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Increased sensitivity to apoptosis upon endoplasmic reticulum
stress-induced activation of the unfolded protein response in
chemotherapy-resistant malignant pleural mesothelioma
Duo Xu1, Shun-Qing Liang1, Haitang Yang1, Ursina Lüthi2, Carsten Riether2,3, Sabina Berezowska4, Thomas M. Marti1, Sean R. R. Hall1,
Rémy Bruggmann5, Gregor J. Kocher1, Ralph A. Schmid1,3 and Ren-Wang Peng1,3

BACKGROUND: Standard treatment for advanced malignant pleural mesothelioma (MPM) is a cisplatin/pemetrexed (MTA)
regimen; however, this is confronted by drug resistance. Proteotoxic stress in the endoplasmic reticulum (ER) is a hallmark of cancer
and some rely on this stress signalling in response to cytotoxic chemotherapeutics. We hypothesise that ER stress and the adaptive
unfolded protein response (UPR) play a role in chemotherapy resistance of MPM.
METHODS: In vitro three-dimensional (3D) and ex vivo organotypic culture were used to enrich a chemotherapy-resistant
population and recapitulate an in vivo MPM microenvironment, respectively. Markers of ER stress, the UPR and apoptosis were
assessed at mRNA and protein levels. Cell viability was determined based on acid phosphatase activity.
RESULTS: MPM cells with de novo and/or acquired chemotherapy resistance displayed low ER stress, which rendered the cells
hypersensitive to agents that induce ER stress and alter the UPR. Bortezomib, an FDA-approved proteasome inhibitor, selectively
impairs chemotherapy-resistant MPM cells by activating the PERK/eIF2α/ATF4-mediated UPR and augmenting apoptosis.
CONCLUSIONS: We provide the first evidence for ER stress and the adaptive UPR signalling in chemotherapy resistance of MPM,
which suggests that perturbation of the UPR by altering ER stress is a novel strategy to treat chemotherapy-refractory MPM.

British Journal of Cancer (2018) 119:65–75; https://doi.org/10.1038/s41416-018-0145-3

INTRODUCTION
Malignant pleural mesothelioma (MPM) is a relatively rare but
extremely aggressive cancer originating from transformation of
mesothelial cells of the pleura. The aetiology of MPM is closely
associated with asbestos exposure.1 Albeit prohibition of
commercial use of asbestos in early 1990s, the incidence of
MPM worldwide is still increasing because of the long latency
(30–60 years) of asbestos-associated carcinogenesis.1 Major
histological subtypes of MPM include epithelioid, biphasic (or
mixed) and sarcomatoid variants.2 The prognosis of patients
with MPM is dismal, with a median survival time of 9–12 months
only and a 5-year survival rate less than 5%.3, 4 No targeted
therapies against MPM are available in the clinic, so current
standard-of-care for patients with advanced MPM remains a
dual chemotherapeutic regimen that combines cisplatin and
pemetrexed (MTA).5 Clinical evidence indicates that this
therapeutic regimen elicits only modest efficacy,6 rarely achiev-
ing durable clinical response because of drug resistance, de
novo and/or acquired after initial therapeutic administration.5, 7

Little is known about the mechanism of chemotherapy
resistance in MPM patients. As a consequence, no second-line
treatment has been approved for MPM patients who fail the
first-line chemotherapy.8

The endoplasmic reticulum (ER) plays a pivotal role in regulating
proteostasis.9 Newly synthesised secretory proteins are first
translocated into the lumen of the ER, where they are folded
and assembled before being delivered to intra- and extracellular
destinations where they acquire their function. This process is
mediated by chaperone proteins resident in the ER lumen.10 When
threatened by unsurmountable protein-folding demand, ER stress
is initiated, which subsequently induces the unfolded protein
response (UPR), an adaptive signalling pathway that evolved to
alleviate proteotoxic stress placed on the ER and to restore ER
homoeostasis.11 The UPR pathway coordinates cellular response
to ER stress by integrating a complex signalling network, including
the cascade mediated by protein kinase RNA-like endoplasmic
reticulum kinase (PERK), a type I transmembrane protein resident
on the ER. Upon activation, PERK phosphorylates the eukaryotic
initiation factor eIF2α, leading to reduction in global protein
synthesis but increased the expression of the activating transcrip-
tion factor 4 (ATF4). ATF4 then transcriptionally alters its down-
stream effectors, e.g., the CCAAT/enhancer-binding protein
homologous protein (CHOP). CHOP is involved in activation of
apoptosis by blocking anti-apoptotic Bcl-2 family.12, 13

