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Background: SNP interactions may explain the variable outcome risk among

colorectal cancer patients. Examining SNP interactions is challenging, especially

with large datasets. Multifactor Dimensionality Reduction (MDR)-based

programs may address this problem.

Objectives: 1) To compare two MDR-based programs for their utility; and 2) to

apply these programs to sets of MMP and VEGF-family gene SNPs in order to

examine their interactions in relation to colorectal cancer survival outcomes.

Methods: This study applied two data reductionmethods, Cox-MDR andGMDR

0.9, to study one to threeway SNP interactions. Both programswere run using a

5-fold cross validation step and the top models were verified by permutation

testing. Prognostic associations of the SNP interactions were verified using

multivariable regression methods. Eight datasets, including SNPs from MMP

family genes (n = 201) and seven sets of VEGF-family interaction networks (n =

1,517 SNPs) were examined.

Results: ~90million potential interactions were examined. Analyses in the MMP

and VEGF gene family datasets found several novel 1- to 3-way SNP

interactions. These interactions were able to distinguish between the

patients with different outcome risks (regression p-values 0.03–2.2E-09).

The strongest association was detected for a 3-way interaction including

CHRM3.rs665159_EPN1.rs6509955_PTGER3.rs1327460 variants.

Conclusion:Ourwork demonstrates the utility of data reductionmethodswhile

identifying potential prognostic markers in colorectal cancer.
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Background

Colorectal cancer is a common disease accounting for ~10%

of the global cancer cases (Bray et al., 2018). The first years

following diagnosis are critical and associated with a higher risk

of negative disease outcomes (Yu et al., 2019). Select disease,

tumor, and patient characteristics (Compton et al., 2000; Berian

et al., 2015; Steele et al., 2019) are helpful while estimating

prognosis and making treatment recommendations. Sadly, the

survival rates vary across different countries and a significant

portion of the patients are lost to this disease (5-years survival

rate ~<60%) (Coleman et al., 2008; Pathy et al., 2012; Arnold

et al., 2017). In the current era of Personalized Medicine, one of

the main aims is to identify additional prognostic markers that

can help with better risk classification and improve patient

outcomes.

Genetic variants, such as Single Nucleotide Polymorphisms

(SNPs), are widely studied in prognostic research in oncology

(Savas and Liu, 2009; Xu et al., 2015; Ziv et al., 2015). A common

goal of this research area is to assess whether genetic variants are

associated with, and hence, can be a marker of patient outcome

risk. Survival studies examining genetic variants in colorectal

cancer, including large-scale association studies (Pander et al.,

2015; Xu et al., 2015; Phipps et al., 2016; Penney K. L. et al., 2019,

Penney et al., 2019 M. E.; Yu et al., 2021) have mostly focused on

analysis of SNPs one by one, assuming their individual effects

and/or associations with the outcomes. This approach, while

quite valuable, has also an obvious limitation: it misses detection

of potential interactions among the variants.

It is possible that genetic variations jointly, but not alone,

affect patient survival outcomes (i.e. interactions). That means

that the effects of variants/genotypes are only detectable when

they exist together in the patient genomes and are examined

using specific approaches. While it is possible to examine

interactions using statistical methods, these analyses may

suffer from several well-known complexities (e.g. sparse data,

need for computational resources), especially as the number of

variables examined increases (Motsinger and Ritchie, 2006a). As

an example of this complexity, the number of possible

combinations of three SNPs, or “3-way interactions,” in a

dataset of 100 SNPs is 161700, a large number of variables to

study. Because of such methodological restrictions and the fact

that there are large numbers of genetic variations in the human

genome, it is necessary to apply other approaches, such as data

reduction methods, for comprehensive SNP interaction analyses.

Multifactor Dimensionality Reduction (MDR) is a data reduction

method designed for use in studies examining the interactions

among variables while accounting for difficulties inherent in

interaction analysis (Ritchie et al., 2001). Initially created to

support a small number of study designs, MDR has since

been adapted for other types of studies. Generalized MDR

(GMDR) (Lou et al., 2007) is an extension of MDR to

support generalized linear models (e.g. logistic regression).

Cox-MDR (Lee et al., 2012) is a type of GMDR which is

designed specifically for survival/time-to-event studies and

utilizes the Cox-regression method.

Studies that have so far considered the interactions of genetic

variants in colorectal cancer outcomes using MDR are quite

limited (Iglesias et al., 2009; Afzal et al., 2011a; Pander et al., 2011;

Sarac et al., 2012; Hu et al., 2018; Jung et al., 2020). As a result,

potential SNP interactions that may be associated with patient

outcomes largely remain unknown. In this study, we aimed to

explore the potential roles of SNP interactions in outcome risk of

colorectal cancer patients using MDR-based methods. For this

purpose, we utilized the genotype and outcome data of a cohort

of colorectal cancer patients from Newfoundland and Labrador.

We explored and compared the functionality of two MDR-based

software—Cox-MDR (Lee et al., 2012) and GMDR 0.9 (Lou et al.,

2007), and applied these software to examine the interactions

among SNPs from the Matrix Metalloproteinase (MMP) family

of genes and Vascular Endothelial Growth Factor (VEGF)-family

interaction network genes. Our results show that there are unique

limitations and strengths of Cox-MDR and GMDR 0.9, which

should be considered in future studies. More importantly, our

results identified novel SNP interactions that can help distinguish

between colorectal cancer patients with significantly different

outcome risks.

Data and methods

Ethics approval

This study was conducted with ethics approval by the Health

Research Ethics Authority of Newfoundland and Labrador

(HREB #2018.051; #2009.106). This study was a secondary use

of data study, hence, HREB waived the requirement for patient

consent.

Part 1: Exploration of Cox-MDR and GMDR 0.9 programs

and analysis of interactions between the SNPs from the MMP

family of genes.

Patient cohort, genes selected, outcome
measures, covariates, and data
considerations

This is a cohort study. The baseline characteristics of the

patient cohort included in this part of the study (n = 439) are

shown in Supplementary Table S1. Patients were recruited by the

Newfoundland Familial Colorectal Cancer Registry (NFCCR)

(Green et al., 2007; Woods et al., 2010). They were under the age

of 76 at the time of diagnosis and were diagnosed with colorectal

cancer between 1999 and 2003. Pathological/clinical and follow-

up data were collected from resources such as clinical reports, the
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Newfoundland Cancer Treatment and Research Foundation

database, and follow-up questionnaires (Green et al., 2007;

Woods et al., 2010; Negandhi et al., 2013; Yu et al., 2019).

The date of last follow up was 2010. Genetic data was

previously obtained from blood samples via the Illumina

Omni1-Quad human SNP genotyping platform (reactions

were outsourced to Centrillion Biosciences, United States),

and sample quality control (QC) measures were implemented

(Xu et al., 2015). As a result, all patients included into the analyses

were of Caucasian ancestry and unrelated to each other (Xu et al.,

2015).

Since one of our aims in Part 1 was to examine and compare

the performance and functionality of the two MDR-based

programs, we opted for a set of genes and SNPs that were

previously examined in our lab (Supplementary Table S2).

Specifically, the best suited genetic model for SNPs from the

MMP genes and their one-by-one associations with patient

outcomes were previously examined (Dan et al., 2016). This

previous knowledge enabled us to assess the results of the 1-way

interaction analyses obtained using theMDRmethods during the

current study. We kept the covariates and outcome measure

examined in Part 1 the same as in that previous study. The

covariates included age at diagnosis, disease stage, MSI

(microsatellite instability)-status, and tumor location (rectum,

colon). The outcome of interest was death from any cause

(Overall Survival; OS).

