activation in the High Performers group was stronger than
that in the Low Performers group. Moreover, compared with
High Performers group, the Low Performers group had difficulty
maintaining a consistent ERD pattern during the task period
under MI conditions.

Additionally, in order to quantitatively analyze the
effectiveness of st-SES on sensorimotor cortical activation,
we compared averaged ERSP values between MI-SES and
MI conditions in different EEG frequency bands, including
the alpha (8–13Hz) and beta (14–28Hz) (Figure 5). The
Shapiro–Wilk test indicated that the averaged ERSP values
in the alpha band for both High and Low Performers group
were normally distributed (p > 0.05). In the beta band, the
averaged ERSP values in the MI condition of High Performers
group (p = 0.034) and the MI-SES condition of Low Performers
group (p < 0.01) were not normally distributed, as assessed by
Shapiro–Wilk test. For High Performers group, the averaged
ERSP values of both alpha and beta bands were lower in
MI-SES condition compared with the MI condition, yet these
differences were not significant (alpha: paired t-test, p = 0.065;
beta: Wilcoxon signed-rank test, p = 0.139). In contrast, for
the Low Performers group, the averaged ERSP values of both
alpha and beta bands in MI-SES condition were significantly
smaller than those under MI condition (alpha: paired t-test,
p = 0.018; beta: Wilcoxon signed-rank test, p < 0.01). The
unpaired t-test confirmed that there was no significant difference
in average ERSP values in the SES condition between the
High Performers group and Low Performers group (alpha:
p = 0.379; beta: p = 0.11). These results suggested that
somatosensory stimulation combined with motor imagery could
significantly promote lateralized sensorimotor cortex activities
in Low Performers.

The spatial distributions of r2 values for the High Performers
and Low Performers groups are presented in Figure 6. The
topographies of the r2 values revealed that the discriminative
information was mostly focused on the left somatosensory
cortex. For High Performers group, the r2 values for comparison
between MI-SES and SES conditions were lower than those
for comparison between MI and Rest conditions, implying
that st-SES modulation reduced the separability of neural
patterns between MI and resting state. On the contrary, for
the Low Performers group, st-SES modulation elicited an
enhancement in r2 values for comparison between MI and
resting state.
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FIGURE 2 | Offline accuracies of brain-switch BCI with or without st-SES modulated. (A) Classification accuracy results in High Performers group. (B) Classification

accuracy results in Low Performers group. Error bars represent standard error of mean. “*” indicates p < 0.05, “**” indicates p < 0.01.
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FIGURE 3 | Offline accuracies of distinguishing three conditions (MI-SES, MI, SES) from Rest condition. (A) Classification accuracy results in High Performers group.

(B) Classification accuracy results in Low Performers group. Error bars represent standard error of mean. “*” indicates p < 0.05, “**” indicates p < 0.01.

Sample Entropy Results
The SampEn values provided further insight into the effects
of somatosensory stimulation on EEG complexity. The relative
SampEn values of channel C3 in MI-SES and MI conditions
for both High Performers and Low Performers are presented
in Figure 7. Both MI-SES and MI conditions showed higher
relative SampEn values in High Performers group compared with

Low Performers group. The relative SampEn values in MI-SES
condition for High Performers were not normally distributed,
as assessed by Shapiro–Wilk test (p = 0.032). In the High
Performers group, although the relative SampEn values under
MI-SES conditions were greater than those in the MI condition,
there was no significant difference in the relative SampEn values
of the two conditions (Wilcoxon signed-rank test, p = 0.169).
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FIGURE 4 | The average time-frequency maps over C3 channel for all High Performers and all Low Performers. The period [1 5] s indicated the MI or rest task. The

period [3 5] s corresponds to st-SES in MI-SES and SES conditions.

FIGURE 5 | Averaged ERSP values of alpha (8–13Hz) and beta (14–28Hz) rhythms during period [3 5] s for MI-SES and MI conditions. (A) High Performers group.