ER stress-induced activation of the UPR is an important
mechanism of protein quality control in the ER that promotes
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cell survival.14, 15 However, irresolvable or persistent ER stress is
detrimental, as it activates apoptosis.16, 17 Thus, inducing ER stress
has emerged as a promising strategy for cancer therapy,11, 18

alone and combined with chemotherapy19 or targeted agents that
inhibit oncogenic driver mutations.20 Prolonged disruption of the
UPR can be achieved by pharmacological induction of ER stress.
Bortezomib, an FDA-approved proteasome inhibitor, induces cell
death by eliciting sustained ER stress.21, 22

In this study, we reported that deregulated UPR signalling
sensitises chemotherapy-resistant MPM cells to agents that induce
ER stress. We showed that MPM cells resistant to first-line cisplatin/
MTA chemotherapy display low basal level of ER stress and that
bortezomib selectively impairs these cells by eliciting differential
UPR, elevating the response to ER stress and augmenting
apoptotic cell death. Mechanistically, hyperactivation of the
PERK/ATF4/ CHOP pathway is important for bortezomib-induced
UPR and apoptosis. Our study thus reveals an important role for
UPR signalling in chemotherapy resistance of MPM, and offers a
new rationale by altering ER stress to treat patients with
chemotherapy-resistant MPM.

MATERIALS AND METHODS
Cell culture and reagents
The MPM cell line H28 and a normal mesothelial cell line (Met-5A)
were obtained from ATCC (American Type Culture Collection,
Manassas, VA, USA). MPM cell lines MESO-1 (ACC-MESO-1) and
MESO-4 (ACC-MESO-4) were purchased from RIKEN Cell Bank
(Ibaraki, Japan) and described previously.23 MPM cell lines (MSTO-
211H and JL-1) were obtained from DSMZ (German Collection of
Microorganisms and Cell Cultures, Brunswick, Germany). Cells were
cultured in RPMI-1640 medium or Medium 199 (Cat. #8758 and
#4540; Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10%
foetal bovine serum/FBS (Cat. #10270-106; Life Technologies, Grand
Island, NY, USA) and 1% penicillin/streptomycin solution (Cat.
#P0781, Sigma-Aldrich, St. Louis, MO, USA) at 37 °C with 95% air/
5% CO2 in a humid condition. The authenticity of the cell lines was
verified by DNA fingerprinting (Microsynth, Bern, Switzerland) and
they were tested to be free from mycoplasma contamination. Three-
dimensional culture of tumourspheres was performed as previously
described.24 In brief, single cells suspended in MammoCult™ Human
Medium (Cat. #05620; STEMCELL Technologies, Canada) were plated
(1000 cells/ml) in ultra-low attachment plates (Cat. #3471; Corning
Incorporated, Corning, NY, USA) and cultured for 5–7 days. To
optimise sphere growth, cell culture medium was replenished every
3 days. Chemotherapeutic agents cisplatin and pemetrexed
(commercial name “ALIMTA”; Cat #VL7640) were purchased from
Sandoz and Eli Lilly (Suisse) S.A. (Vernier/Geneva, Switzerland),
respectively. HA15 and bortezomib were obtained from Selleckchem
(Cat. #S8299, and #S1013; Houston, USA) and Thapsigargin from
Tocris (Cat. #1138; Bristol, UK).

Cell viability and clonogenic survival assay
2D- and 3D-cultured cells (2500 cells/well) were seeded in 96-well
plates. After 24 h, cells were treated with various drugs for 72 h,
unless otherwise indicated. Cell viability was determined by acid
phosphatase (APH) assay as described.25 The efficacy of drugs on
cell growth was normalised to untreated control. Each data point
was generated in triplicate and each experiment was repeated
twice. Unless otherwise stated, a representative result is pre-
sented. Best-fit curve was generated in GraphPad Prism [(log
(inhibitor) vs response (-variable slope four parameters)]. Error bars
are mean ± s.d.
Clonogenic assay was performed as described.26 In brief,

exponentially grown MPM cells were seeded in six-well plates at
a clonal density of 5000 cells/well and treated with various
reagents for the indicated time period. After 7–10 days depending
on growth rate, the resulting colonies were stained with crystal

violet (0.5% dissolved in 25% methanol). Growth curve was
generated by eluting crystal violet staining with 10% acetic acid
and measuring absorbance at 590 nm.

