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Aspirin-exacerbated respiratory disease (AERD) refers to the development of bronchoconstriction in asthmatics following the
exposure to aspirin or other nonsteroidal anti-inflammatory drugs. The key pathogenic mechanisms associated with AERD are the
overproduction of cysteinyl leukotrienes (CysLTs) and increased CysLTR1 expression in the airway mucosa and decreased lipoxin
and PGE2 synthesis. Genetic studies have suggested a role for variability of genes in disease susceptibility and the response to
medication. Potential genetic biomarkers contributing to the AERD phenotype include HLA-DPBI, LTC4S, ALOX5, CYSLT, PGE2,
TBXAZ2R, TBX21, MS4A2, IL10, ACE, IL13, KIF3A, SLC22A2, CEP68, PTGER, and CRTH2 and a four-locus SNP set composed of
B2ADR, CCR3, CysLTRI, and FCERIB. Future areas of investigation need to focus on comprehensive approaches to identifying

biomarkers for early diagnosis.

1. Introduction

Aspirin-exacerbated respiratory disease (AERD) refers to
the development of bronchoconstriction in asthmatics fol-
lowing the ingestion of aspirin or other nonsteroidal anti-
inflammatory drugs. It is defined by a clinical syndrome
associated with moderate-to-severe asthma and eosinophil
inflammation in the upper and lower airways, resulting
in chronic rhinosinusitis and asthma [1]. Additionally,
the airways of AERD show epithelial disruption, cytokine
production, and the upregulation of inflammatory molecules
[2]. The prevalence of aspirin hypersensitivity in the general
population ranges from 0.6 to 2.5% and is higher in
asthmatics [3].

The dysregulation of arachidonic acid metabolism also
accounts for the susceptibility to AERD. Metabolites involved
are prostaglandins (PGs), leukotrienes (LTs), and thrombox-
ane (TBX). Inhibition of COXs by acetyl salicylic acid (ASA)
in the respiratory tract alters arachidonic acid metabolism,
leading to a reduction in PGE2. This may increase AERD
susceptibility by overproduction of CysLTs [4, 5]. The lipoxy-
genase (LOX) pathway produces the leukotrienes LTA4,
LTB4, and LTC4 as metabolites. 15-lipoxygenase (15-LO) is
one of the LOX family members and catalyses the conversion

of arachidonic acid to 15-hydroxyperoxyeicosatetranoic acid
(15-HPETE). 15-hydroxyeicosatetranoic (15-HETE), a more
stable derivative of 15-HPETE, is another important prod-
uct, which acts as an anti-inflammatory mediator and
functional antagonist of LTs [6]. Further products of 15-
HPETE include eoxins (EXs) EXA4 and 15-HETE can be
conjugated with glutathione, leading to the formation of
EXC4, EXD4, and EXE4. AERD has also been correlated
with increased CysLT receptors: CysLTR1 and CysLTR2 [7—
9]. The third CysLT receptor, the G protein-coupled receptor
17 (GPR17) [9], is located at an intermediate phylogenetic
position between two distinct receptor families: the puriner-
gic receptor (P2Y) and CysLT receptor for extracellular
nucleotides and CysLTs, respectively, [10]. Overexpression of
CysLTR1 was detected in the nasal mucosa of patients with
AERD, compared with aspirin-tolerant asthma (ATA) [11].
Considering the pathogenic mechanism of AERD, various
genetic markers have been suggested in various ethnic groups
and are summarized in this paper.

2. Key Results Regarding Genetic Mechanisms

2.1. Leukotriene Related Genes and Their Mechanism. Based
on evidence showing a close association of leukotrienes and
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AERD, initial research was performed on the association
between LTC4S —444A > C promoter polymorphism and
AERD. In the population investigated (Polish), the C allele
was identified as a risk factor; however, this finding was
not replicated in Japanese, American, or Korean populations
[12-15]. SNPs of 5-lipoxygenase; ALOX5 at —1708G > A,
21C > T, 270G > A, and 1728G > A and ALOX5 activating
protein (ALOX5AP, 218A > G) were studied in a Korean
population where it was discovered that the haplotype
ALOX5 htl [G-C-G-A] was significantly higher in AERD
than in ATA, suggesting a possible contribution of ALOX5
in AERD [16]. We identified three SNPs (—634C > T,
—475A > C, and —336A > G) in the promoter region of
CysLTR1, and mutant variants of these SNPs were associated
with the AERD phenotype [17]. The mutant variants showed
higher promoter activity, suggesting that these polymor-
phisms may modulate CysLTR1 expression increasing AERD
susceptibility. In the case of CysLTR2, the frequencies of
minor alleles for —819T > G, 2078C > T, and 2534A > G
were significantly higher in the AERD group [18] when
compared with ATA.

