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Abstract: In view of the unsatisfactory treatment of cognitive disorders, in particular Alzheimer’s
disease (AD), the aim of this review was to perform a computer-aided analysis of the state of the art
that will help in the search for innovative polypharmacology-based therapeutic approaches to fight
against AD. Apart from 20-year unrenewed cholinesterase- or NMDA-based AD therapy, the hope
of effectively treating Alzheimer’s disease has been placed on serotonin 5-HT6 receptor (5-HT6R),
due to its proven, both for agonists and antagonists, beneficial procognitive effects in animal models;
however, research into this treatment has so far not been successfully translated to human patients.
Recent lines of evidence strongly emphasize the role of kinases, in particular microtubule affinity-
regulating kinase 4 (MARK4), Rho-associated coiled-coil-containing protein kinase I/II (ROCKI/II)
and cyclin-dependent kinase 5 (CDK5) in the etiology of AD, pointing to the therapeutic potential
of their inhibitors not only against the symptoms, but also the causes of this disease. Thus, finding
a drug that acts simultaneously on both 5-HT6R and one of those kinases will provide a potential
breakthrough in AD treatment. The pharmacophore- and docking-based comprehensive literature
analysis performed herein serves to answer the question of whether the design of these kind of dual
agents is possible, and the conclusions turned out to be highly promising.

Keywords: 5-HT6 ligands; Alzheimer’s disease; dementia; MARK4; ROCKI; ROCKII; CDK5

1. Introduction

Reduced cognitive capacity is a growing problem, becoming as common as diseases
such as obesity, cancer and heart disease. Cognitive decline usually, but not always,
occurs in elderly people and may have light symptoms such as forgetting information
and difficulty in memorizing situations; these light symptoms are categorized as mild
cognitive impairment (MCI) [1,2]. Although such symptoms are not extremely problematic
in everyday life, they may be the first sign of developing dementia, a serious cognitive
dysfunction leading to obstacles in performing simple tasks and very often to loss of
functional independence [3]. Worryingly, about 50 million people in the world suffer
from dementia [4]. Interestingly, 70% of reported cases are a consequence of Alzheimer’s
Disease (AD), i.e., the complex central nervous system disorder, occurring usually after
60 years of age [5]. Unfortunately, despite the huge number of studies, the available small
molecule drugs used for treatment have significant limitations: improvement in cognition
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is observed for only a short time and the drugs treat only the symptoms of the disease,
rather than its influence or causes [6]. Their pharmacodynamic action concentrates on
two protein targets: (i) inhibition of acetylcholinesterase (AChE) in the case of donepezil,
galantamine and rivastigmine, and (ii) antagonism towards N-methyl-D-aspartate receptor
(NMDA) for memantine [7]. In 2021, after almost a twenty-year break, the FDA approved
the first disease-modifying option for AD treatment, the monoclonal antibody aducanumab,
which gave hope for a breakthrough in AD therapy [8]. However, the FDA’s accelerated
acceptance of this pathway caused a significant amount of controversy in the scientific
community, as the results from different clinical studies were not consistent, thus not clearly
confirming the therapeutic efficacy [9]. Moreover, the approval was mainly based on the
ability of aducanumab to remove β-amyloid (Aβ) plague, whereas it has not yet been
proved that Aβ clearance is correlated with cognition impairment. Finally, the cost of the
treatment and the safety profile were also problematic issues [10]. In this light, searching
for novel small chemical entities acting via non-standard protein targets is highly urgent to
deal with this still unmet clinical need.

On the other hand, in the last few decades, serotonin 5-HT6 receptor (5-HT6R) and
its ligands have been strongly investigated in terms of potency to fight cognition dys-
functions [11,12]. In many preclinical studies, it has been confirmed that both agonism
and antagonism of 5-HT6R influences improvement in cognition capacity [13]. However,
all the selective 5-HT6R agents that reached clinical studies were sub-efficacious in AD
patients [14]. This disappointing lack of translatability of preclinical findings to human
applications has encouraged the development of novel therapeutic strategies. One of
them concerns polypharmacology, i.e., an approach that, opposite to the paradigm “one
drug, one target”, aims at designing molecules with action via two or more therapeutic
proteins. It is supposed that the clinical failure of 5-HT6R agents is a consequence of the
fact that those anti-AD drug candidates have been designed as single-target molecules,
whereas such a complex disease as AD involves many different signaling pathways that
form the pathological network [15]. Hence, selecting just one target may indeed lead to
insufficiency [16]. Moreover, multidirectional molecules may have a more predictable phar-
macokinetic profile than combined therapy with two or more single-target drugs [17,18].
These arguments have encouraged medicinal chemists to design and synthesize compounds
with such a multifunctional profile. Based on the great potency in preclinical studies of
the 5-HT6R ligands, it seems to be reasonable to combine such activity with targeting
protein(s) that is/are also involved in the pathology of cognition processes. Until now,
most of the reported multifunctional 5-HT6R ligands also have potency to inhibit the activ-
ity of cholinesterases (AChE—acetylcholinesterase and BuChE—butylcholinesterase [19]),
dopamine D3 receptor [20] and other serotoninergic receptors, e.g., 5-HT4R [21].

Among the hallmarks of AD, the formation of the three following components: (i)
the neurofibrillary tangles; (ii) the amyloid plaques and (iii) the insoluble Aβ, are the
most important ones. Aβ is produced via the amyloidogenic degradation of the amyloid
precursor protein (APP) with the contribution of both β and γ-secretases. Although the
exact causes of AD are still unknown, the number of factors recognized as contributing
to AD etiology increases every year and are assigned to various signaling pathways with
specific kinases as the main players. Hence, this class of kinases should also be taken into
consideration as therapeutic targets in the search for multifunctional anti-AD agents.