Quantitative real-time PCR (qRT-PCR)
Total RNA was isolated and purified with RNeasy Mini Kit (Cat.
#74106, Qiagen, Germany). Complementary DNA (cDNA) was
synthesised by the high capacity cDNA reverse transcription kit
(Cat. # 4368814, Applied Biosystems, Foster City, CA, USA)
according to the manufacturer’s instructions and qPCR analyses
were performed in triplicate on a 7500 Fast Real-Time PCR System
(Applied Biosystems) with commercially available TaqMan “Assay
on Demand” primer/probes (Supplementary Table S2). The
expression level of each target gene was normalised against
GAPDH and compared among different groups by the ΔΔCT
method. Baseline and threshold for Ct calculation were set
automatically with the 7500 software v2.06.

Immunoblotting and immunohistochemistry
Cell lysates were prepared and western blot analysis was
performed as described,27 with the exception that protease
inhibitors (Cat. #78440; Thermo Fisher Scientific, MA, USA) were
included in lysis buffer. In brief, equal amounts of protein lysates
(10–25 μg/lane) were resolved by SDS-PAGE (Cat. #4561033; Bio-
Rad Laboratories, Hercules, CA, USA) and transferred onto
nitrocellulose membranes (Cat. #170-4158; Bio-Rad). Membranes
were then blocked in blocking buffer (Cat. #927-4000; Li-COR
Biosciences, Bad Homburg, Germany) for 1 h at room temperature
and incubated with appropriate primary antibodies overnight at 4
°C (Supplementary Table S3). IRDye 680LT-conjugated goat anti-
mouse IgG (Cat. #926-68020) or IRDye 800CW-conjugated goat
anti-rabbit IgG (Cat. #926-32211) from Li-COR Biosciences were
used at 1:10000 dilutions. Finally, signals of membrane-bound
secondary antibodies were imaged using the Odyssey Infrared
Imaging System (Li-COR Biosciences).
Surgically removed syngeneic and xenograft tumours were

formalin-fixed and paraffin-embedded (FFPE) and stained with
haematoxylin and eosin (H&E) using a standard protocol. FFPE
tissue blocks were sectioned at 4μm, deparaffinised and
rehydrated. Subsequent immunohistochemical staining with
appropriate antibodies (Supplementary Table S3) was performed
with the automated system BOND RX (Leica Biosystems, New-
castle, UK). Visualisation was performed using the Bond Polymer
Refine Detection kit (Leica Biosystems) as instructed by the
manufacturer. Images were acquired and processed using Adobe
Photoshop CS6 v13 (Adobe Systems Incorporated).

Patient-derived xenografts (PDX) model and ex vivo organotypic
tissue culture
NSG mice (NOD/SCIDγ-/-) were anesthetised by i.p. injection of
50 μl narcotics mix (0.5 mg/kg dormitor/5 mg/kg dormicum/0.05
mg/kg fentanyl) and shaved (left and right back flank). Surgery
was immediately started when reflexes disappear. After disinfec-
tion with 70% ethanol, a subcutaneous pocket was created by two
small incisions over the left and right back flank. Fresh MPM
tissues, surgically resected at the Division of Thoracic Surgery,
Bern University Hospital, and subsequently dissected by a
pathologist at the Institute of Pathology, University of Bern, were
cut into small pieces (5 μm x 5 μm) and implanted in the pocket.
Finally, the incisions were closed by surgical clips and each mouse
was injected (s.c.) with 100μl antidot mix (1.1 mg/kg Alzane/0.45
mg/kg anexate/0.075 mg/kg temgesic). Tumours of 15 mm in
diameter were harvested for further analysis and mice were
euthanised.28 All mouse studies were conducted in accordance
with Institutional Animal Care and Ethical Committee-approved
animal guidelines and protocols.
For ex vivo organotypic culture, freshly explanted PDX tumours