Since Cox-MDR and GMDR 0.9 make their calculations,

classify the patient genotypes as high-risk or low-risk, and select

best models based on different scoring methods (i.e. martingale

residuals obtained by Cox regression in Cox-MDR and logit score

obtained by logistic regression in GMDR 0.9), Cox-MDR and

GMDR 0.9 differ in data requirements. For example, as GMDR

0.9 utilizes logistic regression method, the 5-years-survival

outcome measure was used. In Cox-MDR analysis, survival

status and time to death (or the last date of alive contact)

were used. Considering these and additional input data

requirements for each program, a number of measures were

taken while preparing the data files for analysis (see

Supplementary Material for details). Since we aimed to

compare their performance in this first part of the study, we

also examined the same set of patients in the Cox-MDR and

GMDR 0.9 analyses.

Single Nucleotide Polymorphism
genotype data and quality control
measures

SNPs from the MMP family genes were extracted from the

genome-wide SNP genotype data files using the gene genomic

location information and the PLINK software (Purcell et al.,

2007; PLINK, 2017 version 1.07), with the following quality

control parameters being implemented: minor allele frequency

(MAF) ≥ 0.05, Hardy-Weinberg Equilibrium (HWE) p > 0.0001,

and missing genotype rate = 0. Pairwise squared correlation

coefficient (r2) values and MAFs were calculated using PLINK.

When there were multiple SNPs with r2 = 1 (i.e. those which

would score identically using the MDR procedure), SNPs were

removed such that only one of these SNPs was present in the final

dataset. As a result, 201 SNPs from 21 MMP genes were included

into the analysis (Supplementary Table S2).

Cox-MDR and GMDR 0.9 analyses

The work-flow is summarized in Figure 1.

We focused on 1-way, 2-way, and 3-way (k = 1–3)

interactions. 1-way interaction analysis examines whether the

genotype groups of a single SNP may be categorized as high-risk

and low-risk genotypes, and associated with an outcome/

response variable. 2-way and 3-way interaction analyses

examine whether combinations of genotype groups of two or

three SNPs may be categorized as high-risk and low-risk

genotypes, and associated with an outcome/response variable,

respectively. Cox-MDR uses martingale residuals of Cox-

regression models (Lee et al., 2012) and GMDR 0.9 (Lou

et al., 2007) uses logit scores to categorize patient genotypes

as high-risk and low-risk genotypes.

Cox-MDR code (Lee et al., 2012) was requested and received

from the developer, Dr. Seungyeoun Lee (Sejong University,

South Korea). We extended the code in order to add

additional functionality and return the output that would be

needed for our study using R (Core Team, 2017) (Supplementary

Material). GMDR 0.9 code was downloaded from the UAB

Department of Biostatistics Section on Statistical Genetics

website (GMDR) on 11 December 2018. Command line

arguments to set the random seeds were added to the

permutation testing Perl script included with GMDR 0.9

(Supplementary Material). Once we verified that Cox-MDR

worked as expected, it was run with the dataset (including

both the clinical [i.e. covariates and OS time and status] and

the genotype data of the SNPs from the MMP genes).

All interaction analyses were performed using a 5-fold cross-

validation procedure. 5-fold cross validation is appropriate when

the sample size is modest, like ours, while still providing adequate

power (Motsinger and Ritchie, 2006b). 4/5 of these folds served

as a training set for the MDR procedure and the final 1/5 was an

independent testing set from which the final model score was

derived. The code was run 20 times, each run yielding a “best

Cox-MDR model,” with different random seeds to ensure

different partitioning of the dataset into each of the five cross-

validation folds (i.e. to reduce the influence of any specific

partitioning of the data). Given the 5-fold cross-validation

procedure, this resulted in each SNP or SNP combination

being examined in potentially a total of 100 patient datasets.

Among the best Cox-MDR models returned by each of the
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20 runs, we prioritized the most frequently detected best Cox-

MDR model (with consistent SNP ID(s) and high-risk and low

risk genotype information) with the highest testing balance

accuracy (TBA) score. We refer to these models as the “top”

Cox-MDR models throughout this manuscript.

GMDR 0.9 was applied to the same dataset as used in Cox-

MDR, with the only exception of using the 5-years survival status

as the response variable. In contrast to Cox-MDR, GMDR 0.9 can

only select the best models based on the cross-validation

consistency (CVC); that is, the model with the highest CVC

among cross-validation folds is selected. After running the

GMDR 0.9 analysis 20 times, we selected the top model as in

Cox-MDR and based on the highest average TBA value among

cross validation folds (GMDR 0.9’s analogue to Cox-MDR’s

highest TBA). In cases when there were multiple models

satisfying the best MDR model criteria in a dataset, we used

the TBA, and if still needed, the CVC information, as the tie

breaker.

Permutation testing

Once the top Cox-MDR or GMDR 0.9 model was identified,

the significance of the model was assessed using permutation

testing. For GMDR 0.9, permutation testing was performed

using the included Perl script, which was extended to allow

setting of random seeds. For Cox-MDR permutation testing, an

R function was written. The permutation procedure was

performed using 1,000 permutations of the data

(Supplementary Material).

FIGURE 1
This figure demonstrates the overall workflow of the analyses performed. Multivariate Cox-regression and univariate Kaplan-Meier analyses
were used to verify the Cox-MDR results and assess the associations of the identified genotype groups with clinical outcomes, whereas multivariate
logistic regression was used to verify the GMDR 0.9 results and the association of the identified genotype groups with clinical outcomes.
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Permutation testing was performed for all top models

selected from k-way runs (1-3-ways). As noted by others

(Ritchie et al., 2001; Motsinger and Ritchie, 2006b; Edwards

et al., 2009; Gui et al., 2011; Lee et al., 2012; De et al., 2015; Gola

et al., 2016), it is possible that a single SNP with a strong main

effect (that can be identified as the top MDR-model in 1-way

analysis), may impact higher order interaction analysis when

using MDR-based methods, and hence, needs to be removed

from the 2-way and 3-way interaction analyses. Therefore, we

first performed the permutation testing for the top MDR model

identified in the 1-way analysis and, if it turned out to be a

significant MDR model, then we assessed whether the high-risk

and low-risk genotype groups of this top model were associated

with survival outcomes in the patient cohort using statistical

methods (see below). In the case where a significant association

was detected, we then performed subsequent runs by excluding

this SNP and any other SNP in the dataset that was in high

linkage disequilibrium (LD) with it (r2 ≥ 0.8). This SNP removal

procedure was repeated until all SNPs with strong main effects in

1-way analyses were removed from the dataset (Figure 1). We

then proceeded to 2-way and 3-way analyses on the final dataset

with all SNPs with strong main effects removed.

Kaplan-Meier curves and multivariable
regression analyses

Following identification of a significant top MDR model by

permutation testing, we assessed whether the high-risk and low-

risk genotype groups of the model were associated with survival

outcomes in the patient cohort. For this purpose, we applied

multivariable Cox regression analysis (for the models identified

by Cox-MDR) and logistic regression analysis (for the models

identified by GMDR 0.9) using the same clinical covariates for

adjustment that were used in the Cox-MDR and GMDR 0.9 runs.

When needed, Kaplan-Meier curves were constructed to visualize

the survival times of the patient groups with the high-risk and

low-risk genotype groups over time. These analyses were

performed using IBM SPSS Statistics software (versions

25 and 26, Armong, NY) (IBM SPSS Statistics for Windows,

2017) or R. A p-value of <0.05 was considered significant.

Part 2: Interactions among the SNPs of the VEGF interaction

networks

Data resources and methods for Part 2 of this study were

similar to Part 1, except for the differences outlined in this

section. Four hundred patients (Supplementary Table S3) met

the data requirements. All 400 of these patients were used in the

Cox-MDR analysis. For Cox-MDR analysis, Disease Specific

Survival (DSS) was used as an outcome measure, where the

endpoint was death from colorectal cancer. For GMDR

0.9 analysis 5-years DSS time was used as the outcome

measure. Using this outcome measure, five patients, who were

censored prior to 5 years were excluded from analysis, as the

survival status of these patients at 5 years was unknown. This left

395 patients for analysis with the GMDR 0.9 algorithm. An

updated outcome data [with the last follow-up date of 2018 (Yu

et al., 2019)] was used in this part of the study. Clinical variables

that were previously identified as prognostic markers for DSS (Yu

et al., 2019) were used as covariates in Cox-MDR, GMDR 0.9,

and Cox regression and logistic regression analyses (tumor

location, stage, MSI status, adjuvant chemotherapy, and

radiotherapy status).