Given the urgent need for the development of innovative and effective procognitive
therapies, this review is focused on computer-aided analysis of the possibility of designing
novel multidirectional molecules with combined action via serotonin 5-HT6R and carefully
selected kinases. Thus, (i) microtubule affinity-regulating kinase 4 (MARK4), (ii) Rho-
associated coiled-coil-containing protein kinase I/II (ROCKI/II) and (iii) cyclin-dependent
kinase 5 (CDK5) were considered for discussion, since these proteins are innovative as AD
therapeutic targets, according to recent state of the art research, and, simultaneously, have
not yet been considered in terms of combination with 5-HT6R activity.
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2. 5-HT6R Ligands—Pharmacophore Features
2.1. Chemical Variety of 5-HT6R Ligands

Since the discovery of 5-HT6R in the mid-1990s, over a thousand of its ligands with
the nanomolar affinity range and a diverse functional activity profile have been identified.
Although this intrinsic activity does not define clear preferences for potential therapeutic
actions, as procognitive, antidepressant-like and anxiolytic effects in animal models were
confirmed either for agonists or antagonists, the 5-HT6R antagonists are of greater interest
to researchers; 17 have reached clinical trials, including 6 towards AD [22]. On the other
hand, the chemical space of 5-HT6R ligands is rather narrow, predominantly mapped by
sulfonamide, indole and indole-like moieties, also containing a basic center most often
represented by N-unsubstituted- or N-methylpiperazine (Figure 1).
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Figure 1. The structural variety of 5-HT6R antagonists: (a) compounds 1 [23,24], 2 [25], 3 [26–29],
4 [30–32] and 5 [33] investigated in clinical trials; (b) compounds in the early stages of R&D: the
non-indole and non-sulfone derivatives 6 [34], 7 [35], 8 [36,37], 9 [38,39], 10 [40,41]and 11 [42] and non-
basic antagonists 12 [43] and 13 [43,44]. The affinity for 5-HT6R expressed with Ki (nM). Procognitive
effects in the Novel Object Recognition (NOR) test for 8–10. at the dose shown [36–41].
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According to the statistics provided in 2014, 80% of 5-HT6R ligands contain sulfone
moieties, while 40% contain indole ones [45]. Thus, one of the two most advanced in
clinical trials, masupirdine, consists of three aforementioned moieties (1) [23,24], while
cerlapirdine (2) [25]is the sulfonamide derivative, two non-sulfone but indole-derived
5-HT6R antagonists, latrepirdine (3) [26–29] and idalopirdine (4) [30–32] failed in Phase
III of clinical trials, and only one non-sulfone and non-indole derivative SYN-114 (5) [33]
was active in Phase I (Figure 1a). Recent research results have contributed to increasing the
chemical diversity of 5-HT6R ligands. Apart from the structures of quinoline-2,4-diones
(6) [34] and asenapine (7) [35] described in 2008–2009, the last five years have also provided
non-indole and non-sulfonic derivatives of triazine (8, 9) [36–39], hydantoin (10) [40,41],
imidazopyridine (11) [42], as well as non-basic 5-HT6R ligands (12, 13) [43,44], which also
showed procognitive activity in animal models (8–10), promising for potential AD therapies
(Figure 1b).

Both ligand-based (LBDD) and structure-based drug design (SBDD) approaches are
useful in the rational design of 5-HT6R ligands. However, a limitation to SBDD was the
lack of a crystallographic structure for this receptor in PDB until now, thus condemning
designs based on homology models. Last-minute lines of evidence [46] point to obtaining
the first 5-HT6R crystal, which gives hope for increasing SBDD efficiency as soon as the
crystallographic structure becomes available. Nevertheless, the ligand-based design has
dominated the exploration of the chemical space for new 5-HT6R ligands so far, in which
the pharmacophore model for antagonists developed by the team of Lopez-Rodriguez in
2005 seems to be the number one for the computer-aided LBDD, until now.

2.2. Molecular Modeling Approaches to Evaluate the Potential 5-HT6R Compound Activity

We decided to combine both LBDD and SBDD to assess the potential of consid-
ered kinases inhibitors that also present 5-HT6R activity (detailed results are presented
in the respective subchapters). At first, we used the pharmacophore-based method in
order to examine the possibility of dual modulation of the 5-HT6R and each kinase se-
lected from the considered ones (MARK4, ROCK I, ROCK II, CDK5) in a wider group of
chemical compounds.

Taking into account the significant increase in the number of new highly active 5-HT6R
antagonists for more than 15 years since the pharmacophore of Lopez-Rodriguez occurred,
an update based on the extensive library of current antagonists (ligands) available in the
CHEMBL database for the 5-HT6R pharmacophore model was made in the first step.

The developed pharmacophore was further used to analyze common structural fea-
tures for the active kinase inhibitors and 5-HT6R.

For all 5-HT6R ligands with affinity to the receptor below 500 nM (expressed in Ki, data
fetched from the ChEMBL database) [47], the clustering procedure was carried out (with
compounds represented by MOLPRINT2D fingerprint [48] and Tanimoto similarity metric
used to measure distance between the clusters formed). The number of clusters was forced
to be 50, and centroids together with compounds with the shortest distance to the centroid
formed the set of compounds, which was used to construct the pharmacophore model (the
total number of compounds was equal to 136). The clustering procedure was applied to
ensure that the chemical space of ligands used for the pharmacophore model construction
was representative to the whole set of 5-HT6R ligands to the highest possible extent.

The pharmacophore model was constructed using Phase [49] from the Schrödinger
Suite 2022 (Figure 2).

Due to the relatively high fraction of 5-HT6R ligands with low basicity, the positive
ionizable group, which was present in pharmacophore models developed in previous
studies [22], is now not included in the model. The model is composed of three features:
aromatic moiety (R7), hydrogen bond acceptor(A1) and hydrophobic moiety (H2). The fea-
tures are arranged in the triangle-like shape with the distance between the aromatic ring and
hydrogen bond acceptor equal to 2.77 Å, between hydrogen bond acceptor and hydrophobic
feature: 2.43 Å, and 4.80 Å between the aromatic feature and hydrophobic moiety.



Int. J. Mol. Sci. 2022, 23, 8768 5 of 24

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 25 
 

 

The pharmacophore model was constructed using Phase [49] from the Schrödinger 
Suite 2022 (Figure 2). 

 
Figure 2. Pharmacophore model of the 5-HT6R ligands: aromatic moiety (R7), hydrogen bond 
acceptor (A1), hydrophobic moiety (H2). 

Due to the relatively high fraction of 5-HT6R ligands with low basicity, the positive 
ionizable group, which was present in pharmacophore models developed in previous 
studies [22], is now not included in the model. The model is composed of three features: 
aromatic moiety (R7), hydrogen bond acceptor(A1) and hydrophobic moiety (H2). The 
features are arranged in the triangle-like shape with the distance between the aromatic 
ring and hydrogen bond acceptor equal to 2.77 Å, between hydrogen bond acceptor and 
hydrophobic feature: 2.43 Å, and 4.80 Å between the aromatic feature and hydrophobic 
moiety. 

Mapping of the example 5-HT6R ligand (CHEMBL267615, Ki = 13 nM) on this model 
is presented in Figure 3. 

 

Figure 2. Pharmacophore model of the 5-HT6R ligands: aromatic moiety (R7), hydrogen bond
acceptor (A1), hydrophobic moiety (H2).

