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ABSTRACT

HepG2 is one of the most widely used human cancer
cell lines in biomedical research and one of the main
cell lines of ENCODE. Although the functional ge-
nomic and epigenomic characteristics of HepG2 are
extensively studied, its genome sequence has never
been comprehensively analyzed and higher order ge-
nomic structural features are largely unknown. The
high degree of aneuploidy in HepG2 renders tradi-
tional genome variant analysis methods challenging
and partially ineffective. Correct and complete inter-
pretation of the extensive functional genomics data
from HepG2 requires an understanding of the cell
line’s genome sequence and genome structure. Us-
ing a variety of sequencing and analysis methods,
we identified a wide spectrum of genome character-
istics in HepG2: copy numbers of chromosomal seg-
ments at high resolution, SNVs and Indels (corrected
for aneuploidy), regions with loss of heterozygosity,
phased haplotypes extending to entire chromosome

arms, retrotransposon insertions and structural vari-
ants (SVs) including complex and somatic genomic
rearrangements. A large number of SVs were phased,
sequence assembled and experimentally validated.
We re-analyzed published HepG2 datasets for allele-
specific expression and DNA methylation and as-
sembled an allele-specific CRISPR/Cas9 targeting
map. We demonstrate how deeper insights into ge-
nomic regulatory complexity are gained by adopting
a genome-integrated framework.

INTRODUCTION

Genomic instability is a hallmark of cancer where criti-
cal genomic changes create gene fusions, the disruption of
tumor-suppressor and the amplification of oncogenes (1–
3). A comprehensive knowledge of the mutations and larger
structural changes that underlie a cancer genome is criti-
cal not only for a deeper understanding of the biological
processes that drive tumor progression and evolution, but
also for the development of targeted cancer therapies. The
HepG2 cell line is one of the most widely used cancer cell
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lines used in many areas of biomedical research due to its
extreme versatility, contributing to over 23 000 publications
to date, even more than K562. It is a hepatoblastoma cell
line derived from a 15-year-old male of European ancestry
(4,5). Representing the human endodermal lineage, HepG2
cells are widely used as models for human toxicology stud-
ies (6–10), including toxicogenomic screens using CRISPR-
Cas9 (11), in addition to studies on drug metabolism (12),
cancer (13), liver disease (14), gene regulatory mechanisms
(15) and biomarker discovery (16). As one of the main cell
lines of the ENCyclopedia Of DNA Elements Project (EN-
CODE), HepG2 has been used to generate close to 1000
datasets for ENCODE (17).

The functional genomic and epigenomics aspects of
HepG2 cells have been extensively studied with approx-
imately 325 ChIP-Seq, 300 RNA-Seq and 180 eCLIP
datasets available through ENCODE in addition to re-
cent single-cell methylome and transcriptome datasets (18).
However, the genome sequence and higher order genomic
structural features of HepG2 have never been characterized
in a comprehensive manner, even though the HepG2 cell
line has been known to contain multiple chromosomal ab-
normalities (19,20). As a result, the extensive HepG2 func-
tional genomics and epigenomics studies conducted to date
were done without reliable genomic contexts for accurate
interpretation.

Here, we report the first global, integrated and haplotype-
resolved whole-genome characterization of the HepG2 can-
cer genome that includes copy numbers (CN) of large
chromosomal regions at high-resolution, single-nucleotide
variants (SNVs, also including single-nucleotide polymor-
phisms, i.e. SNPs) and small insertions and deletions (in-
dels) with allele-frequencies corrected by CN in aneuploid
regions, loss of heterozygosity, mega-base-scale phased hap-
lotypes and structural variants (SVs), many of which are
haplotype-resolved (Figure 1 and Supplementary Figure
S1). The datasets generated in this study form an inte-
grated, phased, high-fidelity genomic resource that can pro-
vide the proper contexts for future experiments that rely on
HepG2’s unique characteristics. We show how knowledge
about HepG2’s genomic sequence and structural varia-
tions can enhance the interpretation of functional genomics
and epigenomics data. For example, we integrated HepG2
RNA-Seq data and whole-genome bisulfite sequencing data
with ploidy and phasing information and identified many
cases of allele-specific gene expression and allele-specific
DNA methylation. We also compiled a phased CRISPR
map of loci suitable for allele specific-targeted genome edit-
ing or screening. Finally, we demonstrate the power of this
resource by providing compelling insights into the muta-
tional history of HepG2 and oncogene regulatory com-
plexity derived from our datasets. The technical framework
demonstrated in this study is also suitable for the study of
other cancer cell lines and primary tumor samples.

MATERIALS AND METHODS

HepG2 karyotyping and DNA extraction

HepG2 cells were acquired from the Stanford EN-
CODE Product Center for Mapping of Regulatory Re-
gions (NHGRI Project 1U54HG006996-01). Karyotyping

of HepG2 cells was conducted in the Cytogenetics Lab-
oratory (cytogenetics.stanford.edu) at Stanford University
Medical Center (Palo Alto, CA, USA), where 20 metaphase
cells were analyzed by GTW banding. DNA extraction
was performed using the Qiagen DNeasy Blood & Tis-
sue Kit (Cat No. 69504), and concentration was mea-
sured using the Qubit dsDNA BR Assay Kit (Invitrogen,
Waltham, MA, USA). Purity of DNA (OD260/280 > 1.8;
OD260/230 > 1.5) was verified using NanoDrop (Thermo
Scientific, Waltham, MA, USA). Using field-inversion gel
electrophoresis on the Pippin Pulse System (Sage Science,
Beverly, MA, USA), the extracted DNA was verified to be
high molecular weight (mean > 35 kb).