For this part of the study, we focused on the VEGF family

members and examining SNP interactions in their protein-

protein interaction networks. Four ligands (VEGFA, VEGFB,

VEGFC, and PIGF) and three receptors (VEGFR1, VEGFR2,

and VEGFR3) were selected. Since association studies using

the sex chromosome genetic variations face additional

complexities, the fifth ligand, VEGFD, which is located on the

X chromosome, was not included.

Identification of interaction partners of the
VEGF family proteins

Each of the seven VEGF proteins were searched in the

BioGRID 3.5 database (Stark et al., 2006; Oughtred et al.,

2021; BioGRID | Database of protein, chemical, and genetic

interactions) to find proteins that interact with them (i.e.

protein-protein interaction networks; BioGRID accessed on

22 October 2019). Genomic locations for all interactors were

obtained from the Ensembl database (Howe et al., 2021; Ensembl

Genome Browser) using the legacy archive Biomart (Archives).

PLINK was used for genotype extraction from the genome-wide

SNP genotype data files, followed by LD-based pruning.

Interactors located on the X chromosome (FIGF, IKBKG, and

VSIG4) and genes with no SNPs after quality control and pruning

steps (BCS1L, CTGF, LRFN3, NUDT16L1, SCH1, TXNIP, and

UBIAD1) were excluded. In 7 VEGF networks, there was a total

of 1,517 unique SNPs (number of SNPs in each set: VEGFA =

401; VEGFB = 174; VEGFC = 38; PIGF = 102; VEGFR1 = 222;

VEGFR2 = 747; VEGFR3 = 328) in a total of 131 unique genes

(number of genes in each set: VEGFA = 43; VEGFB = 14;

VEGFC = 3; PIGF = 5; VEGFR1 = 15; VEGFR2 = 68;

VEGFR3 = 23). Please see Supplementary Figure S1 and

Supplementary Tables S4, S5 for the interaction networks,

proteins in each interactome, and the IDs of SNPs retrieved

and analyzed in this part of the study.

Bioinformatics analyses

In order to explore the links between the SNPs of interest and

clinical outcomes, we utilized literature reports (from PUBMED),
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and dbANGIO (Savas, 2012) and dbCPCO (Savas and

Younghusband, 2010) databases. We also searched RegulomeDB

(Boyle et al., 2012; RegulomeDB) and GTEx databases (Lonsdale

et al., 2013) to identify eQTLs that are associated with expression

levels of genes (Note that GTEx has no data for rectal tissues, so only

transverse and sigmoid colon tissue information was available).

Information on the type of variation (e.g. intronic) were retrieved

from dbSNP (Sherry et al., 2001).

Results

Part 1: Examination of the interactions between the MMP

gene family SNPs using Cox-MDR and GMDR 0.9

Interactions among 201 SNPs from 21 MMP genes were

examined as a set (a total of 1,353,601 potential interactions). As

a result, 1-way Cox-MDR interaction analysis identified MMP27-

rs11225388 (MAF = 0.27; an intronic SNP) and classified its

genotypes as high-risk (AA) and low-risk (AG and GG) in the

top MDR model. Permutation testing was also significant (p =

0.011). It is interesting that the best MDR-models identified by each

of the 20 individual runs identified this SNP and its genotype

categories consistently (Supplementary Table S6). Multivariable

Cox regression analysis, adjusting the rs11225388 genotypes (low

risk genotypes versus high risk) for clinical covariates, showed that

this SNP genotype model was independently associated with OS

(Table 1). Therefore, Cox-MDR successfully identified a significant

1-way interaction. These results alsomeant that the rs11225388 SNP

had a significant main effect, which necessitated it (as well as two

other SNPs with high LDwith it: rs11225389 and rs12365082) being

removed from the dataset prior to future analyses. Upon re-running

Cox-MDR 1-way analysis and applying permutation testing to the

top model, we did not identify a significant 1-wayMDRmodel. We,

therefore, proceeded with 2-way and 3-way analysis. These runs did

not identify any significant multi-loci Cox-MDR models in this

dataset.

In contrast, in the 1-way analysis, GMDR 0.9 selection

procedure did not identify a significant model following

permutation testing. However, 2-way analysis identified a two-

loci MDR model including the MMP16.rs7817382 and

MMP24.rs2254207 variants (permutation testing p = 0.001;

Table 2). Multivariable logistic regression analysis verified that

this model had a significant association with 5-years survival of

patients when adjusted for other prognostic covariates (high risk

genotypes versus low risk genotypes; OR: 3.27; p = 4E-6). Both of

these SNPs are non-coding region SNPs and were common in the

patient cohort (MAFs = 0.25 and 0.26, respectively). Additionally,

in the 3-way analysis, a GMDR 0.9 model including genotypes of

MMP16.rs2664369, MMP20.rs11225332, and

MMP2.rs11639960 variants were identified in the top model

(permutation testing p < 0.001). Multivariable logistic

regression analysis showed that this model distinguished

patients based on their 5-years survival status independent of

other covariates and this association was quite strong (p = 1.3E-8;

OR: 4.5; Table 2). Kaplan Meier curves for the identified high-risk

and low-risk genotypes are shown in Supplementary Figure S2.

Rs2664369 is a 3′-untranslated region variant, and rs11225332 and
rs11639960 are both intronic variants. These SNPs were common

in the patient cohort (MAF = 0.43, 0.40, and 0.35, respectively).

TABLE 1 Multivariable Cox regression analysis result for the significant 1-way Cox-MDR model in the MMP dataset (overall survival).

Top model SNP High risk genotypes p-value HR 95% CI (lower-upper)

rs11225388_GA AA 0.002 0.591 0.425–0.821

CI: confidence interval; HR: hazards ratio; SNP: single nucleotide polymorphism. HR calculated for low risk genotypes (GG + GA) versus high-risk genotype (AA).

TABLE 2 Multivariable logistic regression analysis results for the significant 2-way and 3-way GMDR 0.9 models in the MMP dataset (overall survival).

Top model SNPs High risk genotypes p-value OR 95% CI
(lower
-upper)

rs7817382_GA and rs2254207_CA (0AA,1CA), (0AA,2CC), (1GA,0AA), (1GA,2CC), (2GG,1CA) 4.4194E-
06

3.266 1.971–5.414

rs2664369_GT, rs11225332_CT and
rs11639960_GA

(0TT,0TT,2GG), (0TT,1CT,1GA), (0TT,1CT,2GG), (0TT,2CC,1GA), (1GT,0TT,0AA),
(1GT,0TT,1GA), (1GT,1CT,2GG), (1GT,2CC,2GG), (2GG,0TT,0AA), (2GG,1CT,2GG),
(2GG,2CC,0AA), (2GG,2CC,2GG)

1.2929E-
08

4.503 2.681–7.563

CI: confidence interval; OR: odds ratio; SNP: single nucleotide polymorphism.

Alleles are given in the ordermajor allele minor allele. 0,1,2 refer to additive coding, i.e. dosage of the minor allele (0 = 0 copies of the minor allele, 1 = 1 copies of theminor allele, 2 = 2 copies

of the minor allele).
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TABLE 3 Permutation testing and multivariable Cox-regression analysis results for the top Cox-MDR models in the VEGF interaction network set
analyses (disease specific survival).