Mapping of the example 5-HT6R ligand (CHEMBL267615, Ki = 13 nM) on this model
is presented in Figure 3.
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Figure 3. 5-HT6R ligand (CHEMBL267615, Ki = 16 nM) mapped to the pharmacophore model of the
5-HT6R ligands.

In order to strongly support the compound activity via molecular modeling ap-
proaches, docking studies were carried out in the next step (inactive-state homology model
of 5-HT6R deposited in the GPCRdb [50] database was used, and the docking was carried
out in Glide [51] from the Schrödinger Suite 2022). The models were created based on the
GPCRdb homology modeling pipeline [52]. It uses a chimeric approach in which a single
template is selected as a main template; however, the template is screened locally and when
a better template for a particular protein region is found, it is used to model the respective
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protein fragment The example ligand-receptor complex obtained for CHEMBL267615 is
presented in Figure 4.
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Figure 4. 5-HT6R ligand (CHEMBL267615) docked to the 5-HT6R homology model.

The compound presented in Figure 4 fits well in the 5-HT6R binding site, forming
a number of hydrophobic and polar interactions. Most importantly, the charge-assisted
hydrogen bond with the aspartic acid from the third transmembrane helix (D3x32 according
to the GPCRdb numbering) is formed, but other important residues indicated as important
to 5-HT6R activity also make contact with the compound, such as C3x36, S5x43, F6x51,
F6x52, etc.

Additionally, the kinase inhibitors were docked to the 5-HT6R homology model
in an analogous manner. The distribution of the docking score values for particular
compound sets were examined (Figure 5, examples of docking poses are provided in
the subsequent chapters).

The analysis of docking scores to 5-HT6R indicates that the distribution of their values
is similar to both 5-HT6R ligands and ligands of the examined kinases. Although, the
low docking score value does not guarantee the desired activity profile, its favorable
value increases the probability of biding to the considered protein. For all ligand sets, the
highest fraction of docking score values falls in the range of −8 to −6, and the second
most populated group of values is between −6 and −4. CDK5, MARK4, ROCK I and
ROCK II ligands possess a slightly higher fraction of compounds with a docking score
between −4 and −2, but at the same time, for these targets, there is also a higher number of
compounds with docking score values between −10 and −8 (in comparison to compounds
active towards 5-HT6R).
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In addition, the compounds were evaluated in terms of their ability to penetrate
the blood–brain barrier. This was carried out via the determination of logP (calculations
were performed in InstantJChem, https://chemaxon.com/products/instant-jchem [53])
for analogous compound sets, as in the case of docking. It was previously reported
that logP values for the majority of drugs fall in the range of −0.5–6 [54]; however, the
optimal logP range was set to 1.5–2.5 [55]. All the examined ligands fall in the similar logP
distribution, with the majority of ligands adopting predicted logP values between 3 and 4
(Supplementary Materials Figure S1).

3. 5-HT6R/MARK4 as Dual Target Approach in Search for Therapeutic Solution
against AD

Concerning the kinases, the mitogen-activated protein kinases (MAPKs) govern mean-
ingful cellular programs and are crucial intermediate pathways in signaling, while mi-
crotubule affinity-regulating kinase 4 (MARK4) is a part of the kinases family recognized
for actively phosphorylating neural microtubule-associated proteins (MAPs), i.e., MAP2,
MAP4, and especially important for AD, tau protein. The kinase MARK4 is a member of
the Ser/Thr kinase family and has been confirmed as a significant contributor in phos-
phorylating specific residues of tau, followed by its accumulation, and contributing in
tauopathy. Phosphorylated tau also leads to neurofibrillary deposits and the formation of
APP [56]. Tau phosphorylation effects are, therefore, correlated with neurodegeneration.
Consequently, an overexpression of MARK4 is associated with numerous neurodegenera-
tive disorders and neuropathy [57,58]. Thus, inhibiting MARK4 can be considered essential
to cure some neurodegenerative diseases, including AD [59,60].

On the other hand, the highly important role of serotonin and 5-HT receptors in
AD, particularly accented in the case of the 5-HT6R due to its unique function and CNS
distributions, seems to be indisputable in light of the results of research conducted for over
20 years. Furthermore, recent lines of evidence, based on the fluorescence binding study,
isothermal calorimetry, molecular docking and MD simulation studies for estimating the
binding affinity and inhibiting potential of serotonin with MARK4, have demonstrated

https://chemaxon.com/products/instant-jchem
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serotonin as an inhibitor of this important kinase. Hence, targeting MARK4 by serotonin
opens a “new gate” in managing the clinical manifestations of neurodegenerative diseases
such as AD and dementia [60].

In contrast to the 5-HTR-nonselective serotonin, selective 5-HT6R agents that also
inhibit MARK4 would offer the possibility of a specific and better controlled pharmaco-
logical profile, thus guaranteeing more favorable therapeutic effects. In this context, the
search for new structures of dual modulators of MARK4 and 5-HT6R gives new hope for
a breakthrough in AD treatment, which is highly justified taking into account the signal
transduction pathways at the cellular level. The question then arises as to whether it is
possible to find these suitable double-agent structures from a chemical point of view.

Although lines of evidence indicate hundreds of 5-HT6R ligands with nanomolar
affinities and different intrinsic profiles, the number of identified families of MARK4
inhibitors is much lower, and it is difficult to find any report on compounds simultaneously
showing both MARK4 and 5-HT6R action in a high enough activity range. Among more
than 100 dual MARK4/5-HT6R records in the CHEMBL database, none have been found to
exhibit submicromolar effects for both purposes simultaneously. However, this state of the
art does not seem to be associated with a distinct structural limitation but, more probably,
with a lack of attention to this direction of research, until now.

Current lines of evidence show various chemical families of MARK4 inhibitors, esti-
mated using different assays and activity descriptors, i.e., % inhibiting at concentrations of
1 µM or 10 µM, as well as IC50 or Kd. The compounds can be classified into the following
activity categories: weak (IC50 in millimolar range), moderate (1 µM < IC50 < 1 mM) and
potent MARK4 inhibitors (IC50 < 1 µM). In order to compare the activity expressed in
various ways (IC50, Kd or %inhibition at a given concentration), a formal inhibition activity
descriptor (FA) was used (Figure 6, Table S1 in Supplementary Materials).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 25 
 

 

 
Figure 6. Representatives of weak and moderate MARK4 inhibitors with the activity descriptors; (a) 
the weak 3-N-aryl substituted-2-heteroarylchromoneinhibitor 14 [54] in comparison to the moderate 
3-benzoylcoumarinMARK4 inhibitor; (b) the moderate inhibitors from various heterocyclic families 
15 [55], 16 [56], 17 [57], 18 [58], 19 [59], 20 [60], 21 [61]; (c) MARK4 inhibitory properties of 
rivastigmine and donepezil [50]. To compare the activity expressed in various ways (IC50, Kd or 
%inhibition at a given concentration), the formal inhibition activity descriptor (FA) was used, i.e.,: 
FA = pIC50 (IC50); FA = pKd (Kd), FA = p(test concentration/0.02 × %inhibition). 