2.2. Cyclooxygenase, Prostanoid, and Human Leukocyte Anti-
gen Markers and Related Mechanisms. It has been suggested
that AERD is associated with both COX1 and COX2. Aspirin
inhibits both of these proteins, with a greater effect on
COXI1. COX2 expression was downregulated in nasal polyps
collected from AERD patients [19]. Decreased production of
prostaglandin E2 (PGE2) by nasal epithelial cells of AERD
has been observed [20]. PGE2 production in airway smooth
muscle cells has been shown to downregulate COX2 mRNA
expression [21]. Two SNPs of TBXA2R, —4684T > C, and
+795T > C, were shown to be associated with the phenotype
of AERD in a Korean population [22, 23]. The prostaglandin
E2 receptor subtype 2 gene (PTGER2) was associated with
the risk of AERD by decreasing the level of transcription,
resulting in a reduction of the “PGE2 braking” mechanism of
inflammation and involvement in the molecular mechanism
underlying AERD in the Japanese population [24]. A further
report in the Korean population showed that prostaglandin
E2 receptor subtype 3 (PTGER3) may be an important
genetic factor for aspirin intolerance in Korean asthmatics
[25]. The human leukocyte antigen (HLA) allele DPB1*0301
was identified as a strong marker for AERD, because patients
with this allele showed typical characteristics of AERD
including a decreased forced expiratory volume in 1 s (FEV,)
and increased prevalence of rhinosinusitis with nasal polyps
[26], as previously noted in a Polish population [27].

2.3. Eosinophil-Related Genetic Mechanisms. Eosinophil in-
filtration into the upper and lower airways is a key feature of
AERD. Increased numbers of eosinophils and mast cells have
been observed in the bronchial mucosa of AERD [28, 29].
Recent studies demonstrated that the chemoattractant recep-
tor molecule expressed in Th2 cells, the CRTH2 —466T > C
polymorphism, could increase serum and cellular eotaxin-
2 production by lowering CRTH2 expression, leading to
eosinophilic infiltration in AERD patients [30]. A further
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study indicated that the chemokine CC motif receptor
(CCR3) may be related to eosinophil migration. The CCR3
—520T > C was significantly associated with AERD patients
where mRNA expression was also significantly increased after
ASA provocation [31]. IL-13 polymorphisms at —1510A > C
and 1055C > T are associated with the development of
rhinosinusitis in AERD patients. IL-13 Argl10GIn may be
associated with an increased eosinophil count and eotaxin-
1 level, leading to an increase in eosinophilic inflammation
in the upper and lower airways of patients with AERD [32]
(Table 1).

2.4. AERD and Viral Infection. Szczeklik has hypothesized
that AERD develops as the result of chronic viral infection
[33]. Viral respiratory infections have been suggested to
contribute to allergic sensitization, leading to the develop-
ment of asthma and in subjects with established asthma;
they are known to exacerbate allergic disease [34]. Aspirin
hypersensitivity is diminished in some AERD patients during
acyclovir treatment of herpes simplex infection [35]. More-
over, elevated levels of IgG4, derived from chronic antigenic
stimulation of viral origin, have been noted in AERD
patients [36]. A further study investigating the exacerbation
of AERD with airway infection of respiratory syncytial virus
was reported [37]. Recently, a study indicated that the
polymorphisms in the Toll-like receptor 3 (TLR3) gene, TLR3
—299698G > T and 293391G > A, were associated with
the AERD phenotype. TLR3 recognizes dsRNA, activates
nuclear factors, and increases interferon-gamma, which is
a signal to other cells and increases antiviral defenses. As
functional deterioration of TLR3 can predispose individuals
to increased susceptibility to viral infections, the detection
of TLR3 polymorphisms may be informative for risk assess-
ment in AERD susceptibility [38]. The suggested mechanism
is that specific cytotoxic lymphocytes are produced in
response to viral infection. Activity of these lymphocytes
is suppressed by PGE2, which is produced by pulmonary
alveolar macrophages. If PGE2 levels are decreased, cytotoxic
reactions are preceded by COX inhibitors and cytotoxic
lymphocyte-mediated attacks lead to the destruction of virus
affected cells in the respiratory tract. Reactive oxygen species,
toxic metabolites, and mediators released then precipitate
asthma attacks.