Interactor
set

Top model SNP(s) High risk genotypes Permutation
p-value

Cox
regression
p-value

HR 95% CI
(lower-
upper)

1-way

Iteration 1

VEGFA FN1.rs2289200 [TG] 1 (TG),2 (TT) 0.273 — — —

VEGFB VEGFA.rs833070 [GA] 1 (GA) 0.201 — — —

VEGFC VEGFC.rs1485766 [CA] 1 (CA) 0.346 — — —

VEGFR1 PIK3R1.rs4122269 [CT] 0 (TT) 0.07 — — —

VEGFR2 PTPN12.rs1024723 [TC] 0 (CC),2 (TT) 0.181 — — —

VEGFR3 LRRK1.rs930847 [CA] 1 (CA),2 (CC) 0.098 — — —

PIGF RNF123.rs11130216 [AC] 1 (AC),2 (AA) 0.032 0.003 1.977 1.265–3.089

Iteration 2

PIGF VEGFA.rs833070 [GA] 1 (GA) 0.045 0.298 1.256 0.818–1.928

2-way

VEGFA CLU.rs7982 [TC],
FLT1.rs7332329 [GA]

(0 [CC],0 [AA]), (1 [TC],1 [GA])
(0 [CC],2 [GG]) (2 [TT],2 [GG])

0.392 — — —

VEGFB FAT1.rs10155467 [TC],
VEGFA.rs3025010 [CT]

(1 [TC],0 [TT]) (0 [CC],1 [CT])
(2 [TT],1 [CT]) (0 [CC],2 [CC])
(2 [TT],2 [CC])

0.225 — — —

VEGFC KDR.rs17709898 [GA],
VEGFC.rs3775195 [AC]

(0 [AA],0 [CC]) (2 [GG],0 [CC])
(1 [GA],1 [AC]) (0 [AA],2 [AA])
(1 [GA],2 [AA])

0.146 — — —

VEGFR1 FLT1.rs9551462 [TC],
PIK3R1.rs1823023 [AG]

(1 [TC],0 [GG]) (2 [TT],0 [GG])
(0 [CC],1 [AG]) (0 [CC],2 [AA])
(1 [TC],2 [AA])

0.128 — — —

VEGFR2 APP.rs2096488 [CA],
DNM2.rs7246673 [TG]

(2 [CC],0 [GG]) (0 [AA],1 [TG])
(1 [CA],2 [TT]) (2 [CC],2 [TT])

0.389 — — —

VEGFR3 CHRM3.rs665159 [TC],
PTGER3.rs1327460 [AG]

(0 [CC],0 [GG]) (1 [TC],0 [GG])
(0 [CC],1 [AG]) (1 [TC],2 [AA])

0.004 2.03E-06 3.147 1.961–5.050

PIGF NRP1.rs2474723 [GA],
RNF123.kgp9864706 [AG]

(0 [AA],0 [GG]) (1 [GA],2 [AA]) 0.527 — — —

3-way

VEGFA FOS.rs7101 [CT],
NRP2.rs861079 [TC],
TFAP2A.rs303055 [CT]

(0 [TT],0 [CC],0 [TT]) (1 [CT],0 [CC],0 [TT])
(0 [TT],1 [TC],0 [TT]) (0 [TT],2 [TT],0 [TT])
(0 [TT],0 [CC],1 [CT]) (1 [CT],1 [TC],1 [CT])
(2 [CC],1 [TC],1 [CT]) (0 [TT],2 [TT],1 [CT])
(1 [CT],2 [TT],1 [CT]) (2 [CC],2 [TT],1 [CT])
(0 [TT],0 [CC],2 [CC])
(2 [CC],0 [CC],2 [CC])
(1 [CT],2 [TT],2 [CC])

0.058 — — —

VEGFB ALOXE3.rs3809882 [CA],
COL6A2.rs7280485 [AG],
NRP1.rs6481844 [CT]

(1 [CA],0 [GG],0 [TT])
(0 [AA],1 [AG],0 [TT])
(2 [CC],1 [AG],0 [TT])
(1 [CA],2 [AA],0 [TT])
(0 [AA],0 [GG],1 [CT])
(2 [CC],0 [GG],1 [CT])
(0 [AA],1 [AG],1 [CT])
(1 [CA],2 [AA],1 [CT])
(2 [CC],2 [AA],1 [CT])
(1 [CA],1 [AG],2 [CC])
(2 [CC],2 [AA],2 [CC])

0.217 — — —

VEGFC FLT4.rs2242217 [CT],
FLT4.rs11748431 [AG],
VEGFC.rs1485762 [TC]

(2 [CC],0 [GG],0 [CC])
(0 [TT],1 [AG],0 [CC])
(2 [CC],1 [AG],0 [CC])
(1 [CT],2 [AA],0 [CC])
(1 [CT],0 [GG],1 [TC])

0.229 -- -- --

(Continued on following page)
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TABLE 3 (Continued) Permutation testing and multivariable Cox-regression analysis results for the top Cox-MDR models in the VEGF interaction
network set analyses (disease specific survival).

Interactor
set

Top model SNP(s) High risk genotypes Permutation
p-value

Cox
regression
p-value

HR 95% CI
(lower-
upper)

(2 [CC],0 [GG],1 [TC])
(1 [CT],1 [AG],1 [TC])
(2 [CC],1 [AG],1 [TC])
(1 [CT],2 [AA],1 [TC])
(0 [TT],0 [GG],2 [TT])
(2 [CC],0 [GG],2 [TT])
(1 [CT],1 [AG],2 [TT])

VEGFR1 FLT1.rs12429309 [CT],
FLT1.rs9551462 [TC],
PIK3R1.rs1823023 [AG]

(1 [CT],0 [CC],0 [GG])
(1 [CT],1 [TC],0 [GG])
(2 [CC],1 [TC],0 [GG])
(0 [TT],2 [TT],0 [GG])
(0 [TT],0 [CC],1 [AG])
(0 [TT],0 [CC],2 [AA])
(2 [CC],0 [CC],2 [AA])
(0 [TT],1 [TC],2 [AA])
(1 [CT],1 [TC],2 [AA])

0.097 — — —

VEGFR2 COL18A1.rs4819101 [AG],
NCOA4.rs10761581 [GT],
PALLD.rs10004025 [TC]

(0 [GG],0 [TT],0 [CC])
(1 [AG],0 [TT],0 [CC])
(2 [AA],0 [TT],0 [CC])
(0 [GG],1 [GT],0 [CC])
(2 [AA],0 [TT],1 [TC])
(0 [GG],1 [GT],1 [TC])
(0 [GG],2 [GG],1 [TC])
(1 [AG],2 [GG],1 [TC])
(1 [AG],0 [TT],2 [TT])
(2 [AA],0 [TT],2 [TT])
(1 [AG],2 [GG],2 [TT])
(2 [AA],2 [GG],2 [TT])

0.12 — — —

VEGFR3 CHRM3.rs665159 [TC],
EPN1.rs6509955 [AG],
PTGER3.rs1327460 [AG]

(1 [TC],0 [GG],0 [GG])
(0 [CC],1 [AG],0 [GG])
(1 [TC],1 [AG],0 [GG])
(0 [CC],2 [AA],0 [GG])
(0 [CC],0 [GG],1 [AG])
(0 [CC],1 [AG],1 [AG])
(0 [CC],2 [AA],1 [AG])
(1 [TC],2 [AA],1 [AG])
(1 [TC],0 [GG],2 [AA])
(2 [TT],0 [GG],2 [AA])
(1 [TC],1 [AG],2 [AA])
(0 [CC],2 [AA],2 [AA])
(2 [TT],2 [AA],2 [AA])

0.007 2.21E-09 5.004 2.952–8.481

PIGF FLT1.rs17086609 [GA],
FLT1.rs1853581 [CA],
NRP1.rs2506141 [CT]

(1 [GA],0 [AA],0 [TT])
(0 [AA],1 [CA],0 [TT])
(0 [AA],2 [CC],0 [TT])
(2 [GG],2 [CC],0 [TT])
(1 [GA],0 [AA],1 [CT])
(0 [AA],1 [CA],1 [CT])
(2 [GG],1 [CA],1 [CT])
(0 [AA],0 [AA],2 [CC])
(2 [GG],0 [AA],2 [CC])
(2 [GG],1 [CA],2 [CC])

0.253 — — —

CI: confidence interval; HR: hazards ratio; SNP: single nucleotide polymorphism.