 

Figure 6. Representatives of weak and moderate MARK4 inhibitors with the activity descriptors;
(a) the weak 3-N-aryl substituted-2-heteroarylchromoneinhibitor 14 [54] in comparison to the mod-
erate 3-benzoylcoumarinMARK4 inhibitor; (b) the moderate inhibitors from various heterocyclic
families 15 [55], 16 [56], 17 [57], 18 [58], 19 [59], 20 [60], 21 [61]; (c) MARK4 inhibitory properties of
rivastigmine and donepezil [50]. To compare the activity expressed in various ways (IC50, Kd or
%inhibition at a given concentration), the formal inhibition activity descriptor (FA) was used, i.e.,: FA
= pIC50 (IC50); FA = pKd (Kd), FA = p(test concentration/0.02 × %inhibition).



Int. J. Mol. Sci. 2022, 23, 8768 9 of 24

In 2018, Parveen et al. [61] described a series of novel 3-N-aryl substituted-
2-heteroarylchromones with inhibitory properties toward MARK 4. Although the com-
pounds displayed rather weak millimolar action, the results can be used for pharmacophore
hypotheses in a wider structural consideration, and SAR analysis gave some valuable con-
clusions demonstrating the favorable role of moderate electro-withdrawing and lipophilic
substituents (halogens) in both occurring aryl rings (14, Figure 6a).

A significant increase in activity was achieved through the replacement of the chromone
core with a bioisosteric scaffold of 3-benzoylcoumarin substituted at the aromatic coumarin
part. According to the studies described by Shen et al., the methoxy-substituent pro-
vides the most potent action with preferable position 6 compared to 8 (15, Figure 6b) to
give inhibiting action at lower micromolar concentrations [62]. However, other lines of
evidence indicate the wider chemical diversity of moderate MARK4 inhibitors with micro-
molar activities, including: derivatives of 1,2,3-triazole-4-carbohydrazide [63], imidazole
oximes (17) [64], acridine derivatives (18) [65], pyridine derivative of dithiazole (19) [66],
the extended structure of 2,5-difluoro-N-(3-fluoro-4-(6-methoxy-7-(3-(4-methylpiperazin-1-
yl)propoxy)quinolin-4-yloxy)phenyl)benzenesulfonamide (20) [67] and the more condensed
structure of 3-(2-(pyridin-4-yl)ethynyl)-1H-indazole (21) [68].

Interestingly, the studies of Shamsi et al. [57] demonstrated the moderate micromolar
MARK4 inhibiting action for known AD drugs acting as AChE inhibitors, i.e., donepezil
and rivastigmine; slightly more potent in the case of donepezil (Figure 6c).

The active MARK4 inhibitors, described with submicromolar to have a low-nanomolar
range of action, contain the indispensable central core of the pyrimidine, which appears
to be a required pharmacophore feature in interactions with this kinase, while a variety
of the remaining substitutions enhances the inhibitory power [69–74]. The most active
pyrimidine MARK4 inhibitors 22–28 (IC50 < 100 nM) are shown in Figure 7 [69–73].
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A qualitative structure-activity relationship (SAR) analysis of the potent MARK4
inhibitors (IC50 < 1 µM) indicates two general structures based on pyrimidine core (Figure 8,
see also Table S1 in Supplementary Materials).
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Both groups (A and B) include different aromatic substituents attached to the amine
group in position 2 of the pyrimidine ring with benzylpyrrolidine and 2-methyl-1,2,3,4-
tetrahydroisoquinoline in the most potent compounds.

Other crucial features in these structures are substituents at positions 4 and 5 of
the pyrimidine ring, depending on these substituents, structures can be divided into 4,5-
disubstituted (A) and 4,5-cyclic (B). The substituent at position 5 is small and lipophilic,
while substituents occurring at position 4 are rather bigger and contain an amide group
and/or a heteroaromatic ring. In the case of 4,5-disubstituted pyrimidines, trifluoromethyl,
iodine, bromine and cyclopropane seem to be the most favorable small substituents at
position 5, while in position 4, the best results were obtained for the amine group linked by
different alkyl chains with pyrazole, thiophene-2-carboxamide or cyclobutene carboxamide.
For the 4,5-cyclic pyrimidines, the pyrimidine is condensed with 3,3-dimethylpyrrolidin-2-
one, with another moiety attached by nitrogen in the pyrrolidine ring. Two methyl groups
function as a small substituent at position 5 and the amide group with attached moiety (2,3-
dihydroindene or ethylbenzene derivatives) serves as the bigger substituent at position 4.
Additionally, an electron rich substituent (amine, methylsulfonamide or hydroxyl group) at
the phenyl ring in the big substituent positively influenced the MARK4 inhibitory action.
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However, lines of evidence indicate one unique compound 28 (Figure 7), which, unlike
other discussed structures, possesses a very big substituent at position 6 instead of the
small substituent at position 5; however, it still presents very good activity (IC50 = 21 nM).

In order to examine possible dual MARK4/5-HT6R action, all potent MARK4 in-
hibitors 22–28 (Figure 7) were fitted to the pharmacophore model of 5-HT6R, and a docking
study to the 5-HT6R homology model was carried out. The results for the most active
inhibitors 23, 24 and 25 are shown in Figure 9.
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4. 5-HT6R/ROCKI/ROCKII as Multitarget Approach to AD Therapy

In 1995, Rho-associated coiled-coil-containing protein kinase, otherwise known as
ROCK, was first identified and described as a major effector of RhoA [75]. This protein with
a molecular mass of ~160 kDa belongs to the RhoA subfamily and the Ras GTPase super-
family with 25% homology to Ras [76]. Their structure comprises a N-terminally located cat-
alytic Ser/Thr kinase domain, followed by a coiled-coil-forming region (~600 amino acids)
with a Rho-binding domain (RBD) and a pleckstrin-homology (PH) domain with a cysteine-
rich repeat at the C terminus [77]. Two mammalian isoforms of ROCK, ROCK I (ROCK-β,
Rho-kinase β, or p160) encoded by a gene located on chromosome 18 and ROCK II (ROCK-
α, p164) encoded by a gene located on chromosome 2, can be distinguished [78,79]. Despite
a high structural similarity at approximately 65% overall amino acid identity and approxi-
mately 92% identity within the N-terminal kinase domain, these homologs have different
locations in the body and, thus, different physiological functions have been identified for
each [80].

