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INTRODUCTION

Breast cancer is a serious disease among women and has 
become increasingly prevalent worldwide [1]. Triple-negative 
breast neoplasm (TNBN) account for 15% to 20% of breast 
cancers, and is intractable to treatment owing to its poor 
prognosis and high recurrence rate [2,3]. Over the years, a 
great deal of effort has been expended to enhance the efficacy 
of TNBN treatments using the angiogenesis inhibitors bevaci-
zumab and paclitaxel; however, this remains only in the devel-
opmental stage [4]. Therefore, it is very important to better 
understand the physiology of TNBN. There are many meth-
ods available to identify and understand the physiology of 
cancers from the gene viewpoint, such as differentially ex-

pressed gene (DEG) analysis, and gene clustering and classifi-
cation. However, these methods have limitations in identify-
ing gene-gene interactions and connections. In addition, gene 
clustering and classification do not detect important genes in 
formed clusters. 

Given these limitations, we attempted to construct a TNBN 
gene regulatory network using gene expression data. Previ-
ously, de Matos Simoes and Emmert-Streib [5] proved the 
utility of gene expression data for constructing a gene regula-
tory network of breast cancer via the BC3Net method, and 
found significant pathways enriched for the cell cycle and im-
mune response [6]. However, in contrast to their method, we 
used conditional independence graphs with least absolute 
shrinkage and selection operator (LASSO) regression to ex-
clude falsely detected gene regulatory networks. By doing this, 
we created a more precise network to identify gene-gene in-
teractions and hub genes. In addition, we used triple-positive 
breast neoplasm (TPBN) gene expression data to compare 
with the TNBN gene regulatory network data, although 
TPBN is not a definitive entity of breast cancer.
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Purpose: To better identify the physiology of triple-negative breast 
neoplasm (TNBN), we analyzed the TNBN gene regulatory net-
work using gene expression data. Methods: We collected TNBN 
gene expression data from The Cancer Genome Atlas to con-
struct a TNBN gene regulatory network using least absolute 
shrinkage and selection operator regression. In addition, we con-
structed a triple-positive breast neoplasm (TPBN) network for 
comparison. Furthermore, survival analysis based on gene ex-
pression levels and differentially expressed gene (DEG) analysis 
were carried out to support and compare the network analysis 
results, respectively. Results: The TNBN gene regulatory network, 
which followed a power-law distribution, had 10,237 vertices and 
17,773 edges, with an average vertex-to-vertex distance of 8.6. 
The genes ZDHHC20 and RAPGEF6 were identified by centrality 

analysis to be important vertices. However, in the DEG analysis, 
we could not find meaningful fold changes in ZDHHC20 and 
RAPGEF6 between the TPBN and TNBN gene expression data. 
In the multivariate survival analysis, the hazard ratio for ZDHHC20 
and RAPGEF6 was 1.677 (1.192–2.357) and 1.676 (1.222–2.299), 
respectively. Conclusion: Our TNBN gene regulatory network was 
a scale-free one, which means that the network would be easily 
destroyed if the hub vertices were attacked. Thus, it is important 
to identify the hub vertices in the network analysis. In the TNBN 
gene regulatory network, ZDHHC20 and RAPGEF6 were found 
to be oncogenes. Further study of these genes could help to re-
veal a novel method for treating TNBN in the future.
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METHODS

We retrieved RNA-Seq expression data for breast cancer 
from The Cancer Genome Atlas (TCGA) [7]. By definition, in 
terms of immunohistochemistry, TNBN is negative for the es-
trogen receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2), whereas TPBN is 
positive for all three receptors [7].

Data characteristics 
Of the 1,088 patients with breast cancer logged in TCGA, 

115 (10.6%) had TNBN and 97 (8.9%) had TPBN (Table 1). 
The mean age of the patients with TNBN was 54.73 years 
(range, 42.94–66.52 years), being statistically significantly 
lower than that of the patients with TPBN, which was 59.98 
years (range, 45.88–74.08 years) (p= 0.004, Student t-test). Of 
the combined TNBN and TPBN groups, 190 patients were 
alive and 22 patients were deceased at the time of study. The 
proportions of pathologic tumor stages were similar in both 
groups, with stage II being the most frequent followed by 
stages III and I. Most patients did not receive neoadjuvant 
chemotherapy, but they also did not have a surgical margin 

status. Differences in neoadjuvant chemotherapy and surgical 
margin status were not statistically significant between the 
two groups (p> 0.05, generalized Fisher exact test). RNA-Seq 
V2 expression levels (log2-transformed and normalized RNA-
Seq by expectation–maximization values) were retrieved from 
the TCGA portal.