0, 1, and 2 in the High Risk Genotype column refer to additive coding, where the number refers to the number of minor alleles in the genotype.

Square brackets in the Top Model SNPs column indicate major and minor alleles for each SNP; which the first letter represents the minor allele and the second letter represents the major

allele. In the high risk genotypes column, the three items enclosed in parentheses signify the genotypes of the combination of SNPs which was found to be high risk by Cox-MDR. Commas

separate the genotypes for each SNP in the order in which they appear in the corresponding TopModel SNPs entry. Whenever a SNP with a main effect was identified in 1-way analysis, the

analysis was repeated with that SNP removed from the dataset (i.e. successive iterations). FLT1 is also known as VEGFR1; KDR is also known as VEGFR2; FLT4 is also known as VEGFR3;

and PGF is also known as PIGF.
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Part 2: Examination of the interactions in the VEGF

interaction network datasets using Cox-MDR and GMDR 0.9

In this part of the study, we investigated SNP interactions

separately for seven sets of VEGF family protein interaction

networks (Supplementary Tables S4, S5). Altogether, these

analyses examined 88,989,448 potential interactions.

Cox-MDR identified four significant MDR models, three of

which were also confirmed by multivariable Cox regression

analysis (Table 3). In the 1-way analysis of the PIGF network,

we identified one SNP associated with DSS

(RNF123.rs11130216). Additionally, both 2-way and 3-way

interactions were detected and they were both identified

during the VEGFR3 network analysis. These multi-loci

interactions include SNPs from CHRM3, PTGER3, or EPN1

genes. The strongest association with disease-specific survival

was detected in the 3-way analysis with a very strong p-value of

2.21E-09

(CHRM3.rs665159_EPN1.rs6509955_PTGER3.rs1327460; HR:

5.0). As also demonstrated by the Kaplan Meier curve

(Figure 2), this model’s genotype classification was able to

clearly separate patients based on their outcome risks.

Similar to Cox-MDR, GMDR 0.9 also identified interactions

that were able to distinguish between patients with different

outcome risk (the multivariable logistic regression p-values

0.032–2.4E-09; Table 4). GMDR 0.9 identified a larger

number significant interactions than Cox-MDR (11, six, and

seven 1-way, 2-way, and 3-way interactions, respectively). The

strongest association with DSS (p = 2.4E-09) was detected for

the 3-way ADRB2.rs1042711_NRP1.rs17296436_VEGFB.

rs11603042 interaction in the VEGFB network analysis (HR:

10, 95% CI: 4.691–21.276; Kaplan Meier curves for the high-

risk and low-risk genotypes are shown in Figure 3). Overall,

the significant associations, particularly for multi-loci

interactions, were quite encouraging. Generally, the

significance levels of interactions increased with the order

of interactions (i.e. from 1-way to 3-way). Of note, 3-way

analysis identified significant interactions in all seven VEGF

interaction networks examined. Rarely, interaction models

included both the VEGF ligand and receptor

(FLT4.rs307823_KDR.rs6828477_KDR.rs12502008) or two

SNPs from the same gene (FLT4.rs11739750_FLT4.

rs307814; Table 4), both detected in the VEGFC interaction

network. For interested readers, the Kaplan Meier curves for

the GMDR 0.9 identified interactions are shown in

Supplementary Figure S3.

Comparison of Cox-MDR and GMDR
0.9 results

Both Cox-MDR and GMDR 0.9 identified

RNF123.rs11130216 SNP in the 1-way analysis of the PIGF

network. In both cases, the same genotypes were identified as

high-risk and were associated with DSS in multivariable

models. All other significant interactions were identified by

either of the programs. Our results, hence, showed that there

was little overlap between the results provided by Cox-MDR

and GMDR 0.9. This may be initially attributed to the use of

different scoring systems and response variables by these

programs. However, Cox-MDR was the software which

identified the MMP27.rs11225388 variant, as well as the

high-risk/low-genotype classification, that was previously

identified to be associated with OS in a highly similar

patient cohort (Dan et al., 2016). Of note, this SNP had the

strongest association in that dataset, so it is being identified by

Cox-MDR and in all of the 20 1-way runs as the best SNP is

quite striking (Supplementary Table S6). This SNP, however,

was missed by GMDR 0.9. In addition, in GMDR 0.9, it was

observed that there was no obvious way in which ties between

“best models” (i.e. multiple “best models” with equal CVC

values when selecting the best model) were being resolved. To

test the effect of SNP order in the input data file,

MMP27.rs11225388, a SNP with a known statistical

association (see above), was moved to the beginning of the

data file. This change resulted in significantly different GMDR

0.9 results (making rs11225388 the top SNP identified for this

analysis) and thus, showed that input SNP order can affect

results when the CVC is 1 or 2, out of a possible 5 (when

multiple best models have the same CVC). Further

observation confirmed that the earliest SNP in the dataset

is chosen by GMDR 0.9 in the event of a CVC tie. Therefore,

this not only explains why GMDR 0.9 missed this SNP, but

FIGURE 2
Log-rank p = 1.02619688760668E-12. Red: high risk
genotype combinations: (TC,GG,GG), (CC,AG,GG), (TC,AG,GG),
(CC,AA,GG), (CC,GG,AG), (CC,AG,AG), (CC,AA,AG), (TC,AA,AG),
(TC,GG,AA), (TT,GG,AA), (TC,AG,AA), (CC,AA,AA), and
(TT,AA,AA). Blue: all other genotype combinations. The vertical
lines on the curves denote the censored patients (e.g. patients alive
at the last follow up time). X and Y axis show the follow-up time (in
years; rounded) and cumulative survival, respectively.

Frontiers in Genetics frontiersin.org09

Curtis et al. 10.3389/fgene.2022.902217

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.902217


TABLE 4Multivariable logistic regression analysis results for the top GMDR 0.9 models in the VEGF interaction network set analyses (disease-specific
survival).

Interaction
set

Top model SNP(s) High risk genotypes Permutation
p-value

Logistic
regression
p-value

OR 95% CI
(lower-
upper)

1-way

Iteration 1

VEGFA NRP2.rs3771003 [TG] 0 [GG],2 [TT] 0.014 0.010 2.399 1.230–4.679

VEGFB COL6A2.rs9978018 [GA] 0 [AA],2 [GG] 0.02 0.032 2.015 1.062–3.822

VEGFC FLT4.rs3797102 [CT] 1 [CT],2 [CC] 0.358 — —

VEGFR1 MICAL2.rs11022250 [GT] 0 [TT] <0.001 0.002 2.941 1.468–5.891

VEGFR2 PTPN12.rs1024723 [TC] 0 [CC],2 [TT] <0.001 1.442E-04 3.662 1.875–7.152

VEGFR3 CHRM3.rs12037424 [CT] 0 [TT] 0.005 0.004 2.616 1.369–4.997

PIGF RNF123.rs11130216 [AC] 1 [AC],2 [AA] 0.045 0.011 2.359 1.222–4.554

Iteration 2

VEGFA HNRNPL.rs10403012 [GA] 0 [AA] 0.022 0.012 1.984 0.673–5.847

VEGFB VEGFB.rs11603042 [TG] 1 [TG],2 [TT] 0.067 — —

VEGFR1 MICAL2.rs988189 [TC] 1 [TC],2 [TT] 0.116 — —

VEGFR2 MAPK1.rs2298432 [AC] 0 [CC] 0.001 3.425E-04 3.467 1.756–6.848

VEGFR3 CHRM3.rs2278642 [TG] 1 [TG],2 [TT] 0.007 0.006 2.924 1.362–6.278

PIGF FLT1.rs3936415 [AG] 0 [GG] 0.069 — —

Iteration 3

VEGFA HNRNPL.rs2278012 [CT] 0 [TT] 0.051 — —

VEGFR2 DNM2.rs7246673 [TG] 1 [TG],2 [TT] 0.079 — —

VEGFR3 LRRK1.rs12595297 [GT] 1 [GT] 0.007 0.011 2.243 1.207–4.169

Iteration 4

VEGFR3 LRRK1.rs17161155 [AG] 0 [GG] 0.043 0.009 2.317 1.235–4.346

Iteration 5

VEGFR3 CHRM3.rs6692711 [TC] 1 [TC] 0.225 — —

2-way

VEGFA ELAVL1.rs3786619 [AG]
FLT1.rs3936415 [AG]