In general, by phosphorylation of various molecular substrates, kinases ROCK are
involved in many processes including cell contraction, adhesion, migration, growth, pro-
liferation, inflammation, apoptosis and other various cellular functions [81]. Moreover,
studies indicate that the activation of the RhoA/ROCK signaling pathway seems to induce
Aβ aggregation [80], phosphorylated tau formation [82], neuroinflammation [83], synaptic
damage [84], and other mechanisms, ultimately leading to AD [85].

Over the past decade, a whole host of structures have emerged as ROCK inhibitors for
use in certain pathological conditions [86–91], including central nervous system diseases
such as AD, Parkinson’s disease (PD) and Huntington’s disease (HD) [85,92,93]. So far, none
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have been sufficient for use in the treatment of neurodegenerative diseases. Furthermore,
in the current literature, there are a lack of compounds with multitarget effects on ROCK
and another dementia-related targets, such as 5-HT6R.

Inhibition of ROCK I/II kinases has become a dynamically developing trend in recent
years, as evidenced by the huge number of compounds from various chemical classes.
Among them, it is possible to distinguish compounds belonging to the following chemical
groups: benzimidazole 29 [94], isoquinoline 30, bezylpiperidine-isoquinoline (31, 32) [95],
pyridine (33, 34) [96,97], pyrazole (35) [98], indole, azaindole (36, 37) [99,100] amide-
chroman derivatives [101], urea derivatives(40) [102], quinazoline (41) [103], indazole
(42, 43) [104–106] and pyridopyrimidinone (44) [CHEMBL1988581] (Figure 10), as well as
benzothiazole, benzathiophene, aminofurazane, and boron derivatives [107].
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One of the first and most important ROCK inhibitors was the isoquinoline derivative
fasudil 30 [109], approved by the FDA for human use in 1995 in Japan for the treatment of
cerebral vasospasm [110]. The compound is moderately potent with a Ki of 330 nM and its
structure consists of an isoquinoline ring, linked via a sulfonic group to the homopiperazine
ring. Based on the current literature, it is worth noting that the sulfone moiety is also found
in a great amount of potent 5-HT6 ligands.

To date, fasudil, as well as its analogues, are the most investigated ROCK inhibitors.
Many studies have shown that the compound improves memory deficits, significantly
reduces Aβ and p-tau protein levels, restores cognitive function, reduces oxidative stress,
and decreases neuronal apoptosis in the hippocampus [111–114].

The compound Y-27632 34 (Figure 10) and its analogues that have the aminopyridine
core were synthesized by Yoshitomi Pharmaceuticals [115]. Moreover, compounds con-
sisting of an aromatic ring directly attached at position 4 of the pyridine, azaindole, or
pyrimidine already showed activity at the nanomolar level [97]. SAR analysis indicated that
a large aromatic surface area hiding in the kinase active site and the additional presence of
the NH moiety as hydrogen bond donors/acceptors significantly increases the inhibitory
potency [116,117].

The indazole scaffold reported mainly by GlaxoSmithKline Pharmaceutical and Lee’s
team has provided a number of compounds that can be considered potent inhibitors of
ROCK I/II [104,105]. It should be noted that several essential 5-HT6 ligands, such as Cer-
lapirdine (2, Figure 1), developed by Pfizer, also contain a central core of the indazole [30].
In addition, many compounds in this chemical class have piperazine, 1,3,5-triazine [106]
or 1,3-diazine (pyrimidine) moieties in their structure, which may also be a required phar-
macophore feature of ROCK kinases. Importantly, these elements are a crucial structural
feature of many 5-HT6 ligands, fitting into the current 5-HT6R pharmacophore.

The extensive literature used for this review also identified indole and 7-azaindole
fused rings as structurally important moieties for both 5-HT6R ligands and ROCK I/II
kinase inhibitors (Figure 11). All the structural similarities indicated above point to a real
opportunity to create compounds with multitarget action on 5-HT6/ROCK I/II.
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The potency of ROCK I and ROCK II inhibitors to also constitute good 5-HT6R ligands
was tested in the following manner: all ROCK I and ROCK II data present in the ChEMBL
database were filtered according to the activity values (Ki or IC50), which were supposed to
be lower than 500 nM to consider the compound as active. There were 983 such inhibitors
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of ROCK I, and 1841 compounds inhibiting ROCK II. The majority of those ligands (80%
and 76%, respectively) were successfully mapped on the 5-HT6R pharmacophore model,
with example mappings presented for 31, 32 and 44 in Figure 12A.
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Analogously to the MARK4 inhibitors, the ROCK I and ROCK II ligands were also
docked to the 5-HT6R homology model (Figure 12B).

Despite the correct fitting of the ligands to the pharmacophore model, they also form
energy-preferable complexes with the 5-HT6R. All the compounds presented in Figure 12B
form a hydrogen bond with D3x32 (31 and 32 via piperidine moiety, 44 via the amine
part). 31–5HT6R complex possesses an additional hydrogen bond interaction between the
primary amine group and A5x43. All the compounds also interact with 5-HT6R via pi-pi
stacking with F6x52 (31 forms also pi-pi contact with F6x51).

5. 5-HT6R/CDK5 as Possible Dual Target Approach in Search for Innovative Therapy

First purified from bovine brain in 1992 [118], cyclin-dependent kinase 5 (CDK5)
belongs to the family of proline-directed serine/threonine kinases and its gene is located
on chromosome 7q36. The amino acids sequence of CDK5 is highly homologous to the
sequence of other members of the CDKs family. In cells, it is responsible for various
mechanisms including metabolic pathways, cell division and activation of transcriptional
factors. To maintain its action, this kinase binds with unique activators such as p35 and
p39 (expressed only in the CNS), the structure of which is more distinctive than typical
CDKs. Structurally, the CDK5 protein consists of the N-terminus, C-terminus, ATP binding
domain, activator binding domain, hinge region, PSSALRE helix and Tloop. Functions of
the PSSALRE helix, Tloop, and ATP binding domain, which are essential for activation
of CDK5, can be changed by different post-translational modifications (PTMs). Lines of
evidence show that PTMs extend the functionality of the protein [119–121].