(B) Low Performers group. Error bars represent the standard deviation. “*” indicates p < 0.05, “**” indicates p < 0.01.

For the Low Performers group, however, we found that the
relative SampEn values were significantly higher in the MI-
SES condition compared with the MI condition (paired t-test, p
< 0.01).

Functional Connectivity Results
Figure 8 shows the functional connectivity alterations between
MI task and resting state in each group. These alterations
in functional connectivity involved both intra-hemispheric
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FIGURE 6 | Averaged topographical distributions of r2 during period [3 5] s for all High Performers and all Low Performers.

and inter-hemispheric interactions. Notably, we detected phase
consistency of the contralateral sensorimotor network decreased
significantly in theMI task compared with the resting state. In the
High Performers group, a lateralized network at the alpha band
could be clearly observed in the contralateral hemisphere during
MI-SES and MI conditions. However, no obvious differences
in the frontoparietal network were found between the MI-SES
condition and MI condition in the alpha band. In contrast,
for the beta band, the number of functional connectivity in
the left fronto-parietal network was higher in the MI condition
compared with the MI-SES condition. For the Low Performers
group, a lateralized network at the alpha band was only found
in the MI-SES condition, but not in the MI condition. In the
beta band, there were no obvious differences in the contralateral
fronto-parietal network between the MI-SES condition and the
MI condition.

DISCUSSION

In the present study, we investigated the effect of the combination
of st-SES and MI on subjects with different BCI performances.
The results demonstrated that st-SES combined with MI fostered
the decoding accuracy of brain-switch BCI in Low Performers
group, but resulted in a decrease in the brain-switch BCI accuracy
in High Performers group. In addition, we found that st-SES
only improved the neural response patterns during MI in Low
Performers group, but not in High Performers group.

Differences in Classification Performance
MI-BCI is an effective tool to promote recovery in stroke patients.
However, most users are unable to generate reliable neural
response patterns to control MI-BCI effectively. This limits the
application of MI-BCI in clinical practice. Over the past few
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FIGURE 7 | Averaged relative sample entropy values of C3 channel in MI-SES

and MI conditions. Error bars represent standard error of mean. “**” indicates

p < 0.01.

decades, intensive research have been conducted to improve
the performance of MI-BCI. Some researchers are devoted to
increasing MI-BCI accuracy by developing feature extraction
and classification algorithms (Chen et al., 2020; Hang et al.,
2020). Although these techniques have achieved some success,
further improvements in BCI performance are still impeded by
the inconsistent MI patterns produced by subjects unfamiliar
with MI (Vidaurre et al., 2019; Ren et al., 2020). Thus, it is
necessary to develop suitable MI guidance strategies to help
subjects understand how to perform MI properly.

Visual and somatosensory stimulation are two commonly
used guidance strategies (Ren et al., 2020). Compared with
visual stimulation, somatosensory stimulation has the advantage
of not occupying the vision and providing more natural
guidance for MI tasks (Zhang et al., 2021). St-SES, which can
provide somatosensory afference to the targeted limb, has been
demonstrated to enhance the activation of the sensorimotor
cortex during MI tasks and the performance of MI-BCI (Corbet
et al., 2018). However, the results in this study show that the
guidance strategy based on st-SES does not seem to be effective
in improving the MI-BCI accuracy for all subjects. With the
integration of st-SES, the classification accuracy of distinguishing
MI task from resting state was significantly improved in the Low
Performers group. In contrast, we found that the performance
of brain-switch BCI was significantly reduced when st-SES was
applied in the High Performance group. Therefore, st-SES may
have different effects on neural response patterns in High and
Low Performers groups. This interpretation is consistent with
the results showing that the r2 values between MI and resting

state were greater during the st-SES intervention in the Low
Performers group, where st-SES caused a decrease in the r2 values
for the High Performers group. This indicated that the st-SES
intervention made the brain patterns between MI and resting
state more separable in the Low Performers group while reducing
the distinguishability of neural patterns between MI and resting
state in the High Performers group.