(0 [GG],2 [AA]) (1 [AG],0 [GG])
(2 [AA],0 [GG]) (2 [AA],1 [AG])

<0.001 3.180E-05 4.387 2.186–8.805

VEGFB ADRB2.rs1042711 [CT]
HAL.rs3213737 [CT]

(0 [TT],1 [CT]) (1 [CT],0 [TT]) (2 [CC],1 [CT]) 0.018 7.082E-05 3.696 1.940–7.044

VEGFC FLT4.rs11739750 [TC]
FLT4.rs307814 [TC]

(0 [CC],1 [TC]) (1 [TC],0 [CC]) (1 [TC],2 [TT])
(2 [TT],1 [TC])

0.002 1.335E-04 3.827 1.922–7.620

VEGFR1 FLT1.rs3794397 [TC]
MICAL2.rs7946327 [CA]

(0 [CC],0 [AA]) (1 [TC],1 [CA])
(2 [TT],1 [CA])

0.003 1.852E-04 3.361 1.780–6.346

VEGFR2 COL18A1.rs7278425 [TC]
PTPRR.rs4760847 [GA]

(0 [CC],1 [GA]) (1 [TC],0 [AA]) <0.001 1.213E-05 4.542 2.306–8.947

VEGFR3 CHRM3.rs1782357 [TC]
TMEM52B.rs10505752 [TC]

(0 [CC],0 [CC]) (1 [TC],1 [TC]) (1 [TC],2 [TT])
(2 [TT],2 [TT])

<0.001 3.872E-05 3.892 2.037–7.433

PIGF FLT1.rs2387632 [TC]
NRP1.rs12762312 [TC]

(0 [CC],1 [TC]) (1 [TC],0 [CC]) (1 [TC],2 [TT])
(2 [TT],0 [CC])

0.055 — —

3-way

VEGFA CLU.rs9331888 [CG]
ELAVL1.rs3786619 [AG]
NRP2.rs861079 [TC]

(0 [GG],0 [GG],1 [TC]) (0 [GG],0 [GG],2 [TT])
(0 [GG],1 [AG],1 [TC]) (0 [GG],2 [AA],0[CC])
(0 [GG],2 [AA],2 [TT]) (1 [CG],1 [AG],0 [CC])
(1 [CG],1 [AG],2 [TT]) (1 [CG],2 [AA],0 [CC])
(2 [CC],0 [GG],1 [TC]) (2 [CC],0 [GG],2 [TT])
(2 [CC],1 [AG],2 [TT]) (2 [CC],2 [AA],2 [TT])

0.001 2.146E-07 9.322 4.010–21.672

VEGFB ADRB2.rs1042711 [CT]
NRP1.rs17296436 [GA]
VEGFB.rs11603042 [TG]

(0 [TT],0 [AA],1 [TG]) (0 [TT],0 [AA],2 [TT])
(0 [TT],1 [GA],2 [TT]) (0 [TT],2 [GG],1 [TG])
(1 [CT],0 [AA],2 [TT]) (1 [CT],1 [GA],0 [GG])
(1 [CT],2 [GG],0 [GG]) (1 [CT],2 [GG],1 [TG])
(2 [CC],1 [GA],0 [GG]) (2 [CC],1 [GA],1 [TG])
(2 [CC],1 [GA],2 [TT])

0.007 2.404E-09 9.991 4.691–21.276

(Continued on following page)
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also an important limitation of this and any other MDR

software that uses CVC to pick the best model. Despite its

limitation, it is worth noting that GMDR 0.9 also identified a

number of models that were missed by Cox-MDR and

distinguished patients based on their significantly different

outcome risks (Tables 2, 4).

Discussion

In this study, we explored the functionality and feasibility of

two MDR-based programs, Cox-MDR (Lee et al., 2012) and

GMDR 0.9 (Lou et al., 2007) and applied them to examine single-

locus and multi-loci interactions in MMP family and VEGF

interaction network genes in relation to survival outcome risks in

colorectal cancer. Our results identified novel and statistically

significant interactions that predicted the survival outcomes in

colorectal cancer. Our results also showed that these two

programs generally yielded different top MDR models and

interactions, hence, they can be considered complementary

while examining SNP interactions. To our knowledge, this is

the first large-scale MDR analysis study that examined SNP

interactions in relation to colorectal cancer outcomes.

Interactions among variables are understudied in cancer

research. It is possible that the interactions among genetic

variables, such as SNPs, play a role in survival outcomes

biologically. Hence, limiting a study to associations of

individual SNPs and survival outcomes has the potential to

miss not only genetic relationships but also important

biological information. In this regard, there has been little

work done on studying multi-loci interactions in colorectal

cancer with respect to survival outcomes, especially using a

large number of variants. For example, limited MDR-based

interaction analyses were conducted (Iglesias et al., 2009; Afzal

TABLE 4 (Continued) Multivariable logistic regression analysis results for the top GMDR 0.9 models in the VEGF interaction network set analyses
(disease-specific survival).

Interaction
set

Top model SNP(s) High risk genotypes Permutation
p-value

Logistic
regression
p-value

OR 95% CI
(lower-
upper)

VEGFC FLT4.rs307823 [GA]
KDR.rs6828477 [CT]
KDR.rs12502008 [TG]

(0 [AA],0 [TT],1 [TG]) (0 [AA],1 [CT],0 [GG])
(0 [AA],2 [CC],0 [GG]) (0 [AA],2 [CC],1 [TG])
(1 [GA],0 [TT],0 [GG]) (1 [GA],1 [CT],1 [TG])
(1 [GA],2 [CC],2 [TT]) (2 [GG],0 [TT],1 [TG])
(2 [GG],1 [CT],1 [TG]) (2 [GG],1 [CT],2 [TT])

0.038 4.028E-06 5.418 2.642–11.114

VEGFR1 MICAL2.rs1564947 [AG]
MICAL2.rs954428 [GA]
NEDD4.rs12232351 [AT]

(0 [GG],0 [AA],0 [TT]) (0 [GG],0 [AA],2 [AA])
(0 [GG],1 [GA],0 [TT]) (0 [GG],1 [GA],1 [AT])
(0 [GG],2 [GG],0 [TT]) (1 [AG],0 [AA],0 [TT])
(1 [AG],1 [GA],1 [AT]) (2 [AA],2 [GG],0 [TT])
(2 [AA],2 [GG],2 [AA])

<0.001 3.505E-08 14.855 5.693–38.761

VEGFR2 DNM2.rs7246673 [TG]
NRP1.rs10827227 [TC]
SCUBE2.rs7106593 [GT]