CDK5 in the human body can be found mainly in the central nervous system (CNS),
where it participates in neuron migration, neurite overgrowth and synaptogenesis. Apart
from CNS, CDK5 is also present in pancreatic β cells, corneal epithelial cells, and monocytes,
where it is responsible for apoptosis, cell motility and cell cycle progression. Moreover, in
previous years, CDK5 action was also proved to be associated with dopaminergic signaling,
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neurotransmitter release, and membrane cycling [122]. Concerning its mechanism of action,
the aforementioned protein was suggested as a new therapeutic target for cancer [123–125],
along with CNS diseases including AD, HD, stroke, and PD [126–129]. Increased activity of
CDK5 is suggested as one of the causes of AD development. Dysregulation of this protein
induces apoptosis of neuronal cells through various mechanisms, including Bcl-2, JNK3
and MEF2 [128].

Throughout the years, numerous different inhibitors with nanomolar affinity for
CDK5 were discovered. Analyzing known inhibitors in the ChEMBL [130] database,
three main chemical groups of the inhibitors (Figure 13) can be mentioned as follows:
(i) cyclobutylthiazol-2-yl derivatives connected to either acetamide or urea (45, 46, 47,
Figure 13a), (ii) 9-isopropyl-9H-purine derivatives (48, 49, Figure 13b) and (iii) 3-isopropyl-
1H-pyrazolo [4,3-d] pyrimidine (50, 51, Figure 13c).
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Along other inhibitors (Figure 13d), chemical structures vary genuinely, including
structures of pyrazolo[1,5-a]pyrimidine (52), 2-aminopyrimidine (53), indoline-2-on (54),
macrocycles (55) pyridopyrimidinone (44) and many others.

The first main group represents 5-cyclobutylthiazol-2-yl derivatives, from which
SAR showed that the heteroaromatic ring connected in the 2-amino position and a small
hydrophobic substituent in the thiazole 5-position increased the selectivity and potency
towards the CDK5. Thiazole moiety can also be found in a few antagonists of 5-HT6
receptor, e.g., 12 with Ki = 119 nM (Figure 1) [44].

Compounds containing 9-isopropyl-9H-purine scaffold (Figure 13b) having various
hydroxyalkylamine substituents at the 5-position were shown to be the most potent within
this group. As examples, highly potent reference kinase inhibitors: roscovitine, olomoucine
and purvalanol A, may be mentioned. In a diverse compilation of 5-HT6 receptor antago-
nists, some of the structures (with nanomolar affinities towards 5-HT6R) can resemble the
purine scaffold present in 48 and 49 (Figure 13b).

Structures within the third group (50 and 51, Figure 13c) include 3,5,7-trisubstituted
pyrazolo[4,3-d]pyrimidine derivatives, in which several compounds showed very high
kinase inhibiting potency (IC50 = 1 nM), introducing yet another scaffold in medicinal
chemistry of CDKs inhibitors.

Importantly, several studies including X-ray and molecular modeling have indicated
the pivotal role of cysteine (Cys83) in ligands binding to CDK5 in the ATP binding
pocket [139,140]. This amino acid may be S-nitrosylated and, fascinatingly, the pertur-
bation of such a process leads to the enhancement of dendrite development in cultured
hippocampal neurons, which, of course, influences overall neuronal development [120].
Cys83, thanks to its characteristic structure, acts simultaneously as a hydrogen bond ac-
ceptor and donor. Hence, potent CDK5 inhibitors very often possess structural fragments
that also consist of pairs, such as hydrogen bond acceptor and donor, placed closed to each
other (Figure 14). Thus, it is possible to form two hydrogen bonds with the protein via
interaction with Cys83 (Figure 14a) [141]. Interestingly, such chemical groups also occur in
the structures of many 5-HT6R ligands, increasing the probability of their strong binding to
CDK5 (Figure 14b).
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Dozens of CDK5 inhibitors have reached clinical trials, mainly as therapeutics for
various cancers. Dinaciclib (52, Figure 13d), for example, is currently undergoing phase
1 of the clinical trials for the treatment of breast cancer [142]. The most potent inhibitors
reach the 1 nM affinity. Despite the huge number of highly active CDK5 agents, dual
5-HT6R/CDK5 continue to be an underexplored area of scientific research.

In terms of exploring the structural possibility for the desirable CDK5/5-HT6R dual
action, the CDK5 ligands, which were filtered according to the same criteria as ROCK I and
ROCK II compounds, formed the set of 263 compounds. Among them, 219 compounds were
properly mapped to the 5-HT6R pharmacophore model, indicating their high potency for
possessing a 5-HT6R activity component. Examples of three (56–58) out of 44 compounds,
which were not mapped to the model, are presented in Figure 15.
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In addition, the compounds were docked to the 5-HT6R homology model. Results for
representatives (44 and 47) of both pharmacophore mapping and docking are presented in
Figure 16.
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Both ligands (44 and 47) are well aligned to the pharmacophore features of 5-HT6R
ligands (Figure 16A). Compound 44, which has a smaller structure, is almost fully covered
by the 5-HT6R pharmacophore model, in contrast to 47, for which quite a significant part
of the molecule is outside of the model. Despite this extending part, 47 is very well fitted to
the three considered features. Compound 47 also did not enter very deeply into the 5-HT6R
binding site, rather it occupies its upper part (Figure 16B). Nevertheless, both compounds
are strongly fitted in their ligand-protein complexes through the extended network of
polar and hydrophobic contacts. Additionally, both 44 and 47 form hydrogen a bond with
D3 × 32 and pi-pi interaction with a phenylalanine cluster from the 6th transmembrane
helix of 5-HT6R.

6. Conclusions

As polypharmacology approaches may result in long-awaited breakthroughs in AD
treatment, a computer-aided and visual analysis of the possibility of designing molecules
with as yet unreported action via both 5-HT6R and the AD pathology-related kinase
(MARK4, ROCKI/II or CDK5) within this paper has been performed. The deep insight
into recent lines of evidence allowed us to identify the structural fragments that occur
simultaneously in 5-HT6R agents and inhibitors of the considered above-mentioned kinases,
as well as their appropriate bioisosteres. Interestingly, mapping the known kinase inhibitors
to the 5-HT6R pharmacophore model showed the high potency of the majority of them to
interact with the 5-HT6R. Hence, all potent pyrimidine-derived MARK4 inhibitors meet
the 5-HT6R pharmacophore features criteria, as well as 80% of ROCKI, 76% of ROCKII and
83% of CDK5 ligands. Additionally, the results of docking to the 5-HT6R homology model
confirmed the high probability of the investigated structures to form key interactions with
this protein target. More than 60% of all four groups of the tested agents were docked with
very good docking scores (values in the range between −10 and −6).

Summarizing, the overall analysis of the results from the pharmacophore-based and
the docking-based (docking score values distribution) approaches indicated the high po-
tency of inhibitors for all four investigated kinases to be also 5-HT6R antagonists. Further-
more, this very initial prediction of ADMET properties [143] for the most active kinase
inhibitors that also fit in the 5-HT6R ligand pharmacophore features (23, 24, 25, 31, 32, 44
and 47) demonstrated rather a satisfactory profile for most of them, comparable to that of
the reference drug, donepezil (see Table S2, Figure S1 in Supplementary Materials).