Statistical analyses 
The statistical analyses involved a two-stage analytical 

scheme: (1) regression-based network inference and (2) post 
hoc analysis. In the first stage, we estimated probabilistic 
neighbors (typically called a conditional independence graph) 
on the basis of gene expression in the triple-positive and tri-
ple-negative patients, respectively. We used LASSO regression 
to estimate the probabilistic neighbors, applying the optimal 
penalty parameter to control the probability of including 
falsely estimated neighbors [8,9]. The LASSO-based approach 
estimates a network by finding probabilistic neighbors around 
each node, and is computationally efficient and requires only 
a small amount of memory in computing systems. Thus, this 
approach is very applicable to such high-dimensional data. 
The estimated neighbors indicate functional interactions be-
tween genes. After that, we calculated the degree of each gene 
(called the hub gene) and the number of neighboring genes 
around the hub genes. Subsequently, we sorted the hub genes 
by degree from large to small, and performed a post hoc anal-
ysis to understand their biological functions. In the second 
stage, both univariate and multivariate Cox proportional haz-
ard models were used to assess survival rates related to hub-
gene expression. The age, pathologic tumor stage, and ER, PR, 
and HER2 status were used as covariates to adjust the univari-
ate factor in the survival model. In addition, DEGs between 
TNBN and TPBN were selected by performing empirical 
Bayes moderated t-statistics on the log2-transformed RNA-
Seq data, with cutoff thresholds of Bonferroni corrected p-
values of < 0.05 and log fold changes of > |1|, using the Bio-
conductor “limma” R-package (http://bioconductor.org/packages/ 
release/bioc/html/limma.html) [10,11]. For the network sta-
tistical analyses, NodeXL version 1.0.1.361 (The Social Media 
Research Foundation, Belmont, USA) was used.

RESULTS

In the TNBN gene regulatory network, a total of 10,237 
vertices and 17,773 edges were observed. The graph density 
was 0.0003, the maximum vertex-to-vertex distance was 28, 
and the average vertex-to-vertex distance was 8.6, which 
means that if one were to go through eight vertices, all would 
be connected. Statistical results for the TPBN gene regulatory 

Table 1. Demographics of the triple-positive and triple-negative breast 
neoplasm patients

Characteristics
Triple-negative 

(n=115) 
No. (%)

Triple-positive
(n=97) 
No. (%)

All 
(n=212) 
No. (%)

Stage
   I 19 (16.5) 9 (9.3) 28 (13.2) 
   II 72 (62.6) 56 (57.8) 128 (60.4) 
   III 19 (16.5) 30 (30.9) 49 (23.1) 
   IV 2 (1.8) 1 (1.0) 3 (1.4) 
   NA 3 (2.6) 1 (1.0) 4 (1.9) 
Age (yr)* 54.73 (42.94–66.52) 59.98 (45.88–74.08) 57.09 (43.98–70.20) 
Status
   Alive 103 (89.6) 87 (89.6) 190 (89.6) 
   Dead 12 (10.4) 10 (10.4) 22 (10.4) 
NAC
   Yes 0 4 (4.1) 4 (1.9) 
   No 114 (99.1) 93 (95.9) 207 (97.6) 
   NA 1 (0.9) 0 1 (0.5)
Margin status
   Positive 3 (2.6) 4 (4.2) 7 (3.3) 
   Negative 102 (88.7) 81 (83.5) 183 (86.3) 
   Close 4 (3.5) 1 (1.0) 5 (2.4)  
   NA 6 (5.2) 11 (11.3) 17 (8.0)
Race
   White 67 (58.3) 63 (64.9) 130 (61.3) 
   Black 32 (27.9) 8 (8.3) 40 (18.9) 
   Asian 8 (6.9) 5 (5.2) 13 (6.1) 
   NA 8 (6.9) 21 (21.6) 29 (13.7)

NAC=neoadjuvant chemotherapy; NA=not available.
*Median (range).

http://bioconductor.org/packages/
release/bioc/html/limma.html
http://bioconductor.org/packages/
release/bioc/html/limma.html
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network were similar (Table 2).
In the network centrality analysis, the TNBN gene regulato-

ry network revealed the genes RAPGEF6, GTF2A1, and ASXL2 
to have the highest hub vertex degree with 38 edges (Tables 
3-5). In addition, we conducted a hub vertex analysis with the 
betweenness centrality and eigenvector centrality. ZDHHC20 
had the highest value (2593718.407) for the betweenness cen-
trality, whereas ASXL2 had the highest value (0.019) for the 
eigenvector centrality. 