CN of chromosome segments and allele frequencies of SNVs
and Indels

Standard short-insert WGS (Supplementary Methods) cov-
erage was calculated in 10-kb bins across the genome and
plotted against the %GC content of each bin to verify the
existence of discrete clusters corresponding to discrete CNs
(Supplementary Figure S2). CN was assigned to a cluster
based on the ratio of its mean coverage to that of the lowest
cluster. For an example, the cluster with the lowest mean
coverage was assigned CN1, and the cluster with twice as
much mean coverage was assigned CN2 and so forth. The
ratios for the five discrete clusters observed corresponded
almost perfectly to CN1, CN2, CN3 and CN4. WGS cov-
erage across the genome and across each chromosome was
examined visually to assign CN for different chromosome
segments or entire chromosomes based on the cluster anal-
ysis where adjacent chromosomal segments with different
CNs could be identified by the clearly visible sharp and
steep changes in sequencing coverage (Supplementary Fig-
ure S3 and Supplementary Data). For each chromosome
segment, SNVs and Indels were called using by GATK
Haplotypecaller (version 3.7) (21) by specifying the CN or
ploidy of that chromosome segment (stand emit conf = 0.1,
variant index type = LINEAR, variant index parameter =
128000, ploidy = {CN}). The resulting Haplotypecaller out-
puts from all chromosome segments were then concate-
nated, and variant quality scores were recalibrated using
GATK VQSR with training datasets (dbSNP 138, HapMap
3.3, Omni 2.5 genotypes, 1000 Genomes Phase 1) as recom-
mended by GATK Best Practices (22,23) and filtered with
the setting tranche = 99.0. SNVs and Indels were anno-
tated using dbSNP138 (24) followed by SnpEff (version 4.3;
canonical transcripts) (25) and then filtered for protein alter-
ing variants using SnpSift (version 4.3; ‘HIGH’ and ‘MOD-
ERATE’ putative impact) (26). Protein-altering variants
were intersected with the variants from the 1000 Genomes
Project (27) and the Exome Sequencing Project (http://evs.
gs.washington.edu/EVS/) where overlapping variants were
removed using Bedtools (version 2.26) (28). The resulting
PPA variant calls were overlapped against the Catalogue of
Somatic Mutations in Cancer (29) and Sanger Cancer Gene
Census (30).

Identification of LOH

A Hidden Markov Model (HMM) was used to identify ge-
nomic regions exhibiting LOH. The HMM is designed with

http://evs.gs.washington.edu/EVS/
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Figure 1. Comprehensive Overview of the HepG2 Genome. Circos visualization of HepG2 genome variants with the following tracks in concentric order
starting with outermost ‘ring’: human genome reference track (hg19); large CN changes (colors correspond to different CN, see legend panel); in 1.5
Mb windows, merged SV density (deletions, duplications, inversions) called using BreakDancer, BreakSeq, PINDEL, LUMPY and Long Ranger; phased
haplotype blocks (demarcated with four colors for clearer visualization); SNV density in 1 Mb windows; Indel density in 1 Mb windows; dominant zygosity
(heterozygous or homozygous > 50%) in 1 Mb windows; regions with loss of heterozygosity; allele-specific expression; CpG islands exhibiting allele-specific
DNA methylation; non-reference LINE1 and Alu insertions; allele-specific CRISPR target sites; large-scale SVs resolved by using Long Ranger (peach:
intrachromosomal: dark maroon: interchromosomal); by using GROC-SVs (light-purple: intrachromsomal; dark-purple: interchromosomal).

two states: LOH present and LOH absent. We used SNVs
that were recalibrated and ‘PASS’-filtered from GATK
VQSR as well as overlapped 1000 Genomes Project vari-
ants (31). The genome was split into 40-kb bins; heterozy-
gous and homozygous SNVs were tallied for each bin, and
bins with <12 SNVs were removed. A bin was classified as
heterozygous if ≥50% of the SNVs within the bin are het-
erozygous; otherwise it was classified as homozygous. This
classification was used as the HMM emission sequence. The
HMM was initialized with the same initiation and transi-
tion probabilities (Prob = 10E-8) (3), and the Viterbi algo-
rithm was used to estimate a best path. Adjacent LOH in-
tervals were merged.

Haplotype phasing and variant analysis using linked-reads

Paired-end linked-reads (median insert size 396 bp, dupli-
cation rate 7.68%, Q30 Read1 78.7%, Q30 Read2 63.1%)

were aligned to hg19 (alignment rate 90.4%, mean coverage
67.0x, zero coverage 0.117%) and analyzed using the Long
Ranger Software (version 2.1.5) from 10x Genomics (32,33)
(Pleasanton, CA, USA). Segmental duplications, reference
gaps, unplaced contigs, regions with assembly issues and
highly polymorphic sites (http://cf.10xgenomics.com/supp/
genome/hg19/sv blacklist.bed, http://cf.10xgenomics.com/
supp/genome/hg19/segdups.bedpe) were excluded from the
analysis. ENSEMBL annotations (http://cf.10xgenomics.
com/supp/genome/gene annotations.gtf.gz) were used for
genes and exons. Phasing was performed by specifying the
set of pre-called and filtered HepG2 heterozygous SNVs
and Indels from GATK (see above) and formatted us-
ing mkvcf from Long Ranger (version 2.1.5). Heterozy-
gous SNVs and Indels with more than two types of al-
leles in ploidy>2 regions were excluded from analysis.
Large (>30 kb) SVs and large-scale complex rearrange-

http://cf.10xgenomics.com/supp/genome/hg19/sv_blacklist.bed
http://cf.10xgenomics.com/supp/genome/hg19/segdups.bedpe
http://cf.10xgenomics.com/supp/genome/gene_annotations.gtf.gz
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ments were identified using both the Long Ranger wgs mod-
ule with the ‘–somatic’ option, GROC-SVs (default set-
tings with breakpoint assembly) (34) and gemtools (35).
The ‘–somatic’ option increases the sensitivity of the large-
scale SV caller for somatic SVs by allowing the detec-
tion of sub-haplotype events and does not affect small-
scale variant calling. Variants from Long Ranger anal-
ysis indicated as ‘PASS’ were retained. SV breakpoints
identified using GROC-SVs were also analyzed for sup-
porting evidence from mate-pair reads (see below). By us-
ing the method described in (36), the HepG2 haplotype-
blocks identified from Long Ranger were ‘stitched’ to mega-
haplotype blocks by leveraging the SNV haplotype imbal-
ance in aneuploid regions where NA12878 linked-read se-
quencing data (https://support.10xgenomics.com/genome-
exome/datasets/2.2.1/NA12878 WGS v2) were used as the
matching control. Only SNVs present in both genomes
(HepG2 and NA12878) were included in the mega-
haplotype blocks (Supplementary Data and Table 1). For
details on linked-read library construction and allele-
specific RNA expression, DNA methylation and CRISPR
analysis, see Supplementary Methods.