Such results give real hope for the design of structurally novel anti-AD agents with
pioneering multifunctional (dual) action. Simultaneously, it seems to be strongly justified
to test already reported 5-HT6R ligands in terms of potency to inhibit the investigated
herein kinases, as well as to examine ADMET properties for the most promising dual-target
agents found following this process.
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Lutwin, M.; et al. Novel Multitarget-Directed Ligands Aiming at Symptoms and Causes of Alzheimer’s Disease. ACS Chem.
Neurosci. 2018, 9, 1195–1214. [CrossRef]

20. Millan, M.J.; Dekeyne, A.; Gobert, A.; Brocco, M.; Mannoury la Cour, C.; Ortuno, J.C.; Watson, D.; Fone, K.C.F. Dual-Acting
Agents for Improving Cognition and Real-World Function in Alzheimer’s Disease: Focus on 5-HT6 and D3 Receptors as Hubs.
Neuropharmacology 2020, 177, 108099. [CrossRef]

21. Yahiaoui, S.; Hamidouche, K.; Ballandonne, C.; Davis, A.; De Oliveira Santos, J.S.; Freret, T.; Boulouard, M.; Rochais, C.;
Dallemagne, P. Design, Synthesis, and Pharmacological Evaluation of Multitarget-Directed Ligands with Both Serotonergic
Subtype 4 Receptor (5-HT4R) Partial Agonist and 5-HT6R Antagonist Activities, as Potential Treatment of Alzheimer’s Disease.
Eur. J. Med. Chem. 2016, 121, 283–293. [CrossRef]

22. López-Rodríguez, M.L.; Benhamú, B.; de la Fuente, T.; Sanz, A.; Pardo, L.; Campillo, M. A Three-Dimensional Pharmacophore
Model for 5-Hydroxytryptamine 6 (5-HT6) Receptor Antagonists. J. Med. Chem. 2005, 48, 4216–4219. [CrossRef]

23. Nirogi, R.; Goyal, V.K.; Bhyrapuneni, G.; Palacharla, V.R.C.; Ravulu, J.; Jetta, S.; Jasti, V. Masupirdine in Combination with
Donepezil and Memantine in Patients with Moderate Alzheimer’s Disease: Subgroup Analyses of Memantine Regimen, Plasma
Concentrations and Duration of Treatment. Alzheimer’s Dement. 2020, 16, e039254. [CrossRef]

http://doi.org/10.1177/11795735221106887
http://www.ncbi.nlm.nih.gov/pubmed/35769949
http://doi.org/10.3390/jcm10204642
http://www.ncbi.nlm.nih.gov/pubmed/34682764
http://doi.org/10.1016/j.jalz.2018.02.001
http://doi.org/10.1016/j.clinbiochem.2019.04.015
http://doi.org/10.1016/j.ejmech.2021.113320
http://doi.org/10.3390/pharmaceutics14061117
http://doi.org/10.1155/2022/9343514
http://doi.org/10.3233/JAD-220262
http://doi.org/10.3390/brainsci11111547
http://doi.org/10.1021/acs.jmedchem.5b00179
http://www.ncbi.nlm.nih.gov/pubmed/26099069
http://doi.org/10.1021/jm5003952
http://www.ncbi.nlm.nih.gov/pubmed/24850589
http://doi.org/10.1080/13543784.2018.1483334
http://www.ncbi.nlm.nih.gov/pubmed/29848076
http://doi.org/10.1016/j.bmcl.2021.128275
http://doi.org/10.1152/physrev.00015.2020
http://doi.org/10.3390/ph15050545
http://doi.org/10.1080/17460441.2022.2072827
http://doi.org/10.1016/j.phrs.2021.106055
http://doi.org/10.1021/acschemneuro.8b00024
http://doi.org/10.1016/j.neuropharm.2020.108099
http://doi.org/10.1016/j.ejmech.2016.05.048
http://doi.org/10.1021/jm050247c
http://doi.org/10.1002/alz.039254


Int. J. Mol. Sci. 2022, 23, 8768 20 of 24

24. Nirogi, R.; Jayarajan, P.; Shinde, A.K.; Abraham, R.; Goyal, V.K.; Benade, V.; Ravulu, J.; Jasti, V. Masupirdine (SUVN-502):
Novel Treatment Option for the Management of Behavioral and Psychological Symptoms in Patients with Alzheimer’s Disease.
Alzheimer’s Dement. 2020, 16, e039303. [CrossRef]

25. Study Evaluating the Safety, Tolerability, PK and PD of SAM-531 in the Subjects with Mild to Moderate Alzheimer’s Disease.
Available online: https://clinicaltrials.gov/ct2/show/NCT00481520 (accessed on 20 July 2022).

26. Bezprozvanny, I. The Rise and Fall of Dimebon. Drug News Perspect. 2010, 23, 518. [CrossRef] [PubMed]
27. Okun, I.; Tkachenko, S.; Khvat, A.; Mitkin, O.; Kazey, V.; Ivachtchenko, A. From Anti-Allergic to Anti-Alzheimer’s: Molecular

Pharmacology of Dimebon™. Curr. Alzheimer Res. 2010, 7, 97–112. [CrossRef] [PubMed]
28. Eckert, S.H.; Gaca, J.; Kolesova, N.; Friedland, K.; Eckert, G.P.; Muller, W.E. Mitochondrial Pharmacology of Dimebon (Latrepir-

dine) Calls for a New Look at Its Possible Therapeutic Potential in Alzheimer’s Disease. Aging Dis. 2018, 9, 729. [CrossRef]
29. Chau, S.; Herrmann, N.; Ruthirakuhan, M.T.; Chen, J.J.; Lanctôt, K.L. Latrepirdine for Alzheimer’s Disease. Cochrane Database

Syst. Rev. 2015, 4, CD009524. [CrossRef]
30. Andrews, M.; Tousi, B.; Sabbagh, M.N. 5HT6 Antagonists in the Treatment of Alzheimer’s Dementia: Current Progress. Neurol.