were processed immediately. In brief, explanted tumour tissues
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were soaked in ice-cold sterile PBS with antibiotic/antimycotic,
mounted on agarose and cut into slices (300–500 μM) by a
Vibratome VT1200 (Leica Microsystems).29 Tissue slices were
cultured in ultra-low attachment plates (Cat. #3471; Corning
Incorporated, Corning, NY, USA) in DMEM supplemented with 20%
FBS (Cat. #10270-106; Life Technologies, Grand Island, NY, USA)
and 1% penicillin/streptomycin solution (Cat. #P0781, Sigma-
Aldrich, St. Louis, MO, USA) at 37 °C and 95% air/5% CO2. After 12
h, drugs were added and treatment lasted for up to 72 h. Slices
collected at baseline time (T0) and after treatment were snap-
frozen for qPCR and in 10% formalin for immunohistochemical
staining.

Apoptosis assays
MPM cells were treated for 48 h with vehicle control or the
indicated drugs. After treatment, cells in the supernatant and
adherent to plates were collected, washed with PBS and pooled
before suspended in 500 µl binding buffer and stained with the
Annexin V Apoptosis Detection Kit -FITC (Cat. #88-8005; Thermo
Fisher Scientific, MA, USA) according to the manufacturer’s
instructions. Flow cytometry analysis was performed on a BD
Biosciences LSRII flow cytometer. Three independent experiments
were performed.
For the assay using apoptosis antibody array, protein lysates

(200 μg) prepared from bortezomib- and vehicle-treated MPM
cells were analysed by a Human Apoptosis Array Kit (Cat. #
ARY009, R&D Systems, Minneapolis, MN, USA) according to the
manufacturer’s protocol.

siRNA knockdown
Knockdown of CHOP was achieved by specific duplex siRNAs
(50nmol/L) purchased from Origene Technologies (Cat.
#SR319903). Transfection of siRNAs was performed with SiTran1.0
(Cat. #TT300001, Origene Technologies, MD, USA) according to the
manufacturer’s instructions.

Statistical analysis
Statistical analyses were performed using GraphPad Prism 6.03
(GraphPad Software Inc., http://www.graphpad.com/welcome.
htm) unless otherwise indicated. In all studies, data represent
biological replicates (n) and are depicted as mean values ± s.d. as
indicated in the figure legends. Comparison of mean values was
conducted with unpaired, two-tailed Student’s t-test or one-way
ANOVA with Donnett’s post hoc test as indicated in the figure
legends. In all analyses, P values less than 0.05 were considered
statistically significant.

RESULTS
Characterisation of MPM cells resistant to standard chemotherapy
In vitro 3D culture more accurately recapitulates in vivo tumour
microenvironment and therapeutic response that ultimately
occurs in patients.30, 31 To test if 3D culture can be used to enrich
chemotherapy-resistant population in MPM cells, we compared
MPM cells propagated under 3D culture conditions (thereafter
referred to as 3D cells) and parental tumour cells grown in
monolayer (referred to as 2D cells) for their response to
chemotherapy. 3D and 2D cells were treated with standard
chemotherapeutic regimen and cell viability was determined 72 h
after the treatment. Contrasted to parental H28, MESO-1 and
MESO-4 cells (2D) where cisplatin and pemetrexed/MTA exerted
dosage-dependent inhibition of tumour cell growth, the 3D
populations derived from the three well-established MPM cell
lines showed unanimously reduced sensitivity to cisplatin and
MTA, regardless of whether they were used alone (Supplementary
Figure S1A) or in combination (Supplementary Figure S1B). These
results indicate that MPM cells propagated by in vitro 3D culture
are resistant to standard chemotherapy.

Chemotherapy-resistant MPM cells display low ER stress and the
adaptive UPR signalling
ER stress and the adaptive UPR have emerged as a key mechanism
of chemotherapy resistance.19 We determined if the UPR has a
role in response of MPM cells to chemotherapy. Quantitative real-
time PCR (qRT-PCR) showed significant downregulation of a panel
of the UPR-related genes, including HSPA5 (BiP), EIF2AK3 (PERK),
ATF4 (ATF4) and DDIT3 (CHOP), in 3D cells compared to 2D
counterparts (Fig. 1a). Western blots confirmed that BiP, ATF4,
CHOP and phosphorylated eIF2α (p-eIF2α), key markers of UPR
activity, were dramatically reduced in 3D cells versus the parental
H28 and MESO-1 cells (Fig. 1b). Notably, the decrease in UPR
activity correlated with a reduced apoptotic index in 3D cells,
marked by elevated anti-apoptotic Bcl-xl and reduced cleaved
caspase 7, a marker of apoptosis (Fig. 1b).
To determine how chemotherapy modulates UPR signalling,