SV identification from short-insert and mate-pair WGS

For short-insert WGS, we identified structural variants us-
ing BreakDancer (version 1.4.5) (37), Pindel (version 0.2.4t)
(38) and BreakSeq (version 2.0) (39) with default settings
to obtain per-filtered calls. All SV calls were required to be
>50 bp. We filtered out BreakDancer calls with <2 sup-
porting paired-end reads and with confidence scores <90.
Pindel calls were filtered for SVs with quality scores >400.
No further filtering was performed for BreakSeq calls. From
the mate-pair sequencing (Supplementary Methods), SV
calls were made using LUMPY (version 0.6.11) (40). Split-
reads and discordantly mapped reads were first extracted
and sorted from the processed alignment file as described
in github.com/arq5x/lumpy-sv (40). The lumpyexpress com-
mand was issued to obtain pre-filtered SV calls. Segmental
duplications and reference gaps (hg19) downloaded from
the UCSC Genome Browser (41,42) were excluded from the
analysis through the ‘-x’ option. SV calls <50 bp were fil-
tered out. To select for high-confidence calls, only SVs that
have ≥5 supporting reads as well as both discordant and
split-read support were retained. For details regarding ex-
perimental validation of SVs, see Supplementary Methods.

RESULTS

Karyotyping

We obtained HepG2 cells from the Stanford ENCODE Pro-
duction Center. The cells exhibit a hyperdiploid karyotype
of 49 to 52 chromosomes (Figure 2A). All 20 metaphase
HepG2 cells analyzed using GTW banding were abnor-
mal; 15 cells were very complex, characterized by multi-
ple structural and numerical abnormalities, and the other
5 show a doubling (or tetraploid expansion) of this abnor-
mal cell line, as typical of tumors both in vitro and in vivo.
These include translocation between the chromosome 1p
and 21p, trisomies of chromosomes 2, 16 and 17, tetrasomy

of chromosome 20, uncharacterized arrangements of chro-
mosomes 16 and 17, and a variable number of marker chro-
mosomes. Five cells demonstrated >100 chromosomes and
represent a tetraploid expansion of the stemline described.
This tetraploid expansion is consistent with previously pub-
lished results (19) but also absent from other published cy-
togenetic analyses of HepG2 (20), suggesting the clonal evo-
lution arose during tumorigenesis or early in the establish-
ment of the HepG2 cell line. Although the ploidies of all
chromosomes in our HepG2 cell line were supported by pre-
vious published karyotypes (19,20,43), variations do exist
and also among the various published analyses especially
for chromosomes 16 and 17, suggesting that karyotypic dif-
ferences exist between different HepG2 cell lines (Supple-
mentary Table S1).

High-resolution ploidy changes in HepG2

To obtain a high-resolution aneuploid map i.e. large CN
changes by chromosomal region in HepG2, WGS cover-
age across the genome was first calculated in 10-kb bins
and plotted against percent GC content where four distinct
clusters were clearly observed (44) (Supplementary Figure
S2). CNs were assigned to each cluster based on the ratio
between its mean coverage and that of the lowest cluster
(CN = 1). These assigned large CN changes by chromo-
somal region confirm the hyperdiploid state of the HepG2
genome as identified by karyotyping (Figure 2A; Supple-
mentary Figure S2 and Supplementary Table S2). We see
that 74.1% of the HepG2 genome has a baseline copy num-
ber of two (consistent with karyotype), 15.5% copy number
of three, 2.7% copy number of four, 0.7% has a copy num-
ber of five and 6.9% in a haploid state (Figure 2B and Sup-
plementary Table S2). Furthermore, these high-resolution
CN changes across the HepG2 genome were also confirmed
by two independent replicates of Illumina Infinium Multi-
Ethnic Global-8 arrays (MEGA) array data (Supplemen-
tary Figure S3A and Supplementary Data). We found in-
creased CN (CN = 3) over the oncogene VEGFA (6p21.1),
which was found to be recurrently duplicated in cases of
hepatocellular carcinoma (45).

SNVs and indels

We identified SNVs and indels in HepG2 by taking into ac-
count the CN of the chromosomal regions in which they
reside so that heterozygous allele frequencies can be as-
signed accordingly (e.g. 0.33 and 0.67 in triploid regions;
0.25, 0.50 and 0.75 in tetraploid regions). Using GATK
Haplotypecaller (21), we identified a total of ∼3.34M SNVs
(1.90M heterozygous, 1.44M homozygous) and 0.90M in-
dels (0.60M heterozygous, 0.29M homozygous) (Table 1,
Dataset 1). Interestingly, there are 12 375 heterozygous
SNVs and indels that have more than two haplotypes in
chromosomal regions with CN > 2 (Dataset 1). In addition,
chromosome 22 and large continuous stretches of chromo-
somes 6, 11 and 14 show striking loss of heterozygosity
(LOH) (Figure 1 and Supplementary Table S3). Since ge-
nomic data from healthy tissue that correspond to HepG2
cells is not available, we intersected these SNVs and indels
with dbsnp138 (24) and found the overlap to be ∼3.28M

https://support.10xgenomics.com/genome-exome/datasets/2.2.1/NA12878_WGS_v2
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Figure 2. HepG2 Karyogram and Callset Overview. (A) Representative karyogram of HepG2 cells by GTW banding that shows multiple numerical
and structural abnormalities including a translocation between the short arms of chromosomes 1 and 21, trisomies of chromosomes 12, 16 and 17,
tetrasomy of chromosome 20, uncharacterized rearrangements of chromosomes 16 and 17 and a two marker chromosomes. ISCN 2013 description:
49∼52,XY,t(1:21)(p22;p11),+2,+16,add(16)(p13),?+17,?add(17)(p11.2),+20,+20,+1∼3mar[cp15]/101∼106,idemx2[cp5]. (B) CNs (by percentage) across
the HepG2 genome. (C) Percentage of HepG2 SNVs and Indels that are novel and known (in dbSNP). (D) Violin plot with overlaid boxplot of phased
haplotype block sizes, with N50 represented as a dashed line (N50 = 6 792 324 bp) with log-scaled Y-axis. (E) X-axis: chromosome coordinate (Mb). Y-
axis: difference in unique linked-read barcode counts between major and minor haplotypes, normalized by SNV density. Haplotype blocks from of normal
control sample (NA12878) in blue and from HepG2 in dark gray. Density plots on the right reflects the distribution of the differences in haplotype-specific
barcode counts for control sample HepG2. Significant difference (one-sided t-test, P < 0.001) in haplotype-specific barcode counts indicates aneuploidy
and haplotype imbalance. Haplotype blocks (with ≥100 phased SNVs) generated from Long Ranger (Dataset 2) for the major and minor haplotypes were
then ‘stitched’ to mega-haplotypes encompassing the entire triploid chromosome arms of 2p and 2q.
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Table 1. Summary of HepG2 small variant calls and phasing results