Ther. 2018, 7, 51–58. [CrossRef]
31. Herrik, K.F.; Mørk, A.; Richard, N.; Bundgaard, C.; Bastlund, J.F.; de Jong, I.E.M. The 5-HT 6 Receptor Antagonist Idalopirdine

Potentiates the Effects of Acetylcholinesterase Inhibition on Neuronal Network Oscillations and Extracellular Acetylcholine
Levels in the Rat Dorsal Hippocampus. Neuropharmacology 2016, 107, 351–363. [CrossRef]

32. Matsunaga, S.; Fujishiro, H.; Takechi, H. Efficacy and Safety of Idalopirdine for Alzheimer’s Disease: A Systematic Review and
Meta-Analysis. Int. Psychogeriatr. 2019, 31, 1627–1633. [CrossRef] [PubMed]

33. Harris, R.N., III; Kress, J.M.; Repke, D.B.; Stabler, R.S. Dibenzoxazepinone Derivatives as 5-HT6 and 5-HT2A Receptor Antagonists,
Their Preparation, Pharmaceutical Compositions, and Use in Therapy. WO2006061126A2, 15 June 2006.

34. Seong, C.M.; Park, W.K.; Park, C.M.; Kong, J.Y.; Park, N.S. Discovery of 3-Aryl-3-Methyl-1H-Quinoline-2,4-Diones as a New Class
of Selective 5-HT6 Receptor Antagonists. Bioorg. Med. Chem. Lett. 2008, 18, 738–743. [CrossRef] [PubMed]

35. Shahid, M.; Walker, G.; Zorn, S.; Wong, E. Asenapine: A Novel Psychopharmacologic Agent with a Unique Human Receptor
Signature. J. Psychopharmacol. 2009, 23, 65–73. [CrossRef]
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Partyka, A.; et al. Computer-Aided Studies for Novel Arylhydantoin 1,3,5-Triazine Derivatives as 5-HT6 Serotonin Receptor
Ligands with Antidepressive-Like, Anxiolytic and Antiobesity Action In Vivo. Molecules 2018, 23, 2529. [CrossRef]

42. Vanda, D.; Soural, M.; Canale, V.; Chaumont-Dubel, S.; Satała, G.; Kos, T.; Funk, P.; Fülöpová, V.; Lemrová, B.; Koczurkiewicz, P.;
et al. Novel Non-Sulfonamide 5-HT 6 Receptor Partial Inverse Agonist in a Group of Imidazo[4,5- b ]Pyridines with Cognition
Enhancing Properties. Eur. J. Med. Chem. 2018, 144, 716–729. [CrossRef]

43. Smusz, S.; Kurczab, R.; Satała, G.; Bojarski, A.J. Fingerprint-Based Consensus Virtual Screening towards Structurally New 5-HT6R
Ligands. Bioorg. Med. Chem. Lett. 2015, 25, 1827–1830. [CrossRef] [PubMed]

44. Harris, R.N.; Stabler, R.S.; Repke, D.B.; Kress, J.M.; Walker, K.A.; Martin, R.S.; Brothers, J.M.; Ilnicka, M.; Lee, S.W.; Mirzadegan, T.
Highly Potent, Non-Basic 5-HT6 Ligands. Site Mutagenesis Evidence for a Second Binding Mode at 5-HT6 for Antagonism.
Bioorg. Med. Chem. Lett. 2010, 20, 3436–3440. [CrossRef] [PubMed]

45. Ivanenkov, Y.A.; Majouga, A.G.; Veselov, M.S.; Chufarova, N.V.; Baranovsky, S.S.; Filkov, G.I. Computational Approaches to the
Design of Novel 5-HT6 R Ligands. Rev. Neurosci. 2014, 25, 451–467. [CrossRef] [PubMed]

46. Huang, S.; Xu, P.; Shen, D.; Simon, I.A.; Mao, C.; Tan, Y.; Zhang, H.; Harpsøe, K.; Li, H.; Zhang, Y.; et al. GPCRs Steer Gi and Gs
Selectivity via TM5-TM6 Switches as Revealed by Structures of Serotonin Receptors. Mol. Cell 2022, 82, 2681–2695.e6. [CrossRef]
[PubMed]

http://doi.org/10.1002/alz.039303
https://clinicaltrials.gov/ct2/show/NCT00481520
http://doi.org/10.1358/dnp.2010.23.8.1500435
http://www.ncbi.nlm.nih.gov/pubmed/21031168
http://doi.org/10.2174/156720510790691100
http://www.ncbi.nlm.nih.gov/pubmed/19939222
http://doi.org/10.14336/AD.2017.1014
http://doi.org/10.1002/14651858.CD009524.pub2
http://doi.org/10.1007/s40120-018-0095-y
http://doi.org/10.1016/j.neuropharm.2016.03.043
http://doi.org/10.1017/S1041610218002156
http://www.ncbi.nlm.nih.gov/pubmed/30560763
http://doi.org/10.1016/j.bmcl.2007.11.045
http://www.ncbi.nlm.nih.gov/pubmed/18053713
http://doi.org/10.1177/0269881107082944
http://doi.org/10.1016/j.ejmech.2017.04.033
http://doi.org/10.3390/ijms20143420
http://www.ncbi.nlm.nih.gov/pubmed/31336820
http://doi.org/10.3390/ijms221910773
http://doi.org/10.1016/j.ejmech.2020.112529
http://www.ncbi.nlm.nih.gov/pubmed/32693296
http://doi.org/10.3390/molecules24244472
http://doi.org/10.3390/molecules23102529
http://doi.org/10.1016/j.ejmech.2017.12.053
http://doi.org/10.1016/j.bmcl.2015.03.049
http://www.ncbi.nlm.nih.gov/pubmed/25866241
http://doi.org/10.1016/j.bmcl.2010.03.110
http://www.ncbi.nlm.nih.gov/pubmed/20434910
http://doi.org/10.1515/revneuro-2014-0030
http://www.ncbi.nlm.nih.gov/pubmed/24867282
http://doi.org/10.1016/j.molcel.2022.05.031
http://www.ncbi.nlm.nih.gov/pubmed/35714614


Int. J. Mol. Sci. 2022, 23, 8768 21 of 24

47. Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.;
et al. ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [CrossRef]

48. Bender, A.; Mussa, H.Y.; Glen, R.C.; Reiling, S. Similarity Searching of Chemical Databases Using Atom Environment Descriptors
(MOLPRINT 2D): Evaluation of Performance. J. Chem. Inf. Comput. Sci. 2004, 44, 1708–1718. [CrossRef]

49. Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: A New Engine for Pharmacophore
Perception, 3D QSAR Model Development, and 3D Database Screening: 1. Methodology and Preliminary Results. J. Comput.–
Aided Mol. Des. 2006, 20, 647–671. [CrossRef]

50. Pándy-Szekeres, G.; Esguerra, M.; Hauser, A.S.; Caroli, J.; Munk, C.; Pilger, S.; Keserű, G.M.; Kooistra, A.J.; Gloriam, D.E. The G
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