For the network clustering analysis, we used the Clauset-

Newman-Moore algorithm to divide the network into groups. 
In the TNBN gene regulatory network, there were 352 groups 
showing a modularity value of 0.825, and the largest group 
contained 1,241 vertices and 2,421 edges. On the other hand, 
there were 456 groups showing a modularity value of 0.820 in 

Table 2. Gene regulatory network statistics of triple-negative and triple-
positive breast neoplasms 

Network statistics TNBN TPBN

Vertices 10,237  8,930
Total edges 17,773 15,223
Maximum geodesic distance (diameter) 28 29
Average geodesic distance 8.635109 8.649705
Graph density 0.000339225 0.000381835

TNBN=triple-negative breast neoplasm; TPBN=triple-positive breast neo-
plasm.

Figure 1. Cluster analysis of the triple-negative breast neoplasm gene regulatory network using the Clauset-Newman-Moore algorithm. The largest 
group (blue) and the second largest group (sky-blue) are connected the most frequently.

Table 3. Degree centrality results for triple-negative and triple-positive 
breast neoplasms

TNBN TPBN

Gene Value Gene Value

ASXL2 38 CLOCK 39
GTF2A1 38 REST 32
RAPGEF6 38 ATP5D 30
ZDHHC20 35 TGFBR2 28
CCNT1 33 ASXL2 27
PDGFRB 32 STRN 26
REST 31 RBM27 25
TAOK1 31 RIF1 25
RIF1 30 CCNT1 25
ATP5D 30 ZEB2 25

TNBN=triple-negative breast neoplasm; TPBN=triple-positive breast neo-
plasm.

Table 4. Betweenness centrality results for triple-negative and triple-
positive breast neoplasms 

TNBN TPBN

Gene Value Gene Value

ZDHHC20 2593718.407 CLOCK 1256280.673
RAPGEF6 2147541.505 GYPC 938225.682
ZNF192 1835667.961 HIC1 922622.728
GTF2A1 1468223.374 REST 890485.116
RIF1 1437912.482 ATP5D 812258.220
ATP5D 1369994.673 FAM108A1 794508.449
ASXL2 1366586.056 GTF2A1 773790.744
REST 1339309.745 TRAPPC5 772846.398
CCNT1 1198033.135 ASXL2 759382.681
GMCL1 1040959.614 CCDC12 686844.284

TNBN=triple-negative breast neoplasm; TPBN=triple-positive breast neo-
plasm.

Table 5. Eigenvector centrality results for triple-negative and triple-posi-
tive breast neoplasms 

TNBN TPBN

Gene Value Gene Value

ASXL2 0.019 CLOCK 0.016
GTF2A1 0.017 CCNT1 0.013
REST 0.016 REST 0.012
CCNT1 0.014 ASXL2 0.010
ZDHHC20 0.014 STRN 0.009
UHMK1 0.013 NCOA2 0.009
RAPGEF6 0.012 UHMK1 0.008
NCOA2 0.010 EXOC6B 0.007
LMTK2 0.009 RC3H2 0.006
TAOK1 0.009 SHPRH 0.006

TNBN=triple-negative breast neoplasm; TPBN=triple-positive breast neo-
plasm.
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Figure 2. Cluster analysis of the triple-positive breast neoplasm gene regulatory network using the Clauset-Newman-Moore algorithm. The second 
largest group (red) and the third largest group (green) are connected the most frequently.

Table 6. Cox regression based on clinical variables and hub genes

Clinical variable
Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

Age at diagnosis (yr) 1.250 (1.081–1.445) 0.002 1.423 (1.137–1.782) 0.002
Stage
   I Reference Reference
   II 1.516 (0.800–2.871) 0.201 1.225 (0.523–2.868) 0.640
   III 2.645 (1.349–5.187) 0.004 2.792 (1.115–6.987) 0.028
   IV  4.737 (1.990–11.289) <0.001  5.431 (1.443–20.433) 0.012
ER
   Positive Reference Reference
   Negative 1.582 (1.034–2.420) 0.034 1.205 (0.437–3.323) 0.718
PR
   Positive Reference Reference
   Negative 1.674 (1.119–2.505) 0.012 1.831(0.687–4.879) 0.226
HER2
   Positive Reference Reference
   Negative 0.313 (0.170–0.576) <0.001 0.465 (0.240–0.898) 0.022
CLOCK 1.523 (1.238–1.874) <0.001 1.779 (1.297–2.440) <0.001
RAPGEF6 1.184 (1.000–1.402) 0.050 1.508 (1.108–2.053) 0.009
ZDHHC20 1.148 (0.974–1.352) 0.100 1.565 (1.179–2.079) 0.002

HR=hazard ratio; CI=confidence interval; ER=estrogen receptor; PR=progesterone receptor; HER2=human epidermal growth factor receptor 2. 