SNPs INDELs Phased WGS
All 3 337 361 892 019 % phased heterozygous

SNPs
99

Heterozygous/homozygous 1 898 493/1 438 868 598 882/293 137 % phased INDELs 78
Protein altering 11 460 (0.3%) 1347 (0.2%) Longest phase block 31 106 135

dbSNP138 3 279 135 (98%) 693 348 (78%) Number of phase blocks 1628
Heterozygous/homozygous 1 845 345/1 433 790 439 143/254 205 N50 phase block 6 792 324

Novel 58 226 (2%) 198 671 (22%) N50 Linked-reads per
molecule

61

Heterozygous/homozygous 53 148/5078 159 739/38 932 Barcodes detected 1 532 287
1000 Genomes Project & Exome
Sequencing Project Overlap
(with protein altering variants)

11 083 (97%) 1092 (81%) Mean DNA per barcode
(bp)

633 889

Novel Protein Altering 377 255
COSMIC Overlap 148 (39%) 42 (16%)

Mega-haplotypes
Chromosome Start End Chromosome

Arm
% of arm covered P-value

2 21 888 89 128 628 2p 98% 2.20E-16
2 98 803 025 243 046 591 2q 98% 2.20E-16
6 2 69 211 56 501 036 6p 96% 8.70E-07
6 62 383 957 170 631 019 6q 99% 3.92E-13
16 46 511 762 90 230 343 16q 99% 3.87E-05
17 34 819 191 80 982 386 17q 83% 4.25E-06

(98%) and ∼0.69M (78%), respectively (Figure 2C and Ta-
ble 1). We found that 377 SNVs and 255 indels are private
protein-altering (PPA) after filtering out those that over-
lapped with The 1000 Genomes Project (27) or the Ex-
ome Sequencing Project (46) (Table 1 and Supplementary
Table S4). Moreover, the intersection between the filtered
PPA variants and the Catalogue of Somatic Mutations in
Cancer (COSMIC) is 39% and 16% for SNVs and indels,
respectively (Supplementary Table S5). The gene overlap
between HepG2 PPA and the Sanger Cancer Gene Cen-
sus is 19 (Supplementary Table S6). HepG2 PPA variants
include oncogenes and tumor suppressors such as NRAS
(47), STK11/LKB1 (48) and PREX2 (49,50) as well as other
genes recently found to play critical roles in driving cancer
such as CDK12 (51) and IKBKB (52,53). RP1L1, which was
recently found to be significantly mutated in hepatocellular
carcinoma (45), is also present among the PPA variants.

Resolving haplotypes

We phased the heterozygous SNVs and indels in the HepG2
genome by performing 10X Genomics Chromium linked-
read library preparation and sequencing (32,33). Post se-
quencing quality control analysis shows that 1.49 ng or
approximately 447 genomic equivalents of high molecu-
lar weight (HMW) genomic DNA fragments (mean = 68
kb, 96.1% >20 kb, 22.0% >100 kb) were partitioned into
1.53 million oil droplets and uniquely barcoded (16 bp).
This library was sequenced (2 × 151 bp) to 67x genome
coverage with half of all reads coming from HMW DNA
molecules with at least 61 linked reads (N50 Linked-Reads
per Molecule) (Table 1). We estimate the actual physical
coverage (CF) to be 247×. Coverage of the mean insert by
sequencing (CR) is 18 176 bp (284 bp × 64) or 30.8%, thus
the overall sequencing coverage C = CR × CF = 67×. Dis-
tributed over 1628 haplotype blocks (Table 1, Dataset 2),
1.87M (98.7%) of heterozygous SNVs and 0.67M (77.9%)
of indels in HepG2 were successfully phased. The longest
phased haplotype block is 31.1 Mbp (N50 = 6.80 Mbp)

(Figure 2D and Table 1, Dataset 2); however, haplotype
block lengths vary widely across different chromosomes
(Figure 1 and Supplementary Figure S4). Poorly phased re-
gions correspond to regions exhibiting LOH (Supplemen-
tary Table S3 and Figure 1, Dataset 2).

Construction of mega-haplotypes of entire chromosome arms

We constructed mega-haplotypes of entire chromosome
arms by leveraging the haplotype imbalance in aneuploid
regions in the HepG2 genome where phased haplotype
blocks derived from linked-reads were ‘stitched’ together
(Table 1 and Figure 2E; Supplementary Data). Briefly, by
using a recently developed method (36) specifically for can-
cer genomes, we counted linked-read barcodes for each
phased heterozygous SNVs in haplotype blocks with ≥100
phased SNVs (Dataset 2). Because each barcode is specific
for an HMW DNA molecule, the total number of unique
barcodes is directly correlated with the number of individ-
ual HMW DNA molecules that were sequenced. The frac-
tional representation of a particular genomic sequence (or
locus) can be obtained by counting the total number of
unique barcodes associated with that particular genomic se-
quence. Consequently, for each phased haplotype with CN
> 2, major and minor haplotypes can be assigned accord-
ing to the number of barcodes associated with each hap-
lotype (Figure 2E), where the major haplotype is the hap-
lotype with more associated unique barcodes. In genomic
regions where CN = 2, the two haplotypes are expected to
have similar numbers of unique barcodes. In this method
(36), a matched control for comparison is required to con-
fidently discriminate between the major and minor haplo-
types. Here, we used NA12878 as normal control because no
matching normal tissue sample is available for HepG2 (Fig-
ure 2E). After performing the normalization procedures
and statistical tests described in (36) to verify haplotype im-
balance or aneuploidy genomic regions in HepG2, we then
‘stitched’ together contiguous blocks of phased major and
minor haplotypes, respectively. Using this approach, a total
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of six autosomal mega-haplotypes were constructed (Table
1 and Supplementary Data); four of which encompass en-
tire (or >96%) chromosome arms: 2p, 2q, 6p and 16q (Fig-
ure 3). The largest mega-haplotype is approximately 144
Mb long (2q).