2.5. Other Suggested Mechanisms. The ubiquitin-proteasome
pathway-related gene (UBE3C) has been recently studied
in a Korean population and indicated that rs3802122 and
1s6979947 is associated with AERD [39]. A further study
indicated that the kinesin family number 3A (KIF3A) gene
and its polymorphism might have an effect on AERD,
because rs3756775 revealed a significant association with
the percentage decline in FEV, after aspirin provoca-
tion [40]. Recently, the genome-wide methylation profile
of nasal polyps showed that genes involved in lympho-
cyte proliferation, cell proliferation, leukocyte activation,
cytokine biosynthesis, immune responses, inflammation,
and immunoglobulin binding were hypomethylated. In the
arachidonic pathways, PGDS, ALOX5AP, and LTB4R were
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TaBLE 1: Genetic mechanisms of AERD.

Gene name SNPs Clinical phenotype Mechanism
Leukotriene synthesis
B C allele had high genotype C allele may be the risk allele due
LTCas 44A > C frequency compared with A allele to overproduction of CysLTs
ALOX5 —-1708G > A, 21C > T, ALOX5 ht1(GCGA) had higher =~ ALOXS5 ht1(GCGA) may be the
270G > A, 1728G > A haplotype frequency risk haplotype
ht2(TCG) showed higher Higher CysLTR1 mRNA
CYSLTR1 634(1; 3’1;’ A i7éA > G frequency in AERD and higher ~ expression may be responsible
promoter activity for pathogenesis
the frequencies of rare allele were
CYSLTR2 -819T > C increased in AERD and fall in Elevation of CysLTs production
FEV1 after aspirin provocation
COX/PG pathway and HLA allele
These two polymorphisms
PTGER 7543182 15959 retained their susceptibility to PTGER3 might play a significant
aspirin intolerance in first and role in aspirin hypersensitivity
second cohorts
AERD patients with homozygous
+Zr9csenct ?ellllilfnh;l;i\?lg:ftitre;s irin TBXA2R+795T > C may
TBXA2R +795T > C b . P increase bronchoconstrictive
exposure compared with response to ASA
TBXA2R+795 CT or TT P
genotypes.
Patients with DPB1*0301 allele
had higher prevalence of HLA markers may be important
*
HLA DPB170301 Rhino-sinusitis and lower FEV1  for LTRA therapy
values.
Gene name SNPs Clinical Phenotype Mechanism
Eosinophil activation
—466T allele had higher
frequency in AERD and .
CRTH2 —466T > C increased serum, cellular —406T allelft m.ay be the r.1$k .
. . allele by activation of eosinophils
eotaxin-2 production and lower
mRNA expression
The frequencies of rare . .
genotypes were higher in AERD Higher mRNA expression (.)f
CCR3 —520T > C and —520G allele showed higher CQR3 may cause eosinophil
.. activation
promoter activity
IL13 1510A > C,1055C > T, Increase eotaxin-1 and Eosinophil activation may occur

Argl10GIn

peripheral eosinophil count

Mast cell activation

FCERIG

MS4A2R

—237A > G-344C >T

E237G

AA type of —237A > G showed
high serum total IgE; CC/CT of
—344C/T had higher SEA

FcER1b —109T allele had higher
frequency and high promoter
activity

Mast cells may be activated

Increased mRNA expression of
—109T allele may cause mast cell
activation mediated by MS4A2R
receptor

Other mechanisms

IL-10 and TGF-f1

ACE

—1082 A > Gand —509C > T

—262A > T, -115T > C

The frequency of rare alleles (the
CT or TT genotype of TGF-f1)
509C/T and AG or GG genotype
of (IL-10 )1082A/G was
significantly higher in AERD and
—1082G had higher promoter
activity

The frequencies of the rare alleles
were higher in AERD —262T had
lower promoter activity and fall
of FEV1 after aspirin provocation

Alteration in IL-10 production
caused by the —1082A/G in IL-10
may contribute to disease
pathogenesis which is
strengthened by a genetic
interaction with TGF-f1.

Downregulation of ACE
expression
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TaBLE 1: Continued.