H28, MESO-1 and MESO-4 cells were chronically treated with
cisplatin and MTA. Cisplatin/MTA exerted time-dependent growth
inhibition ( < 9 days), but failed to do so in prolonged treatment
( > 9 days), indicating emergence of chemotherapy resistance
(Fig. 1c). Notably, despite temporal increase, the protein level of
IRE1α, PERK, p-eIF2α and ATF4 in H28 cells was steadily suppressed
by cisplatin/MTA, and this suppression correlated with decreased
sensitivity to chemotherapy in the treated cells. In particular, the
PERK/p-eIF2α/ATF4 pathway was substantially inactivated by
cisplatin/MTA, as PERK and p-eIF2α, and, to a lesser extent, ATF4,
were markedly downregulated after treated for 15 days compared
to those at d0 (Fig. 1d). Consistently, cisplatin/MTA induced Bcl-xl
and reduced cleaved caspase 7 in H28 cells (Fig. 1d).
To interrogate the in vitro results, xenograft tumours derived

from a MPM patient (BE454; Supplementary Table S1) were
subjected to ex vivo organotypic culture28, 29 and treatment.
Cisplatin/MTA (72 h) substantially decreased the expression of
ATF4 and DDIT3 (Fig. 1e) and of BiP and calnexin, protein
chaperons and markers of ER stress (Fig. 1f, g). These results
indicate that chemotherapy resistance in MPM is associated with
repressed ER stress and low apoptotic index.

Deregulated UPR activity sensitises chemotherapy-resistant MPM
cells to ER stress
To determine if deregulated UPR signalling renders chemotherapy-
resistant MPM cells vulnerable to ER stress, 3D and 2D of MESO-1
cells were treated with HA15, thapsigargin and bortezomib, agents
that induce ER stress.20, 32, 33 HA15 and thapsigargin lowered
MESO-1 viability in a dose-dependent manner, but were more
deleterious for 3D than 2D cells (Fig. 2a). Similarly, bortezomib and
ABT-263, FDA-approved inhibitors of proteasome and anti-
apoptotic Bcl-2 family, respectively, impaired the viability of 3D
cells to a much greater extent than of parental MESO-1 cells
(Fig. 2b, c), supporting the notion that chemotherapy-resistant
MPM cells are more resistant to apoptosis (Fig. 1d).
We then determined if the efficacy difference on 2D and 3D

cells was due to differential UPR to bortezomib-induced ER stress.
Bortezomib (0.1 μM) elicited acute and time-dependent increase
in BiP, IRE1α XBP-1(s), PERK, p-eIF2α, ATF4 and CHOP in 3D cells,
but only marginally affected the expression of these proteins in
the parental MESO-1 cells (Fig. 2d, e). Importantly, in 3D cells
bortezomib (0.1μM) markedly increased the level of apoptotic
markers cleaved poly(ADP-ribose) polymerase (PARP CL) and
Caspase-7 (Cas-7 CL) that, however, were only mildly affected in
the parental cells (Fig. 3a, b). Fluorescence activated cell sorting
(FACS) analysis revealed that bortezomib at low doses (1, 10 nM)
induced significantly greater apoptosis in 3D than in 2D cells
(Fig. 3c, d). Similar results were obtained from an apoptosis array
assay, in which bortezomib treatment (6 h) induced the expression
of cleaved caspase-3, a critical executioner of apoptosis, in 3D cells
but not in 2D cells: the relative ratio of cleaved caspase-3 in
bortezomib- versus DMSO-treated cells was 1.46 in 3D cells and
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0.95 in 2D cells (Fig. 3e). Consistently, bortezomib promoted the
expression of pro-apoptotic SMAC34 and, to a lesser extent, of
Hsp60,35 increasing the level of the two proteins by 38% and 24%
(compared to DMSO) in 3D cells (Fig. 3e). In contrast, bortezomib
repressed SMAC and only slightly increased Hsp60 (11%) in 2D

cells (Fig. 3e). We also observed bortezomib-dependent increase
of pro-survival Claspin36 and Survivin,37 but to similar extent in 2D
and 3D cells (Fig. 3e). Interestingly, HIF-1α, a key transcription
factor activated by hypoxia,38 was dramatically increased by
bortezomib, more robustly in 3D than 2D cells (Fig. 3e). HIF-1α can
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evoke both pro-apoptotic and pro-survival signalling, depending
on contextual stimuli.39 Future studies are required to elucidate
the link between bortezomib-induced HIF-1α, induction of
apoptosis and chemotherapy response in MPM cells.