Using linked-reads to identify and reconstruct large and com-
plex SVs

From the linked reads, breakpoints of large-scale SVs can
be identified by searching for distant genomic regions with
linked-reads that have large numbers of overlapping bar-
codes. SVs can also be assigned to specific haplotypes if
the breakpoint-supporting reads contain phased SNVs or
indels (32,33). Using this approach (implemented by the
Long Ranger software from 10X Genomics), we identified
97 large SVs >30 kb (99% phased) (Dataset 3) and 3473
deletions between 50 bp and 30 kb (78% phased) (Dataset
4). The large SVs include inter- and intra-chromosomal re-
arrangements (54) (Figure 3A and B), duplications (Fig-
ure 3C and D) and inversions (Figure 3E and F). A re-
markable example is the haplotype-resolved translocation
between chromosomes 16 and 6 (Figure 3A) resulting in the
disruption of the non-receptor Fyn-related tyrosine kinase
gene FRK, which has been identified as a tumor suppres-
sor (55,56). Another example is the 127 kb tandem duplica-
tion on chromosome 7 (Figure 3C) that results in the par-
tial duplication of genes PMS2, encoding a mismatch repair
endonuclease, and USP42, encoding the ubiquitin-specific
protease 42. An interesting large SV is the 395 kb duplica-
tion within PRKG1 (Figure 3D), which encodes the soluble
l-� and l-� isoforms of cyclic GMP-dependent protein ki-
nase. We also identified a 193 kb homozygous deletion in
PDE4D for HepG2 using linked-read sequencing where six
internal exons within the gene are deleted (Figure 3D).

Furthermore, we also used the long-range information
from the deep linked-reads sequencing dataset to identify,
assemble and reconstruct the breakpoints of SVs in the
HepG2 genome using a recently developed method called
Genome-wide Reconstruction of Complex Structural Vari-
ants (GROC-SVs) (34). Here, HMW DNA fragments that
span breakpoints are statistically inferred and refined by
quantifying the barcode similarity of linked-reads between
pairs of genomic regions similar to Long Ranger (32).
Sequence reconstruction is then achieved by assembling
the relevant linked reads around the identified breakpoints
from which SVs are automatically reconstructed. Break-
points that also have supporting evidence from the 3 kb-
mate pair dataset (see ‘Materials and methods’ section)
are indicated as high-confidence events. GROC-SVs called
a total of 140 high-confidence breakpoints including four
inter-chromosomal events (Figure 1, Dataset 5 and Figure
4A–D); 138 of the breakpoints were successfully sequence-
assembled with nucleotide-level resolution of breakpoints
as well the exact sequence in the cases where nucleotides
have been added or deleted. We identified striking exam-
ples of inter-chromosomal rearrangements or transloca-
tions in HepG2 between chromosomes 1 and 4 (Figure 4A)
and between chromosomes 6 and 17 (Figure 4B) as well as
breakpoint-assembled large genomic deletions (Figure 4C,
Dataset 5). This break-point assembled 335 kb heterozy-

gous deletion is within the NEDD4L on chromosome 18.
Finally, we identified a large (1.3 mb) intra-chromosomal
rearrangement that deletes large portions of RBFOX1 and
RP11420N32 in one haplotype on chromosome 16 using
deep linked-read sequencing (Figure 4D, Dataset 3, Dataset
5).

We then employed ‘gemtools’ (35) to resolve and phase
large and complex SVs in the HepG2 genome. We identified
a complex SV on chromosome 8 that involves a small dele-
tion downstream of ADAM2 that is also within a larger tan-
dem duplication leading to the amplification of the onco-
gene IDO1 (57) and the first half of IDO2 (Figure 5). Two
allele-specific deletions 700 and 200 kb, respectively, were
identified in the PDE4D on chromosome 5 (Figure 5). Since
chromosome 5 is triploid in HepG2 (Figures 1 and 2A;
Supplementary Data), we see approximately twice as much
linked-reads barcode representation for the allele harboring
the 200 kb deletion, suggesting that this allele of PDE4D
has two copies and the allele harboring the 700 kb dele-
tion has one copy (Figure 5). Similarly, we also identi-
fied two allele-specific deletions, 290 and 160 kb respec-
tively within AUTS2 on chromosome 7 (Figure 5). Inter-
estingly, for the allele harboring the 160 kb deletion, the
non-deleted reference allele is also present at much larger
frequency as indicted by the total number of linked-read
barcodes, suggesting that the allele harboring the 160 kb
deletion within AUTS2 occurs in a fraction of HepG2 cells
or sub-clonally (Figure 5). From the total number of linked-
read barcodes associated with this 160 kb allele-specific
deletion in AUTS2, we estimate that this deletion occurs in
10% of HepG2 cells. All breakpoints identified using ‘gem-
tools’ were individual polymerase chain reaction (PCR) and
Sanger sequencing verified (Supplementary Table S7).

SVs from mate-pair sequencing

To obtain increase sensitivity in the detection medium-sized
(1–100 kb) SVs in HepG2, we prepared a 3 kb-mate pair li-
brary and sequenced (2 × 151 bp) it to a genome coverage
of 7.9x after duplicate removal. The sequencing coverage of
each 3 kb insert (CR) is 302 bp (or 10% of the insert size)
that translates to a physical coverage (CF) of 79×. Dele-
tions, inversions and tandem duplications from the mate-
pair library were identified from analysis of discordant read
pairs and split reads using LUMPY (40). Only SVs that
are supported by both discordant read-pair and split-read
supports were retained. Using this approach, we identified
122 deletions, 41 inversions and 133 tandem duplications
(Dataset 6). Approximately 76% of these SVs are between 1
and 10 kb, 86% are between 1 and 100 kb (9% between 10
and 100 kb) and 3% are >100 kb (Dataset 6). Twenty SVs
(16 deletions and 4 duplications) were randomly selected for
experimental validation using PCR and Sanger sequencing
in which 15/16 were successfully validated (93.8%) (Supple-
mentary Table S7).