(1 [TG],0 [CC],1 [GT]) (1 [TG],1 [TC],0 [TT])
(1 [TG],1 [TC],2 [GG]) (1 [TG],2 [TT],0 [TT])
(1 [TG],2 [TT],1 [GT]) (1 [TG],2 [TT],2 [GG])
(2 [TT],0 [CC],2 [GG]) (2 [TT],1 [TC],1 [GT])
(2 [TT],1 [TC],2 [GG]) (2 [TT],2 [TT],1 [GT])

<0.001 7.062E-09 8.712 4.186–18.129

VEGFR3 CHRM3.rs1782357 [TC]
CHRM3.rs685960 [CT]
TMEM52B.rs10505752 [TC]

(0 [CC],0 [TT],0 [CC]) (0 [CC],1 [CT],0 [CC])
(1 [TC],0 [TT],1 [TC]) (1 [TC],0 [TT],2 [TT])
(1 [TC],1 [CT],0 [CC]) (2 [TT],0 [TT],2 [TT])
(2 [TT],1 [CT],0 [CC]) (2 [TT],1 [CT],2 [TT])

<0.001 5.721E-08 8.030 3.784–17.038

PIGF FLT1.rs3936415 [AG]
FLT1.rs11149523 [AG]
NRP1.rs2073320 [TC]

(0 [GG],0 [GG],0 [CC]) (0 [GG],0 [GG],1 [TC])
(0 [GG],1 [AG],0 [CC]) (0 [GG],1 [AG],2 [TT])
(0 [GG],2 [AA],0 [CC]) (0 [GG],2 [AA],2 [TT])
(1 [AG],0 [GG],2 [TT]) (1 [AG],1 [AG],1 [TC])
(1 [AG],2 [AA],1 [TC]) (1 [AG],2 [AA],2 [TT])
(2 [AA],0 [GG],0 [CC]) (2 [AA],2 [AA],0 [CC])

<0.001 4.218E-07 12.996 4.812–35.103

CI: confidence interval; OR: odds ratio; SNP: single nucleotide polymorphism.

0, 1, and 2 in the High Risk Genotype column refer to additive coding, where the number refers to the number of minor alleles in the genotype.

Square brackets in the TopModel SNPs column indicate major and minor alleles for each SNP; in which the first letter represents the minor allele and the second letter represents the major

allele. The High risk genotypes column lists genotypes which were found by GMDR 0.9 to be high risk for poor survival. High-risk genotypes have the following format: the items between

each pair of parentheses specify a genotype which is high risk for poor survival according to the GMDR output, presented in the order of the SNPs listed in the Top model SNP column. e.g.

for top model SNPs FLT1.rs3936415 [AG]_FLT1.rs11149523 [AG]_NRP1.rs2073320 [TC], genotypes (0 [GG],0 [GG],0 [CC]), rs3936415 = GG, rs11149523 = GG, and rs2073320 = CC

were classified as high risk by the GMDR 0.9 procedure. Whenever a SNP with a main effect was identified in 1-way analysis, the analysis was repeated with that SNP removed from the

dataset (i.e. successive iterations). FLT1 is also known as VEGFR1; KDR is also known as VEGFR2; FLT4 is also known as VEGFR3; and PGF is also known as PIGF.
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et al., 2011a, 2011b; Pander et al., 2011; Sarac et al., 2012; Hu

et al., 2018), investigating the interactions among a small number

of polymorphisms (n = 5–17). These studies identified

interacting polymorphisms that are associated with treatment

response and/or survival outcomes. Therefore, while there has

been little research on multi-loci interactions in colorectal cancer

with respect to survival outcomes, there is also great potential in

this area of research—this was our motivation to conduct this

study. Additionally, in this study, we prioritized biologically

relevant genes with well-known roles in disease progression in

cancer: MMP family of genes and genes whose protein products

were members of the protein interaction networks of seven

separate VEGF-family proteins. Protein products of MMP

family genes are involved in tissue remodeling, some of them

have abnormalities associated with tumor invasion, tumor

microenvironment, or metastasis (Hua et al., 2011). VEGF

family of proteins are also involved in important cellular

processes, and include VEGF ligands and receptors with roles

in angiogenesis or lymphangiogenesis—two cellular mechanisms

involved in tumor growth, invasion, and metastasis (Hicklin and

Ellis, 2005; Lohela et al., 2009; Alitalo and Detmar, 2012).

Therefore, the results of this study have the potential to

provide new insights into the relationship of these genes,

molecular pathways, and processes with the outcome risk in

colorectal cancer.

In this study, we first verified whether the MDR-based

methods are indeed useful in distinguishing genotypes as

high-risk and low risk. In the analysis of the interactions

among the MMP family gene SNPs, 1-way Cox-MDR analysis

was in fact able to identify a SNP in the dataset which has a

known main effect, i.e. associated with the OS in the patient

cohort under dominant genetic model (MMP27.rs11225388).

This SNP was previously examined in our lab using a similar

patient cohort and using Cox regression method and it had the

strongest association in the SNP set (Dan et al., 2016). This

previous study had also shown the dominant genetic model as the

best model explaining the relationship of the genotypes of this

SNP with patient overall survival times. In the current study,

association of MMP27.rs11225388 under the dominant genetic

model with the OS times in the study cohort was also confirmed

by Cox-MDR, classifying the high-risk and low risk genotypes

correctly (Table 1). Therefore, Cox-MDR was able to identify a

SNP significantly associated with the outcome measure and its

genetic model correctly, which increased our confidence in Cox-

MDR results, though Cox-MDR did not identify any multi-loci

interactions in this data set.

In contrast, GMDR0.9 identified two novelmulti-loci interactions

in the MMP dataset;MMP16.rs7817382_MMP24.rs2254207 and

MMP16.rs2664369_MMP20.rs11225332_MMP2.rs11639960 (Table 2).

Interestingly, both of the variants identified in 2-way analysis

(MMP16.rs7817382 andMMP24.rs2254207) are also eQTLs and

associated with the expression levels ofMMP16 andMMP24-AS1

genes, respectively (Supplementary Table S7). Protein products

of MMP16 and MMP24 are known to interact physically with

pro-MMP2 and activate it by means of proteolytic cleavage

(Llano et al., 1999; Zhao et al., 2004). MMP2 has been linked

to several human cancers, including colorectal cancer previously

(van der Jagt et al., 2010; Dong et al., 2011; Wang et al., 2014; Ren

et al., 2015; Gao et al., 2016; Jia et al., 2017). Therefore, it is

possible that the role of both MMP16 and MMP24 in affecting

the action of MMP2 could explain the biology underlying the

interaction identified by 2-way GMDR analysis. Additionally,

one of the SNPs identified in the 3-way GMDR 0.9 analysis,

MMP2.rs11639960, is an eQTL, affecting the expression levels of

the gene called LPCAT2. LPCAT2 is known to affect response to

chemotherapy in colorectal cancer patients through an

association with lipid droplet formation (Cotte et al., 2018).

This SNP was also associated with prostate (Jacobs et al.,

2008), and ovarian cancer risks (Velapasamy et al., 2013), as

well as overall survival in colorectal cancer (Scherer et al., 2014).

Two of the genes identified in 3-way GMDR analysis are known

to be associated with colorectal cancer. As mentioned above,

MMP2 has been shown to be overexpressed in colorectal cancer

tumors compared to normal tissues (Dong et al., 2011; Gao et al.,

2016), and is associated with metastatic tumor phenotype (Dong

et al., 2011; Gao et al., 2016) and shorter survival times in

colorectal cancer (Dong et al., 2011). MMP16 has a similar

relationship to colorectal tumors (Wu et al., 2017). MMP20,

on the other hand, is a much less investigated member of the

MMP family, but was found to be expressed in colorectal tumors

in a study with small number of samples (Kraus et al., 2016). This

3-way interaction (MMP16.rs2664369_MMP20.rs11225332_

MMP2.rs11639960) had a low p-value (1.3E-08) in the

multivariable regression analysis and is, therefore, a

particularly interesting example of both the potential

biological roles of MMP gene variants in disease outcomes

and the potential utility multi-loci interactions to help

classifying patients based on their different outcome risks.