Gene name SNPs Clinical phenotype Mechanism

Fall of FEV1 and higher mRNA

expression of KIF3A in the ASA Abnormality of cilia
KIF3A rs 3756775 induced bronchial epithelial cells . Y

. L predisposing to AERD

and protein expression in nasal

polyp epithelia in AERD

The minor allele frequencies GABA signaling pathway in the
SLC6A12 rs499368, rs557881 were higher in AERD and fall of  airway epithelium may play a

FEV1 after aspirin provocation  role

y Change in polarity of the protein

CEP68 7572857G > A Fall of FEV1 after aspirin structure due to nonsynonymous

provocation by A allele SNP which replaces Gly with Ser

IL13: interleukin 13, CCR3: chemokine receptor 3, CRTH2: chemoattractant receptor, IL10: interleukin 10, TGF: transforming growth factor, MS4A2R:
high affinity immunoglobulin epsilon receptor beta-subunit (FCERI) TBXA2R: thromboxane receptor, CysLTR1: cysteinyl leukotriene 1, CysLTR2: cysteinyl
leukotriene 2, ALOX5: arachidonate 5 lipoxygenase, HLA: human leukocyte antigen, LTC4S: leukotriene C4, ACE: angiotensin-converting enzyme KIF3A:
kinesin family number 2A, SLC22A2: solute carrier family 6, CEP68: centrosomal protein, PTGER: prostanoid gene, TEC: total eosinophilic count, TF:
transcription factor, MAZ: myc-associated zinc finger protein, SEA: Staphylococcus enterotoxin A, FEV: forced expiratory volume in 1s, AERD: aspirin-

exacerbated respiratory disease.

hypomethylated whereas PTGES was hypermethylated [41].
The calcium channel voltage-dependent gamma subunit 6
(CACNG6) gene encodes a protein that stabilizes the calcium
channel. CACNG6 has been studied in AERD, which revealed
that rs192808C > T may be associated with the risk of AERD
in a Korean population [42].

2.6. AERD and Genome-Wide Studies. Genome-wide associ-
ation studies (GWAS) have recently emerged as a technol-
ogy that can predict genetic variations across the genome
associated with human diseases and clinical responses to
drug treatment. Recently, GWAS for asthma and related phe-
notypes have reported several susceptible genes. Candidate
gene approaches have been used for most of the genetic
association studies of AERD. GWAS suggested that the
nonsynonymous CEP68 rs 7572857G > A variant, replacing
glycine with serine, showed a higher decline in FEV; due
to aspirin provocation than other variants and could be a
susceptible gene for AERD. Gly74Ser could also affect the
polarity of the protein structure [43].

2.7. Gene-Gene Interactions. Gene-gene interactions have
also been proposed in the pathogenesis of AERD, and a
few studies indicated that the genetic effects of CysLTs and
LTC4S —444A > C synthesis increased the lower level of
FEV, after lysine ASA inhalation [18]. TBXA2R 795T > C
polymorphism was associated with HLA DPB1*0301 in
AERD patients compared with ATA [23]. Recently, a syn-
ergistic effect between the TGF-betal-509C/T and IL-10-
1082A/G polymorphisms on the phenotype of AERD was
noted when stratified by the presence of rhinosinusitis [44].
Moreover, Kim et al. reported a significant epistatic effect
with a four-locus genetic interaction in the susceptibility
to aspirin intolerance in asthmatic patients. This model
includes four SNPs: B2ADR —46A > G, CCR3 —520T > G,
CysLTR1 —634C > T, and FCERIB —109T > C [45]. These
findings should be validated further in other cohorts.

3. Conclusions

AERD often produces a moderate-to-severe phenotype;
however, diagnosis in these patients is challenging despite the
availability of various techniques. A hypothesis has been put
forward, mostly focused on the overproduction of CysLTs
and arachidonic acid pathways. Most of the genetic studies
have been performed using techniques such as GWAS and
the candidate gene approach. However, replication studies
in different ethnic groups will be essential to validate the
reported data and apply this knowledge in clinical practice.
Future areas of investigation should focus on identification
of biomarkers for early diagnosis with various diagnostic
techniques. These genetic studies will be able to extend our
understanding about the molecular genetic mechanism of
AERD and to find a genetic marker for predicting drug
responses or hypersensitivity reactions. Furthermore, this
will be helpful for the determination of new diagnostic tools
and therapeutic interventions.
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