SVs identified from deep short-insert WGS

Deletions, inversions, insertions and tandem duplications
were identified from the HepG2 WGS dataset using Pin-
del (38), BreakDancer (37) and BreakSeq (39). Since similar
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Figure 3. Large SVs in HepG2 Resolved from Linked-Read Sequencing using Long Ranger. HepG2 SVs resolved by identifying identical linked-read
barcodes in distant genomic regions with non-expected barcode overlap for identified using Long Ranger (32,33). (A) Disruption of FRK by translocation
between chromosomes 6 and 16. (B) 2.47 Mb intra-chromosomal rearrangement between MALRD1 and MLLT10 on chromosome 10. (C) 127 kb dupli-
cation on chromosome 7 resulting in partial duplications of USP42 and PMS2. (D) 395 kb duplication within PRKG1 on chromosome 10. (E) 31.3 kb
inversion within GUSBP1 on chromosome 5. (F) 60.4 kb inversion that disrupts PPL and SEC14L5.
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Figure 4. HepG2 SVs Reconstructed and Assembled Using GROC-SVs in HepG2. (A–D) Each line depicts a fragment inferred from 10X-Genomics
data based on clustering of reads with identical barcodes (Y-axis) identified from GROC-SVs (34). Abrupt ending (dashed vertical line) of fragments
indicates location of SV breakpoint. All breakpoints depicted are validated by 3 kb-mate-pair sequencing data. Fragments are phased locally with respect
to surrounding SNVs (haplotype-specific) are in orange, and black when no informative SNVs are found nearby. Gray lines indicate portions of fragments
that do not support the current breakpoint. (A) Translocation between chromosomes 1 and 4. Linked-read fragments containing overlapping barcodes
that map to chromosome 1 end abruptly near 248.60 mb indicating a breakpoint, and then continues simultaneously near 168.75 mb on chromosome
4. (B) Translocation between chromosomes 6 and 17. Linked-read fragments containing overlapping barcodes that map to chromosome 17 end abruptly
near 36.17 mb indicating a breakpoint and then continues simultaneously near 113.52 mb on chromosome 6. (C) Large (335 kb) heterozygous deletion
within NEDD4L on chromosome 18. (D) Large (1.3 mb) intra-chromosomal rearrangement that deletes large portions of RBFOX1 and RP11420N32 on
chromosome 16.
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Figure 5. Large and complex haplotype-resolved SVs using gemtools. Each SV is identified from linked-reads clustered by identical barcodes (i.e. SV-specific
barcodes, Y-axis) indicative of single HMW DNA molecules (depicted by each row) that span SV breakpoints. Haplotype-specific SVs are represented in
blue and red. X-axis: hg19 genomic coordinate. (Top) Complex SV on chromosome 8 involving a 4585 bp deletion downstream of ADAM2. This deletion
is within a tandem duplication leading to the amplification of the IDO1 and the first half of IDO2. The presence of HMW molecules sharing the same
linked-read barcodes spanning both breakpoints indicates a cis orientation and occurrence on only one allele of this locus. Schematic diagram of the
rearranged structures drawn above the plot. (Middle) Two haplotype-resolved deletions 700 kb (blue) and 200 kb (red), respectively, occurring on two
separate alleles within of PDE4D on chromosome 5––the spanning HMW molecules for each deletion do not share SV-specific barcodes, indicating that
these deletions are in trans. Two haplotype-resolved deletions, 290 kb (red) and 160 kb (blue) respectively, within AUTS2 on chromosome 7. The reference
allele of AUTS2 without the deletion (Haplotype 2) is also detected and resolved by linked-reads (blue, bottom panel). The 160 kb deletion on Haplotype
2 occurs sub-clonally.
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categories of SVs were also identified using mate-pair and
linked-read sequencing, these SVs were combined with the
SVs identified previously using Long Ranger and LUMPY
where variations with support from multiple methods and
with >50% reciprocal overlap were merged. In total, 6405
SVs were obtained from all methods that include 5226 dele-
tions, 245 duplications, 428 inversions and 494 insertions
(only BreakDancer (37) was designed to call insertions)
(Supplementary Data). A set of deletion (n = 27) and tan-
dem duplication calls (n = 4) was randomly selected to
confirm by PCR and Sanger sequencing, and 30/32 (94%)
events were successfully validated (Supplementary Table
S7). Consistent with previous analysis (58), deletions show
the highest concordance among the various methods of de-
tection compared to duplication and inversion calls (Sup-
plementary Figure S5). As expected, we detected a 520 bp
deletion in exon 3 of the �-catenin (CTNNB1) gene (Dataset
4, Supplementary Data), which was previously documented
to exist in HepG2 (59). Interestingly, we found no SVs or
PPA mutations in the Wnt-pathway gene CAPRIN2 (60),
which had been previously reported for hepatoblastoma
(61).

Identification of non-reference Alu and LINE1 insertions

From our deep-coverage short-insert WGS data, we also an-
alyzed the HepG2 genome for non-reference LINE1 and
Alu retrotransposon insertions using RetroSeq (62) with
some modifications. These insertions were identified from
paired-end reads that have one of the pair mapping to hg19
uniquely and other mapping to an Alu or LINE1 consensus
sequence in full or split fashion (see ‘Materials and meth-
ods’ section). Retrotransposon insertion events with greater
than five supporting reads were categorized as high confi-
dence and retained (Supplementary Table S8). We identified
1899 and 351 non-reference Alu and LINE1 insertions in
the HepG2 genome, respectively (Figure 1). We randomly
chose 8 Alu and 10 LINE1 insertions with split-read sup-
port for confirmation using PCR and Sanger sequencing
where 87.5% and 100% were successfully validated, respec-
tively (Supplementary Table S8).

Allele-specific gene expression

Due to the abundance of aneuploidy in the HepG2 genome,
CN changes of genomic regions should be taken into ac-
count when analyzing for allele-specific gene expression in
order to reduce false positives and false negatives. Using the
heterozygous SNV allele frequencies in HepG2 (Dataset 1),
we re-analyzed two replicates of HepG2 ENCODE RNA-
Seq data. We identified 3189 and 3022 genes that show
allele-specific expression (P < 0.05) in replicates one and
two, respectively (Figure 1 and Supplementary Table S9).
Furthermore, we also identified 862 and 911 genes that
would have been falsely identified to have allele-specific ex-
pression (false positives), if the copy numbers of SNV allele
frequencies were not taken into consideration as well as 446
and 407 genes that would not have been identified (false neg-
atives) in replicates one and two, respectively (Supplemen-
tary Table S10).