Together, these results demonstrate that bortezomib exerts
selective cytotoxicity in chemotherapy-resistant MPM cells. This
efficacy difference is associated with differential adaption of
parental (2D) and 3D cells in response to bortezomib-elicited ER
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stress, resulting in elevated UPR activation and augmented
apoptotic cell death in chemotherapy-refractory MPM cells.

Bortezomib promotes cisplatin/MTA efficacy in chemotherapy-
resistant MPM cells
Given that bortezomib preferentially impairs chemotherapy-
resistant MPM cells, we next determined if bortezomib could
restore chemotherapy-resistant MPM cells to standard therapy.
First, supporting the results of viability analysis (Supplementary
Figure S1), clonogenic assay showed that 3D cells were highly
resistant to cisplatin/MTA regimen (0.1 μM cisplatin and 0.1 μM
MTA) but hypersensitive to bortezomib relative to 2D cells (Fig. 4a,
b). Concurrent treatment with bortezomib enhanced the inhibi-
tory effect of cisplatin/MTA in 3D cells, outperforming single
agents alone; in contrast, this combinatorial effect was not
observed in the parental MESO-1 cells (Fig. 4a, b). Second, viability
assay confirmed that bortezomib (10 nM, 100 nM and 1 μM)
reduced viability of 3D cells in a dose-dependent manner when
combined with cisplatin (1 μM)/MTA (1 μM) regimen (Fig. 4c).
Although bortezomib also promoted cisplatin/MTA efficacy in
parental MESO-1 cells, the combined effect was less robust than
that in 3D cells (Fig. 4c). Finally, FACS analysis confirmed that
combined bortezomib and cisplatin/MTA triggered significantly
greater apoptosis in chemotherapy-resistant MPM cells than
monotherapy of chemotherapy or bortezomib (Fig. 4d).

MPM cells with low ER stress are intrinsically resistant to
chemotherapy but hypersensitive to bortezomib
Next, we tested if ER stress and the adaptive UPR play a role in
intrinsic chemotherapy resistance in MPM. Drug sensitivity profiling
of a panel of MPM cell lines (MESO-1, H28, MESO-4, MSTO-211H, JL-
1), patient-derived primary MPM cells (BE261T) (Supplementary
Table S1) and a non-transformed normal mesothelial cell line (Met-
5A) revealed that the cells varied in their response to bortezomib,
with MESO-4 showing the highest sensitivity and BE261T the
greatest resistance (Fig. 5a, b). Clonogenic assay confirmed that
MESO-4 cells were more sensitive to bortezomib than BE261T cells
(Fig. 5c). Notably, MESO-4 cells that were susceptible to bortezomib
displayed low ER stress and the adaptive UPR activity, manifested
by dramatically lower levels of BIP, p-PERK, p-eIF2a and CHOP than
those in BE261T cells (Fig. 5d). Importantly, MESO-4 cells were
intrinsically more resistant to cisplatin/MTA than BE261T cells
(Fig. 5e). Hence, chemotherapy resistance correlates with low ER
stress and UPR signalling, which renders chemotherapy-resistant
MPM cells selectively susceptible to agents that induce ER stress,
regardless of whether the resistance is due to an intrinsic or
induced mechanism. These results have important clinical implica-
tions, which suggests that stratification of patients with newly
diagnosed MPMs according to the magnitude of proteotoxic ER
stress and the adaptive UPR signalling may predict those who will
likely benefit from bortezomib-based therapy.

a

b

c

d

MESO-1

MESO-1 3D

2D

Vehicle

CIS+MTA
(0.1+0.1 μM)

Bortezomib
(1 nM)

Combi Combi

Bortezomib
(1 nM)

CIS+MTA
(0.1+0.1 μM)

Vehicle

125

Vehicle

Vehicle
Chemo

Combi
Bor (1 nM)