Figure 3. Regression analysis of the observed vertex degree and density values. (A) Regression analysis of degree exist in TN has slope -2.823, 
adjusted R2 0.882, and p<0.001 which satisfy the power-law distribution. (B) Regression analysis of degree exist in TP has slope -2.727, adjusted R2 
0.897, and p<0.001  which satisfy the power-law distribution.
Degree exist in TN=triple-negative breast neoplasm group; Degree exist in TP=triple-positive breast neoplasm group.
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the TPBN gene regulatory network, with the largest group 
containing 1,153 vertices and 2,377 edges. In the TNBN gene 
regulatory network, the largest and second largest groups 
were connected most frequently (Figure 1), whereas the sec-
ond and third largest groups were connected most frequently 
in the TPBN gene regulatory network (Figure 2). 

It is known that gene regulatory networks in nature gener-
ally satisfy the power law. The distributions of vertex degrees 
were expected to follow the power law precisely, as defined by 
P(k) ~ k–r, where r is an exponential factor. Using log-trans-
formed values, we performed a regression analysis on the ob-
served vertex degree and density values of the two gene regu-
latory networks (Figure 3, Supplementary Table 1, available 
online). The slopes in Supplementary Table 1 are the estimat-
ed -r values. We noted that the results adequately satisfied the 
power-law distribution.

In addition, to confirm the subtype-specific clinical rele-
vance, the subset of patients was selected by the status of ER, PR, 
and HER2 for analysis by Cox proportional hazard regression. 
Survival analyses were performed on three genes (CLOCK, 
RAPGEF6, and ZDHHC20), and the hazard ratio and p-value 
are shown in Supplementary Table 2 (available online). The 
analysis on the three genes revealed that the HER2-negative, 
ER-positive, and PR-positive groups had meaningful hazard 
ratios in both univariate and multivariate analyses. In the 
multivariate survival analysis, the survival rate tended to 
decrease with a higher expression of CLOCK, ZDHHC20, 
and RAPGEF6, with hazard ratios of 1.76, 1.54, and 1.51, re-
spectively (Table 6). 

DISCUSSION

In network analysis, the most important feature is the hub 
vertex distribution. The TNBN and TPBN gene regulatory 
networks both showed a scale-free characteristic. This means 
that, unlike a random network, the TNBN gene regulatory 
network could be easily destroyed if the hub vertices were at-
tacked. Among the TNBN gene regulatory network hub verti-
ces, the most interesting genes were RAPGEF6 and ZDHHC20. 
Because these genes are cancer related, they were consistently 
observed in TNBNs only in the centrality analysis. Draper 
and Smith [12] have reported that ZDHHC20 was associated 
with cellular transformation and cell proliferation, but to the 
best of our knowledge, its relationship to breast cancer has 
thus far not been fully elucidated. In this situation, ZDHHC20 
may be a targetable hub vertex in TNBNs. In addition, RAPGEF6 
is known to convert GDP into GTP in the Ras-related proteins 
Rap1 and Rap2, which are cell-junction related proteins [13]. 
Activated Rap1 interacts with JamA, Bag3, Afadin, Riam, and 

RapL to regulate cadherin and integrin, which are connected 
to the cell junction and extracellular matrix [14]. Thus, if we 
want to identify changes in cell-to-cell interactions in TNBNs, 
it is essential to study RAPGEF6. 

CLOCK was at the top of all three centrality analyses of 
TPBN. Interestingly, in TNBNs, CLOCK had 5 degrees, with 
an eigenvector and betweenness centrality values of 0.003 and 
215085.373, respectively. These results show that even though 
TNBN may not be affected by hormonal dysregulation, its 
oncogenic property may affect its genesis. The result that 
higher expression of CLOCK, ZDHHC20 and RAPGEG6 re-
lated to lower survival rate also support the importance of the 
CLOCK, ZDHHC20, and RAPGEF6 genes in each network 
group. In addition, the ASXL2, CCNT1, and NCOA2 genes 
were also frequently observed in the centrality analysis in both 
groups. These genes are well-known in tumorigenesis [15-17]. 
Thus, by conducting a thorough network analysis, we can find 
not only well-known genes but also genes that are not as well 
known in cancers. In fact, in the DEG analysis, except for 
RAPGEF6, we could find no other genes showing a meaning-
ful p-value (Bonferroni) between the two groups (Supple-
mentary Table 3, available online). In addition, we compared 
these genes using 100 normal and 1,084 cancer samples. The 
genes CCNT1 and ASXL2 showed a p-value of less than 0.001 
(Bonferroni), whereas the other genes showed a p-value of 1. 
Therefore, the DEG analysis using cancer and normal samples 
suggests that the important genes found from the network 
analysis cannot be found in the DEG analysis (Supplementary 
Table 4, available online). 