In addition, we also observed that the decoding accuracy of
the MI-SES vs. Rest classifier was significantly higher than that
of the MI vs. Rest classifier only in the Low Performers group,
but not in High Performers group. This may be due to the lack of
significant difference in sensorimotor cortical activation between
MI-SES condition and MI condition in the High Performers
group, whereas st-SES induced greater cortical activation during
MI in the Low Performers group. This interpretation is consistent
with the results showing that the significant differences in ERSP
values betweenMI-SES andMI conditions were found only in the
Low Performers group, but not in the High Performers group.
However, these findings are inconsistent with a previous study
in which the classification accuracy was significantly greater
with MI-SES condition compared with MI condition. In fact,
Corbet et al. found that st-SES modulation contributed to the
improvement of the MI-BCI performance when the data of the
first day was used as the training set and the data of the second
day was used as the test set (Corbet et al., 2018). When the same
day data was divided into training and test sets, there was no
significant difference in classification performance between the
MI-SES condition and the MI condition. Vidaurre et al. showed
that whereas decoding neural patterns from MI conditions using
a classifier trained on data from MI-SES conditions results in
better classification accuracy, st-SES had no significant effect
on the accuracy of identifying MI tasks in MI-SES conditions
(Vidaurre et al., 2019). In addition, previous studies have not
compared the differences in MI-BCI performance between the
High and Low Performers groups during the st-SES intervention
(Corbet et al., 2018; Vidaurre et al., 2019). This may obscure
the reality that st-SES has different effects on different categories
of subjects.

Dissimilarity in Neural Response Patterns
It has been previously demonstrated that somatosensory
stimulation combined with MI can increase sensorimotor
cortical activation intensity. The results of this study further
indicated that st-SES had different effects on neural patterns
of MI in high and low BCI performers. As demonstrated in
time-frequency analysis, the sensorimotor cortex activation in
Low Performers group, evaluated with averaged ERSP values,
was significantly higher during the MI-SES condition than
the MI condition. In the High Performers group, however,
no significant difference in averaged ERSP values was found
between the MI-SES and MI conditions, neither in the alpha
or beta bands. One possible interpretation for these results is
that differences in motor memory of a given movement resulted
in varying feelings of st-SES intervention between the High
Performers and the Low Performers. MI has been defined as
a mental event in which motor memory of a prior movement
is retrieved from the brain, resulting in the experience of
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FIGURE 8 | The connectivity networks of alpha and beta rhythms for MI-SES and MI conditions. (A) High Performers group. (B) Low Performers group. The line

between channels represents functional connectivity with significantly different wPLI values between MI and resting states.

re-performing the movement (Lacourse et al., 2005). Indeed,
experts with better motor memory performance produce more
effective motor imagery for specific movements than novices
(Fourkas et al., 2008; Wei and Luo, 2010). This is consistent
with our finding that the amplitude of ERD patterns of MI
task was higher in the High Performers group compared with
the Low Performers group. However, MI involves not only the
mental simulation of a movement but also the anticipation of
sensory consequences of imagined movements (Kilteni et al.,
2018; Vidaurre et al., 2020). Recent evidence has shown that after
the motor command is sent, motor imagery, similar to motor
execution, predicts both the body state following the upcoming
movement and the likely sensory consequences produced by the
movement (Kilteni et al., 2018). During motor execution, these
predictions are combined with the actual sensory feedback of
movement to generate an accurate estimate of the body state.
For motor imagery, the representation of our body state can
be built up by somatosensory afferents from external devices
(Corbet et al., 2018). Moreover, the artificial somatosensory
afference, which is more consistent with sensory feedback
generated by actual action, is more beneficial for properly
representing the body state (Tajadura-Jiménez et al., 2017).
Appropriate body representation is critical for MI performance
(Ehrsson et al., 2003). Although the st-SES intervention could
provide proprioceptive information, there was still a gap between
this information and the sensory feedback elicited by the
actual movement. High Performers with more efficient motor
memory may produce more accurate sensory predictions for a
given imagined movement. As demonstrated by Mihara et al.,
sensory feedback inconsistent with the neural responses failed