Vehicle
Chemo

Combi

Bor (10 nM)

Chemo
Combi 1
Combi 2
Combi 3

100

******
***

*** *** ***
***

***

***
**

***

**

***

***

**

***

***

75

50

25

0

125 10

5

0

100 ns

ns ns

75

50

25

0

MESO-1 2D

MESO-1 2D Early apoptosis Late apoptosis

MESO-1 3D

MESO-1 3D

C
el

l v
ia

bi
lit

y 
(%

)
F

ol
d 

ch
an

ge

%
 o

f c
on

tr
ol

3D

Fig. 4 Bortezomib promotes cisplatin/MTA efficacy in chemotherapy-resistant MPM cells. a, b Clonogenic assay of 2D and 3D MESO-1 cells
after treated with the indicated drugs. Colonies were stained (a) and quantified (b) after 7 days. Data are presented as mean ± s.d. (n= 3). **P
< 0.01, ***P < 0.001 by unpaired two-sided t-test. ns, not significant. c Viability of 2D and 3D cells after 72 h treatment with chemotherapy (1
μM cisplatin+ 1 μMMTA) alone or combined with bortezomib (1, 10, 100 nM). Data are shown as mean ± s.d. (n= 3). **P < 0.01, ***P < 0.001 by
unpaired two-sided t-test. d FACS-based apoptotic assay of 3D cells after treated for 48 h with chemotherapy (1 μM cisplatin+ 1 μM MTA),
bortezomib (10 nM) or the combination

Increased sensitivity to apoptosis upon endoplasmic reticulum…
D Xu et al.

71



PERK/ATF4/CHOP pathway plays a pivotal role in bortezomib-
elicited UPR and apoptosis
UPR signalling transmitted by the PERK/ATF4/CHOP pathway was
markedly repressed by cisplatin/MTA (Fig. 1d, e) but significantly
activated by bortezomib (Fig. 2e), which prompted us to
investigate if this pathway is functionally important for
bortezomib-elicited UPR and apoptosis. As expected, RNAi-based
depletion of DDIT3 (encoding CHOP) precluded bortezomib-
induced expression of CHOP, but not of those upstream of CHOP,
such as PERK, p-eIF2α and ATF4 that were equally induced by

bortezomib in MESO-1 cells with or without CHOP depletion
(Fig. 6a). Importantly, bortezomib treatment (24 h) failed to induce
cleaved PARP and caspase 7 in CHOP-depleted MESO-1 cells,
whereas they were substantially increased by bortezomib in MESO-
1 transfected with control siRNA (Fig. 6b). To be noted, bortezomib
inhibited MESO-1 viability in a dose-dependent manner, but CHOP
depletion significantly compromised this inhibitory effect (Fig. 6c).
Last but not least, cisplatin/MTA exerted dose-dependent effec-
tiveness in MESO-1 cells; however, CHOP knockdown abolished the
response to cisplatin/MTA (Fig. 6d). These results demonstrate that
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integrity of the PERK/ATF4/CHOP pathway is indispensable for
bortezomib-induced UPR and apoptosis in MPM cells.
In summary, we demonstrated here that ER stress and the

adaptive UPR pathway play a fundamental role in chemotherapy
resistance of MPM, and that bortezomib, an FDA-approved
proteasome inhibitor, is selectively toxic for chemotherapy-
resistant MPM cells by evoking an elevated UPR. Our findings
suggest that MPM patients with recurrent disease after first-line
treatment or tumours intrinsically refractory to chemotherapy may
benefit from bortezomib-based treatment.

DISCUSSION
Clinical treatment for MPM is limited.40 Therapeutic options for
patients with early stage MPM, accounting for 10–15% of all MPM
cases,41 include surgical resection and multimodal therapies that
combine chemotherapy or radiation therapy with surgery in
different orders.42, 43 For patients with advanced-stage, unresect-
able disease, currently approved first-line therapy is a dual
chemotherapy regimen with cisplatin plus pemetrexed that
modestly improved the median survival time from 9 to
12 months.6 However, MPM is largely unresponsive, with only
40% of MPM patients with MPM show a clinical response to this
treatment,6, 44 and patients who initially respond to therapy
eventually develop resistance.45 Currently, there are no second-
line therapies have been clinically approved for therapy-refractory
or relapsed MPM.8 It is therefore paramount to identify and
develop new therapeutic approaches to improve clinical outcome
of MPM patients. A better understanding of the molecular