In the analyses of the seven VEGF interaction networks

(VEGFA, VEGFB, VEGFC, PIGF, VEGFR1, VEGFR2, VEGFR3

networks), similar to MMP gene analyses, MDR programs

identified generally different results (e.g. interactions and

SNPs). There is not any report linking the 1 way SNP

identified by both programs with colorectal or other cancers

(RFN123.rs11130216). However, both programs were again able

to identify previously unknown and significant interactions. For

example, the most significant interaction associated with disease-

specific survival was detected in the 3-way Cox-MDR analysis

including the CHRM3.rs665159_EPN1.rs509955_PTGER3.

rs1327460 variants (VEGFR3 network; p = 2.21E-09; Table 3).

All of these genes were previously linked to cancer or tumor

invasion. For example, high CHRM3 levels are linked to invasion

and metastasis in colon cancers (Cheng et al., 2017; Felton et al.,

2018); loss of EPN1 was linked to elevated VEGFR2 degradation

and disorganized angiogenesis (Pasula et al., 2012); and elevated

PTGER3 levels was linked to shorter survival times in cervical
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cancers (Heidegger et al., 2017). On the other hand, the most

significant GMDR 0.9 3-way model included variants from the

ADRB2, NRP1, and VEGFB genes (logistic regression p-value =

2.4E-09; Table 4). All three genes have been shown to be

associated with colorectal cancer progression (Kamiya et al.,

2006; Jayasinghe et al., 2013; Ogawa et al., 2020). Also, while

none of the variants identified in this study were missense or

non-sense variants, according to GTEx (Lonsdale et al., 2013)

and RegulomeDB (Boyle et al., 2012; RegulomeDB), a number of

the SNPs identified were eQTLs (Supplementary Table S7).

Together with our results in the MMP gene analysis, the fact

that the identified genes and/or interacting SNPs have been

previously linked to colorectal cancer and/or tumor

aggression, and in some cases, are associated with gene

expression levels, make these multi-loci interactions highly

promising candidates for future research.

We must also comment about the MDR-based programs that

we utilized in this study. Cox-MDR andGMDR 0.9, while both have

proven capable of finding significant models within the datasets

(albeit often different models), they vary significantly in their

functionality, operation, and resource usage. Cox-MDR was

provided to us by the authors as a small collection of R

functions, and as such did not have the full functionality we

needed for our analyses, and therefore required further efforts to

run. Many of these functions/features, on the other hand, were

available in GMDR 0.9, such as returning detailed outputs

(including the output of high risk/low risk genotype

information), the ability to set random seeds, and permutation

testing. GMDR 0.9 is also readily available for download online. In

contrast, an important feature possessed by Cox-MDR and missing

fromGMDR0.9 is the ability to use testing balanced accuracy (TBA)

score, as an alternative to CVC, to pick a best model from the cross-

validation folds. GMDR0.9 has a limitation that if twomodels tie for

the best model among the cross-validation folds, then the model

starting with the first SNP in the input dataset is chosen. This

obviously has the potential to miss significant models as equally

high-scoring models will be silently ignored by the software. This is

an issue when using CVC to pick a best model more so than TBA

(an option available in Cox-MDR), as when CVC is low it is quite

likely that two or more models will tie for best model (used in

GMDR 0.9; as we discuss earlier, GMDR 0.9 has missed identifying

MMP27-rs11225388 in its 1-way analysis because of how it selects

the top models (i.e. CVC and the order of data in the input files).

This is rarely an issue while using TBA (that can be used in Cox-

MDR) for the same purpose because as a floating point number with

much higher variability than CVC, a tie is unlikely. Therefore, Cox-

MDR using the TBA option overall gives results with less random

model selection thanGMDR0.9, and this is an important strength of

Cox-MDR. Despite its limitations, GMDR 0.9 also identified

interactions that were missed by Cox-MDR.

Additionally, both Cox-MDR and GMDR 0.9 proved to have

different resource usage difficulties and requirements. The Cox-

MDR software cannot examine interactions in parallel, and thus, is

significantly slower than GMDR 0.9. Our VEGFR2 3-way analysis

of 747 SNPs took approximately 18 days to complete on the local

computing cluster whereas on a similar dataset GMDR 0.9 took

only 12 h. GMDR 0.9, on the other hand, has extremely large

memory requirements. For the largest of our aforementioned

analyses, GMDR 0.9 required a massive 220 gigabytes of RAM

to complete successfully, which at the time of writing is a very large

amount for a researcher to be able to obtain even on a computing

cluster. In comparison, Cox-MDR only required 15 gigabytes of

RAM, practically obtainable on consumer hardware. An additional

resource usage issue for GMDR 0.9 is that the permutation testing

procedure is performed using a Perl script external to the Java

binary which contains the main program. This script uses the

user’s hard drive as memory, greatly slowing down the

permutation testing procedure. For a very high number of

permutations this may become a significant issue. Overall, while

MDR-based data reduction methods allow researchers to examine

large number of interactions, in our experience, both programs

have unique strengths, limitations, and feasibility concerns while

examining large datasets. Therefore, while they can be considered

complementary while examining SNP interactions, application of

these programs widely will likely be dependent on further

development.

One limitation of this study is that the patients included are

all of Caucasian ancestry. We also limited our work to common

SNPs and genes from autosomal chromosomes, therefore, the

potential interactions among rare SNPs and MMP/VEGF-

interactor genes located in X or Y chromosomes remain

unexamined. Our results are exploratory, therefore replication

studies are needed to confirm whether these SNPs/interactions

FIGURE 3
Log-rank p = 6.61897020900234E-07. Red: High risk
genotypes: (TT,AA,TG), (TT,AA,TT), (TT,GA,TT), (TT,GG,TG),
(CT,AA,TT), (CT,GA,GG), (CT,GG,GG), (CT,GG,TG), (CC,GA,GG),
(CC,GA,TG), and (CC,GA,TT). Blue: All others except
(CT,GG,TT) and (CC,GG,TT)The vertical lines on the curves denote
the censored patients (e.g. patients alive at the last follow up time).
X and Y axis show the follow-up time (in years; rounded) and
cumulative survival, respectively.SNP-SNP interactions in survival
outcomes.
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have prognostic value in the clinic. The genes were limited to

select genes related to cancer and progression, therefore further

studies are needed to examine the potential interactions in other

genes/interaction networks. Our study also has several strengths.

This is one of the first studies that applied MDR-based

approaches while examining survival outcomes in colorectal

cancer, and the first one, in our knowledge, that examined

such relatively large number of interactions (~90 million). We

explored and applied two different MDR-based programs, one

using the survival times (Cox-MDR) and the other 5-years

survival status (GMDR 0.9) with a slightly different

methodology that allowed us to comprehensively examine the

interactions and compare the programs’ utility. The patient

cohort is a well annotated cohort. Additionally, the use of

cross-validation and permutation testing, as well as the

repeating the Cox-MDR/GMDR 0.9 runs (20 times) to

identify the most consistent best models (called top models in

this study) were critical and helped reduce the false-positive

findings. More importantly, our results demonstrated that MDR

can be powerful in detecting interactions among genetic variants

in prognostic studies and the novel 2-way and 3-way SNP

interactions identified in this study bring a new depth to

colorectal cancer and prognostic research.

In conclusion, we performed a two-part study applying two

MDR-based programs to examine the SNP interactions in relation

to patient outcomes in colorectal cancer. Our work indicates that

MDR-based programs can be quite useful in examining the

interactions among the genotypes/SNPs while examining the

novel prognostic markers in colorectal cancer. Our results also

suggest the presence of novel SNPs and interactions in MMP

and VEGF family genes that are associated with the patient

outcomes in colorectal cancer. These SNPs are excellent

candidates for further biomarker studies.
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