to induce enhancement in cortical activation (Mihara et al.,
2012). The High Performers may be more likely to perceive
mismatches between the somatosensory afferents elicited by st-
SES and sensory predictions. This may be detrimental to the
formation of better body representations through st-SES in the
High Performers, which resulted in the sensorimotor cortical
activation under MI-SES condition was not significantly different
from that in the MI condition. In contrast, Low Performers may
be unable to produce accurate sensory predictions according to
motor memory during MI. The previous study has shown that
new memories associated with external interventions are created
when existing memories cannot predict sensory consequences
accurately and precisely (Oh and Schweighofer, 2019). Thus,
st-SES intervention may help the Low Performers to develop
motor memory strategies related to artificial somatosensory
afference during MI. This interpretations is consistent with the
results showing that the ERSP values of MI-SES condition were
significantly smaller than those of MI condition in the Low
Performers group.

Additionally, the results of the analysis in the time-frequency
domain showed that there was a clear ERD pattern appeared in
the contralateral sensorimotor cortex during the SES condition.
Thismay be themain reason for the poor separability of the signal
spectrum between MI-SES condition and SES condition in the
High Performers group. The ERD pattern in the SES condition
may be due to the somatosensory stimulation elicited by st-SES
that focused the subjects’ attention on the limb sensation. Indeed,
Yao et al. showed that the somatosensory cortex was activated
when subjects shifted their somatosensory attention to a body
part (Yao et al., 2016).
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The activity of brain rhythms can also be quantitively analyzed
by signal complexity. The previous study has demonstrated that
entropy-based methods can be used to quantify the complex
dynamics of brain activity (Song et al., 2012). Sun et al.
have shown that the activation of the motor cortex can be
represented by the entropy-based estimate (Sun et al., 2017).
Also, Hanslmayr et al. demonstrated that the desynchronization
of sensorimotor rhythm is positively related to the complexity of
information processed in the brain (Hanslmayr et al., 2012). In
this study, the relative sample entropy of the MI-SES condition
was significantly higher than that of the MI condition in the Low
Performers group. In the High Performers group, there was no
significant difference in relative sample entropy between the MI-
SES condition and the MI condition. This could be attributed
to the fact that st-SES intervention promoted the activation of
the sensorimotor cortex during MI in the Low Performers group,
but had no significant effect on the cortical activation in the High
Performers group.

Variation in Functional Connectivity
Functional connectivity quantifies the information exchange
across electrodes, allowing us to inspect the communication
between brain regions during the MI task. Previous study
demonstrated that connections between motor areas increased
during MI, while information exchange was suppressed in the
resting state (Li et al., 2019). Therefore, we expected that there
was a significant increase in frontal-parietal connectivity during
the MI task compared with the resting state. However, the results
of wPLI showed that in the contralateral sensorimotor network,
the functional connectivity during the MI task was lower than
that during the resting state. One possible reason for these results
is that the decrease in functional connectivity may be related
to the cognitive load required for MI. Indeed, Leeuwis et al.
found that functional connectivity during the resting state was
greater than that during MI in both BCI illiterate and BCI literate
subjects (Leeuwis et al., 2021). Mylonas et al. have shown that the
decrements of phase synchronization at the alpha and beta bands
are associated with the sensorimotor integration that contributes
to motor performance (Mylonas et al., 2016). Also, Tzvi et al.
reported that the decrease of alpha phase coupling in frontal-
parietal network may reflect the allocation of cognitive resources
to promote memory encoding (Tzvi et al., 2018). Therefore, our
findings suggest that the decrements in phase synchronization
of the sensorimotor network are critical for performing MI
tasks. In the Low Performers group, the number of functional
connectivity representing alpha phase desynchronization was
obviously increased in the MI-SES condition relative to the
MI condition and focused on the contralateral sensorimotor
cortex. These alterations in functional connectivity may imply
that Low Performers performed better MI and had greater
sensorimotor cortex activation in the MI-SES condition than
in the MI condition. In the High Performers group, there was
no discernible difference in the functional connectivity between
the MI-SES condition and MI condition in the alpha band. In
addition, the number of functional connectivity representing
beta phase desynchronization was higher in the MI condition
compared with the MI-SES condition. This may imply that the