Through network analysis, we have attempted to under-
stand the physiology of TNBNs. The TNBN and TPBN gene 
regulatory networks showed similar network statistics, with 
both having similar network densities, diameters, average ver-
tex-to-vertex distance values, and scale-free network charac-
teristics. However, the TNBN gene regulatory network was 
less clustered than the TPBN gene regulatory network, albeit 
showing a similar modularity. In addition, the hub vertices 
were different in both groups. Although we could not conduct 
specific analyses on each cluster in the TNBN gene regulatory 
network, we were able to find some oncogenes through the 
centrality analyses.

CONFLICT OF INTEREST

The authors declare that they have no competing interests. 

REFERENCES

1.  Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 



Gene Regulatory Network Analysis for Triple-Negative Breast Neoplasms 245

https://doi.org/10.4048/jbc.2017.20.3.240 http://ejbc.kr

2016;66:7-30.
2.  Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling 

J, et al. Subtyping of breast cancer by immunohistochemistry to investi-
gate a relationship between subtype and short and long term survival: a 
collaborative analysis of data for 10,159 cases from 12 studies. PLoS 
Med 2010;7:e1000279. 

3.  Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N 
Engl J Med 2010;363:1938-48. 

4.  Miller K, Wang M, Gralow J, Dickler M, Cobleigh M, Perez EA, et al. 
Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast 
cancer. N Engl J Med 2007;357:2666-76.

5.  de Matos Simoes R, Emmert-Streib F. Bagging statistical network infer-
ence from large-scale gene expression data. PLoS One 2012;7:e33624.

6.  Emmert-Streib F, de Matos Simoes R, Mullan P, Haibe-Kains B, Dehmer 
M. The gene regulatory network for breast cancer: integrated regulatory 
landscape of cancer hallmarks. Front Genet 2014;5:15.

7.  Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, 
Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas 
Pan-Cancer analysis project. Nat Genet 2013;45:1113-20.

8.  Han SW, Chen G, Cheon MS, Zhong H. Estimation of directed acyclic 
graphs through two-stage adaptive lasso for gene network inference. J 
Am Stat Assoc 2016;111:1004-19.

9.  Meinshausen N, Bühlmann P. High-dimensional graphs and variable 
selection with the Lasso. Ann Stat 2006;34:1436-62. 

10.  Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, 

et al. Bioconductor: open software development for computational bi-
ology and bioinformatics. Genome Biol 2004;5:R80.

11.  Smyth GK. Limma: linear models for microarray data. In: Gentleman R, 
Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics and 
Computational Biology Solutions Using R and Bioconductor. New 
York: Springer; 2005. p.397-420. 

12.  Draper JM, Smith CD. DHHC20: a human palmitoyl acyltransferase 
that causes cellular transformation. Mol Membr Biol 2010;27:123-36.

13.  Gao X, Satoh T, Liao Y, Song C, Hu CD, Kariya KK, et al. Identification 
and characterization of RA-GEF-2, a Rap guanine nucleotide exchange 
factor that serves as a downstream target of M-Ras. J Biol Chem 2001; 
276:42219-25.

14.  Iwasaki M, Tanaka R, Hishiya A, Homma S, Reed JC, Takayama S. 
BAG3 directly associates with guanine nucleotide exchange factor of 
Rap1, PDZGEF2, and regulates cell adhesion. Biochem Biophys Res 
Commun 2010;400:413-8.

15.  Moiola C, De Luca P, Gardner K, Vazquez E, De Siervi A. Cyclin T1 
overexpression induces malignant transformation and tumor growth. 
Cell Cycle 2010;9:3119-26.

16.  Munteanu AI. Genetic alterations in nuclear receptor coactivators in 
breast cancer [dissertation]. [Los Angeles, USA]: University of Southern 
California; 2010. 

17.  Park UH, Kang MR, Kim EJ, Kwon YS, Hur W, Yoon SK, et al. ASXL2 
promotes proliferation of breast cancer cells by linking ER alpha to 
histone methylation. Oncogene 2016;35:3742-52.