Allele-specific DNA methylation

Using the phasing information for HepG2 SNVs (Dataset
2), we also identified 384 CpG islands (CGIs) that exhibit
allele-specific DNA methylation (Figure 1 and Supplemen-
tary Table S11). We obtained two independent replicates of
HepG2 whole-genome bisulfite sequencing data (2 × 125
bp, experiment ENCSR881XOU) from the ENCODE Por-
tal (17). Read alignment to hg19 was performed using Bis-
mark (63); 70.0% of reads were uniquely aligned, 44.7%
of cytosines were methylated in a CpG context. We then
phased methylated and unmethylated CpGs to their respec-
tive haplotypes by identifying reads that overlap both CpGs
and phased heterozygous SNVs (Dataset 2). We grouped
the phased individual CpGs into CGIs and totaled the num-
ber of reads that contain methylated and unmethylated cy-
tosines for each CGI allele, normalizing by CN in cases of
aneuploidy. Fisher’s exact test was used to evaluate allele-
specific methylation, and significant results were selected us-
ing a target false discovery rate of 10% (64) (see ‘Materi-
als and methods’ section). Ninety-eight CGIs reside within
promoter regions (defined as 1 kb upstream of a gene); 277
are intragenic and 96 lie within 1 kb downstream of 348 dif-
ferent genes (Supplementary Table S11). The following 11
genes are within 1 kb of a differentially methylated CGI and
also overlap with the Sanger Cancer Gene Census: FOXA1,
GNAS, HOXD13, PDE4DIP, PRDM16, PRRX1, SALL4,
STIL, TAL1 and ZNF331. Twenty-seven unique CGIs with
allele-specific methylation overlap with allele-specific RNA
expression (Supplementary Table S9).

Allele-specific CRISPR targets

We identified 38 551 targets in the HepG2 genome suitable
for allele-specific CRSIPR targeting (Figure 1 and Supple-
mentary Table S12). Phased variant sequences (including
reverse complement) that differ by >1 bp between the alle-
les were extracted to identify all possible CRISPR targets by
pattern searching for [G, C or A]N20GG (see ‘Materials and
methods’ section). Only conserved high-quality targets were
retained by using a selection method previously described
and validated (65). We took the high-quality target filtering
process further by taking the gRNA function and structure
into account. Targets with multiple exact matches, extreme
GC fractions and those with TTTT sequence (which might
disrupt the secondary structure of gRNA) were removed.
Furthermore, we used the Vienna RNA-fold package (66)
to identify gRNA secondary structure and eliminated tar-
gets for which the stem–loop structure for Cas9 recognition
is not able to form (67). Finally, we calculated the off-target
risk score using the tool as described for this purpose (68).
A very strict off-target threshold score was chosen in which
candidates with a score below 75 were rejected to ensure that
all targets are as reliable and as specific as possible.

Genomic sequence and structural context provides insight into
regulatory complexity

We show examples of how deeper insights into gene regula-
tion and regulatory complexity can be obtained by integrat-
ing genomic sequence and structural contexts with func-
tional genomics and epigenomics data (Figure 6A–D). One
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Figure 6. Genomic Sequence and Structural Context Provides Insight into Regulatory Complexity in HepG2. (A) Chr5:57,755,334-57,756,803 locus con-
taining the serine/threonine-protein kinase gene PLK2 and CGI 6693 (1463 bp) where phased Haplotype 1 and Haplotype 2. Allele-specific transcription
of PLK2 from Haplotype 2 only. CpGs in CGI 6693 are mostly unmethylated in Haplotype 2 (expressed) and highly methylated in Haplotype 1 (repressed).
(B) Chr17:59,473,060-59,483,266 locus (triploid in HepG2) containing T-box transcription factor gene TBX2 and CpG Island (CGI) 22251 (10 206 bp)
where phased Haplotype 2 has two copies and Haplotype 1 has one copy. Allele-specific transcription of TBX2 from Haplotype 2 only. CpGs in CGI
22251 are unmethylated in Haplotype 1 (repressed) and methylated in Haplotype 2 (expressed). Allele-specific CRISPR targeting site 1937 bp inside the
5′ region of TBX2 for both Haplotypes. (C) Number of allele-specific RNA-Seq reads in Haplotypes 1 and 2 for PLK2 and TBX2 where both genes ex-
hibit allele-specific RNA expression (P = 0.4.66E-10 and P = 0.0179, respectively). (D) Number of methylated and unmethylated phased whole-genome
bisulfite-sequencing reads for Haplotypes 1 and 2 in CGI 6693 and CGI 22251 where both CGIs exhibit allele-specific DNA methylation (P = 1.51E-66
and P = 1.55E-32, respectively).

example is the allele-specific RNA expression and allele-
specific DNA methylation in HepG2 at the PLK2 locus
on chromosome 5 (Figure 6A). By incorporating the ge-
nomic context in which PLK2 is expressed in HepG2 cells,
we see that PLK2 RNA is only expressed from Haplotype 1
(P = 4.66E-10) in which the CGI within the gene is com-
pletely unmethylated (P = 1.51E-66) in the expressed al-
lele and completely methylated in the non-expressed allele
(Figure 6A, C and D). The second example is allele-specific
RNA expression and allele-specific DNA methylation of the
TBX2 gene in HepG2 (Figure 6B). The TBX2 locus on chro-
mosome 17 is triploid, and we see that TBX2 is preferen-
tially expressed from Haplotype 1 that has one copy and
lower expression is observed from the two copies of Haplo-

type 2 (P = 0.0179) (Figure 6B and C). We also observed
highly preferential DNA methylation of the CGI in Haplo-
type 1 (P = 1.55E-32) (Figure 6B and D). In addition, there
is also an allele-specific CRISPR targeting site for both hap-
lotypes in the promoter region of TBX2 and inside CGI
22251 (1937 bp upstream of TBX2 gene and 2259 bp down-
stream of the 5′ end of CGI 22251) (Figure 6B).

DISCUSSION

As one of the most widely used cell lines in biomedical re-
search, HepG2’s genomic sequence and structural features
have never been characterized in a comprehensive man-
ner beyond its karyotype (19,20) and SNVs identified from
ChIP-Seq data and 10× coverage WGS that do not take
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aneuploidy or CN into consideration (69,70). Here, in sum-
mary, we performed a comprehensive analysis of genomic
structural features (Figure 1) for the HepG2 cell line that
includes SNVs (Dataset 1), Indels (Dataset 1), large CN or
ploidy changes across chromosomal regions at 10 kb reso-
lution (Supplementary Table S2), phased haplotype blocks
(Dataset 2), phased CRISPR targets (Supplementary Ta-
ble S12), novel retrotransposon insertions (Supplementary
Table S8) and SVs (Datasets 3–6) including deletions, du-
plications, inversions, translocations, and those that are the
result of complex genomic rearrangements. Many of the
HepG2 SVs are also phased, assembled and experimentally
verified (Dataset 5, Supplementary Tables S7 and S8).