st-SES intervention was not beneficial for the High Performers
to perform the MI task. In addition, for the High Performers
group, we found that the differences in functional connectivity
alterations between the MI-SES condition and the MI condition
were mainly observed in the beta band. On the other hand,
for the Low Performers group, the differences between the
MI-SES and MI conditions focused on the alpha band. This
may be due to the distinct roles of the alpha and beta bands
during MI. Previous studies demonstrated that alpha rhythm
is associated with memory retrieval, whereas beta rhythm is
involved in motor planning and motor preparation (Tzagarakis
et al., 2010; Meirovitch et al., 2015). As mentioned above, st-SES
intervention may have a positive effect on motor memory in the
Low Performers group, but interfere with the process involving
sensory prediction in the High Performers group.

Limitations of Current Study
Some limitations of the current study need to bementioned. First,
although the different effects of the st-SES intervention on high
and low BCI performers have been validated in this study, more
subjects should be recruited to draw a generalized conclusion.
In particular, we found that some subjects in Low Performers
group did not achieve better brain-switch BCI classification
performance with st-SES intervention. Although this study has
underlined the fact that st-SES may be promising to improve
neural responses and MI-BCI performance in the low BCI
performers, further studies on greater sample size are needed to
clarify the effect of the st-SES intervention. Second, the sensations
induced by st-SES may vary depending on the frequency and
intensity of the stimulation. Thus, further studies need to be
carried out to clarify the effect of different stimulation parameters
on the subjects. Third, the effects of somatosensory afference
investigated in this study were specific to st-SES. The influence of
guidance based on other types of somatosensory afference, such
as vibrotactile stimulation, needs to be investigated in the future.

In addition, for the majority of subjects in the Low Performers
group, the MI-SES vs. SES classifier achieved better classification
performance than MI vs. Rest classifier even in the presence
of ERD pattern induced by st-SES intervention in the SES
condition. Therefore, the somatosensory input based on st-SES
may contribute to the BCI system to better distinguish subjects’
neural states between active control and attentive idleness. This
is beneficial for low BCI performers to achieve asynchronous
control of the BCI system. Further studies involving the
application of st-SES intervention in the online BCI system will
be needed to understand the advantages and limitations of the
st-SES intervention in asynchronous control.

CONCLUSIONS

The main purpose of our work consists in exploring the
effect of st-SES on motor imagery tasks in high and low
BCI performers. Our findings showed that st-SES intervention
improved brain-switch BCI performance in the Low Performers
group, but led to a decrease in BCI performance for the High
Performers group. Moreover, in the Low Performers group, the
electrophysiological analysis demonstrated that st-SES combined
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with MI achieved significantly higher sensorimotor cortical
activation than MI alone. For the High Performers group, st-
SES had no significant effect on neural responses during MI.
We also found significantly decreased functional connectivity in
the frontal-parietal network during the MI task compared with
the resting state, and this decrease in functional connectivity
may contribute to the execution of the MI task. Notably, st-
SES affected the functional connectivity alterations at the beta
band in the High Performers group and the alpha band in
the Low Performers group, respectively. These results altogether
indicated that st-SES intervention may be promising to improve
the MI-BCI performance and sensorimotor cortical activation
during MI in the Low Performers group but not in the High
Performers group.
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