underpinnings underlying MPM resistance to existing therapies
may hold the promise to meet this unmet need.
In this study, we addressed one of the major clinical challenges

for MPM: resistance to front-line cisplatin/MTA chemotherapy.46

Using in vitro and ex vivo models, we provided the first evidence
for a role of ER stress and the adaptive UPR signalling pathway in
chemotherapy resistance of MPM, regardless of the resistance
mechanism (intrinsic or acquired). We further showed that
deregulated UPR activity in chemotherapy-refractory MPM cells
renders these cells hypersensitive to agents that induce ER stress
and augment the UPR signalling. These findings thus offer a
rationale by perturbing ER stress and the adaptive UPR to treat
patients whose MPM tumours have progressed through, become
resistant to and/or relapsed after first-line chemotherapy.
A vast majority of patients present with advanced-stage,

unresectable MPM at diagnosis.45 The only approved treatment
for these patients is the cisplatin/MTA combination regimen. More
disappointingly, patients that initially respond to this therapy
inevitably develop resistance.45 A key finding of our present study
is that MPM cells resistant to cisplatin/MTA therapy display low ER
stress and the adaptive UPR signalling, regardless of whether the
resistance is due to an acquired or intrinsic mechanism. This
finding is mostly consistent with earlier studies showing that
chemotherapy-resistant stem cells in normal intestine or colon
cancer are low in ER stress compared to their differentiated
counterpart.19, 47 Although beyond the scope of this study, it will
be highly pertinent in the future to elucidate the nature of
chemotherapy-resistant MPM cells, in particular if they are
equivalent to cancer stem cells in MPM.
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We further demonstrated that deregulated UPR signalling in
chemotherapy-resistant MPM cells licences an increased sensitivity
of these cells to agents that induce ER stress and perturb
proteostatic signalling pathways. Indeed, several ER stress inducers,
including thapsigargin, HA15 and the FDA-approved proteasome
inhibitor bortezomib, selectively impaired chemotherapy-resistant
MPM cells. We showed that bortezomib exerts the efficacy by
eliciting differential UPR, elevating the response to ER stress and
augmenting apoptotic cell death in chemotherapy-resistant MPM
cells. Compared to bortezomib and chemotherapy alone, con-
current treatment triggered even greater UPR and apoptotic
response in chemotherapy-resistant MPM cells, indicating that
bortezomib further promotes the efficacy of cisplatin/MTA regi-
men. Mechanistically, we showed that the UPR mediated by PERK/
ATF4/CHOP pathway plays an important role in bortezomib-
elicited apoptotic cell death, as CHOP depletion attenuated the
efficacy of bortezomib. These results are in agreement with those
reported from colon and brain cancer, where ER stress-induced
activation of the UPR subverts chemotherapy resistance.47–49

Preclinical studies have unveiled a promising efficacy for
bortezomib in a variety of tumours, including MPM.50, 51 However,
clinical trials with bortezomib, alone or combined with che-
motherapeutics, have led to dismal results in unselected MPM
patients.52–54 Given our findings that bortezomib preferentially
impairs chemotherapy-resistant MPM cells and that combined
bortezomib with chemotherapy only mildly affects drug naïve
parental MPM cells, future clinical investigations with bortezomib
might need centre on (1) MPM patients with relapsed disease after
initial chemotherapy; and (2) patients with newly diagnosed MPMs
that are intrinsically resistant to chemotherapy.
Collectively, we report in this study that ER stress and the

adaptive UPR play an important role in chemotherapy resistance
of MPM, and that deregulated UPR activity in chemotherapy-
resistant MPM cells sensitises the cells to agents that induce ER
stress and alter the UPR. Bortezomib selectively impairs
chemotherapy-resistant MPM cells by inducing differential UPR,
leading to elevated response to ER stress and apoptotic cell death.
Mechanistically, UPR signalling mediated by PERK/ATF4/CHOP
pathway is indispensable for bortezomib-elicited apoptosis. Our
study suggests that perturbation of the UPR signalling by altering
ER stress may be a novel strategy to treat patients with
chemotherapy-resistant MPM, either tumours recurrent from
first-line treatment or those naïve to treatment but intrinsically
refractory to chemotherapy.
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