We illustrate, using PLK2 and TBX2 (Figure 6A and B),
examples where genomic context can enhance the interpre-
tation of function genomics and epigenomics data to derive
novel insights into the complexity of oncogene regulation.
The Polo-like kinase gene PLK2 (SNK) is a transcriptional
target of p53 and also a cancer biomarker (71,72). It has
been studied in the contexts of many human cancers (71,73–
75). Disruption of PLK2 has also been proposed to have
therapeutic value in sensitizing chemo-resistant tumors. Its
roles in Burkitt’s lymphoma (76), hepatocellular carcinoma
(73) and epithelial ovarian cancer (74) are consistent with
that of tumor suppressors while its role in colorectal can-
cer is consistent with that of an oncogene (75). Interest-
ingly, promoter methylation and/or LOH were linked to the
down-regulation of PLK2 in human hepatocellular carci-
noma (73). Chemotherapy resistance of epithelial ovarian
cancer can be conferred by the down-regulation of PLK2 at
the transcriptional level via DNA methylation of the CpG
island in the PLK2 promoter (74). Here we show that the
down-regulation of PLK2 in HepG2 cancer cells could be
achieved through what appears to be allele-specific tran-
scriptional silencing via allele-specific DNA methylation of
a large CGI within the gene body (Figure 6A).

The T-box transcription factor TBX2 is a critical regu-
lator of cell fate decisions, cell migration and morphogen-
esis in the development of many organs (77–80). It regu-
lates cell cycle progression (81), and its overexpression has
been demonstrated in promoting or maintaining the pro-
liferation of many cancers including melanomas (82), na-
sopharyngeal cancer (83), breast cancer (84,85), prostate
cancer (86) and gastric cancer (87). Here, we show that three
copies of the TBX2 gene exist in HepG2 cancer cells as a
result of duplication in Haplotype 2. However, it is prefer-
entially expressed in Haplotype 1 possibly due to the highly
allele-specific DNA methylation in the CGI that spans its
promoter region and most of the gene body (Figure 6B).
It is plausible that overexpression of TBX2 in other can-
cer types are caused by similar genomic rearrangements
and/or epigenetic mechanisms where duplication of TBX2
may result in the overexpression and DNA methylation
(possibly allele-specific) may contribute an additive effect to
TBX2 overexpression or act as the sole contributor where
TBX2 is not duplicated (see Supplementary Discussion for
detailed discussion of other oncogenes, tumor-suppressors
and other genes associated with cancer that are disrupted as
a consequence of genomic variation in HepG2).

Combining orthogonal methods and signals greatly im-
proves SV-calling sensitivity and accuracy (40,88). We com-

pared SVs identified from various methods. For deletion
SVs, linked reads show the highest sensitivity. The linked-
reads analysis software Long Ranger detects SVs (deletions,
duplications and inversions) larger than 30 kb (Dataset 3)
and deletions smaller than 30 kb (Dataset 4)––a wider size
spectrum for deletions. Out of the total 4771 unique dele-
tion calls in HepG2, 3364 (71%) can be detected using
linked-reads alone; the lower-coverage mate-pair dataset
(analyzed using LUMPY (40)) added another 31 calls, and
the deep-coverage WGS dataset added the rest (Supplemen-
tary Figure S5A). However, for duplications and inversions,
we see that many more calls were added by bringing in the
mate-pair and deep short-insert whole-genome datasets and
incorporating analyses of other mapping signals such as
discordant-read-pair and split-reads (Supplementary Fig-
ure S5B and C). Overall, we see considerable overlap as well
as variant calls specific to each method for deletions (Sup-
plementary Figure S5A), and much less overlap for dupli-
cations and inversions (Supplementary Figure S5B and C).
This is consistent with what has been shown previously (58)
as inversions and duplications are more difficult in princi-
ple to accurately resolve. Experimental validation of spe-
cific SVs of interest should be conducted by individual lab-
oratories prior to functional follow-up studies. This study
is primarily focused on the utilization of Illumina sequenc-
ing to resolve SVs in HepG2. In the relatively near future,
long-read technologies such as Oxford Nanopore or Pacific
Biosciences can be expected to become of considerable util-
ity in the analysis of complex cancer genomes. The eventual
incorporation of long-reads can be expected to improve the
ability to resolve challenging variants for example inside or
flanked by repetitive regions i.e. segmental duplications, and
also the sensitivity to detect nested SVs (89,90). Long-reads
are accompanied with much higher error-rates compared to
short Illumina sequencing, but it is foreseeable that the con-
tinuing development of computational tools for and SV de-
tection will at least partially offset this challenge (89–92).

All data and results generated from this global whole-
genome analysis of HepG2 is publicly available through
ENCODE (encodeproject.org) (17). This analysis serves
as a valuable reference for further understanding the vast
amount of existing HepG2 ENCODE data. Our results also
guide future study designs that utilize HepG2 cells including
CRISPR/Cas9 experiments where knowledge of the phased
genomic variants can extend or modify the number of edit-
ing targets including those that are haplotype-specific (Sup-
plementary Table S12) while knowledge of aberrant chro-
mosomal CN changes will allow for more accurate interpre-
tation of functional data in non-diploid regions. This study
may serve as a technical archetype for advanced, integrated
and global analysis of genomic sequence and structural
variants for other widely cell lines with complex genomes.

Since HepG2 has been passaged for decades and across
many different laboratories, additional genome variation
may be present in HepG2 cells that had been long separated
from the ENCODE HepG2 production line. Many of the re-
sults we discuss here are supported by previous studies, for
instance, karyotyping and mutation in CTNNB1 (59), but
there are minor differences such as the lack of a mutation
in CAPRIN2 (60). We expect that the vast majority of ge-
nomic variants that we describe here to be shared across the
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different versions of HepG2 cells, thus when taking into ac-
count for future global studies, substantial insights are ex-
pected to be gained. However, if specific loci is of interest
for follow-up studies, a first step should always be to experi-
mentally confirm the presence the particular working line of
HepG2 as distinct lines may harbor slight variations. While
the complexity of the HepG2 genome renders the design
and interpretation of functional genomic and epigenomic
studies more challenging, the results of this study enables
researchers to continue to use HepG2 to investigate the ef-
fects of different types of genomic variations on the multiple
layers of functionality and regulation for which ENCODE
data are already available and continues to be produced.

DATA AVAILABILITY

All raw and processed data files are publicly released on
the ENCODE portal (encodeproject.org) via accession
ENCBS760ISV. Datasets 1–6 can individually be ac-
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