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Abstract: In this study, coir fibers were successfully modified with henna (derived from the Lawsonia
inermis plant) using a high-energy ball-milling process. In the next step, such developed filler was
used as a reinforcing filler in the production of rigid polyurethane (PUR) foams. The impact of 1,
2, and 5 wt % of coir-fiber filler on structural and physico-mechanical properties was evaluated.
Among all modified series of PUR composites, the greatest improvement in physico-mechanical
performances was observed for PUR composites reinforced with 1 wt % of the coir-fiber filler. For
example, on the addition of 1 wt % of coir-fiber filler, the compression strength was improved by
23%, while the flexural strength increased by 9%. Similar dependence was observed in the case of
dynamic-mechanical properties—on the addition of 1 wt % of the filler, the value of glass transition
temperature increased from 149 ◦C to 178 ◦C, while the value of storage modulus increased by
~80%. It was found that PUR composites reinforced with coir-fiber filler were characterized by better
mechanical performances after the UV-aging.

Keywords: coir fibers; henna; polyurethane composites; UV-aging; mechanical performances

1. Introduction

Polyurethanes (PUR) represent a wide class of polymeric materials [1,2]. In recent
years, the market for polymeric materials has shown strong, sustained growth and provided
an opportunity for the integration of new bio-based feedstock for improved sustainabil-
ity [3–9]. Agricultural waste has the potential to be utilized as renewable, bio-based fillers
in the synthesis of PUR composites [10]. The use of agricultural waste as functionalized
filler may not only improve the mechanical, physical, and combustion characteristics of
PUR materials, but may also increase their biodegradability. Due to these positive and
beneficial effects, it can be stated that the use of agricultural waste in the production of
PUR materials will promote a new application path in converting agricultural waste into
useful resources for creating a new class of green materials [11–13]. PUR materials derived
from agricultural waste may offer solutions based on the main challenges of our times—
the use of renewable raw materials, the economy and the preservation of resources, and
minimization of the output of waste [14]. This approach creates an ideal scenario for the
emergence of innovative opportunities under a rigid quality-control procedure that goes
from the raw material to advanced polyurethane materials for construction and structural
application.

In recent years, PUR composites reinforced with different natural fillers have been
evaluated [15,16]. For example, PUR composite foams reinforced with flax and jute fibers
were developed by Bledzki et al. [17]. The addition of flax fibers increased the mechanical
performances of PUR composites. PUR composites reinforced with cellulose filler derived
from eucalyptus pulp were synthesized by Silva et al. [18]. According to the scanning
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electron microscopy results, the incorporation of the filler up to 16 wt % resulted in a
reduction in the size of composite cells and a deterioration of thermal conductivity. In
another study, PUR composites were reinforced by selected amounts (5, 10, 15 wt %) of
fly ash and wood ash, however, some deteriorations in mechanical performances were
observed [19]. An opposite effect was observed by Olszewski et al. [20] in the case of PUR
materials reinforced by the addition of glass and sisal fibers. In both cases, an improvement
in the mechanical characteristics of PUR materials was observed. Cellulose derived from
algal residue was selected as a reinforcing filler for PUR composites by Jonjaroen et al. [21].
According to the presented results, such developed PUR composites were characterized by
greater apparent density, higher stiffness, and reduced loss modulus. Interesting results
were reported by Li et al. in the case of PUR composites reinforced with bamboo fibers and
alkali-treated bamboo fibers. The results showed that the alkali treatment of bamboo fibers
resulted in better adhesion and interfacial interlocking between the fibers and PUR matrix,
thus improving the mechanical performances of PUR composites [22].

Among different organic fillers, one of the most promising is coir fiber, which is
extracted from coconut shells. Coir fibers possess many advantages, such as versatility
and biodegradability [23]. Coir fibers constitute a byproduct during the processing of
coconut, and the extraction of coir fibers is very easy and inexpensive. The obtained coir
fibers have a high content of lignin (~50%) and low content of cellulose (~35%) [23]. Due
to this, the coir fibers exhibit good mechanical properties, low density, and great thermal
conductivity, making them an ideal candidate for application in different composites, such
as concrete [24], natural rubber [25], unsaturated polyester resin [26], or epoxy compos-
ites [27]. According to the literature, 40 million metric tons of coconuts produces about
2 million metric tons of coir fibers; however, just a small fraction of coir-fiber waste is
further reused as a reinforcing filler in composites [28]. Therefore, it seems logical and
fully justified to use coir fibers in polymeric composites such as polyurethane foams, which
are widely used in the building and construction sectors. However, the main concern
connected with the application of cellulosic fillers is their low thermal stability [29]. Thus,
the surface modification of the cellulosic filler seems to be necessary. Previous studies
have reported different methods of filler modification, which include silane treatment [30],
acetylation [31], or physical impregnation with selected flame-retardant compounds [32]
or polysilsesquioxanes [33].

In our study, we propose a new kind of polyurethane (PUR) composites reinforced
with coir fibers treated with henna, which is extracted from the Lawsonia inermis plant,
commonly known as the henna tree. The main component of henna is lawsone (a hy-
droxynaphthoquinone), which possesses high antioxidative activity [34]. Besides this,
henna contains various flavonoids, phenolic glycosides, quinoids, coumarins, xanthones,
and tannins [35,36]. It is expected that due to the outstanding properties of coir fibers
treated with henna, such reinforced PUR composites will be characterized by improved
selected physico-mechanical properties. Therefore the impact of the selected content of coir
fibers treated with henna on the mechanical, thermal, and antioxidative properties of PUR
composites will be evaluated in the following study.

2. Materials and Methods
2.1. Materials

The materials used in the synthesis of PUR composites were as follows: Polymeric
diphenylmethane diisocyanate (Purocyn B) as isocyanate (Purinova Company, Bydgoszcz,
Poland); polyether polyol (Stapanpol PS-2352, Stepan Company, Northfield, IL, USA);
potassium octoate (Kosmos 75) and potassium acetate (Kosmos 33) as catalysts (Evonik
Industry, Essen, Germany); silicone-based surfactant (Tegostab B8513, Evonik Industry, Es-
sen, Germany); pentane and cyclopentane as blowing agents (Sigma-Aldrich Corporation,
Saint Louis, MO, USA); sodium hydroxide (Sigma-Aldrich Corporation, Saint Louis, MO,
USA); nanopowder henna (Sigma-Aldrich Corporation, Saint Louis, MO, USA); and coir
fibers (local company, Lodz, Poland).
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2.2. Instruments and Methods

The dynamic viscosity of PUR systems was measured using a Viscometer DVII+
(Brookfield, Berlin, Germany) according to ISO 2555 [37]. The cellular structure of PUR
composites was determined using scanning electron microscopy (SEM) (JEOL JSM 5500 LV,
JEOL Ltd., Peabody, MA, USA). The content of closed cells was determined based on
SEM images according to ISO 4590 [38]. The apparent density of PUR composites was
calculated following ISO 845. The compressive test and flexural test were performed ac-
cording to ISO 844 [39] and ISO 178 [40] using a Zwick Z100 testing machine (Zwick/Roell
Group, Ulm, Germany). The thermogravimetric analysis (TGA) was performed using
an STA 449 F1 Jupiter Analyzer (Netzsch Group, Selb, Germany) in the function of the
temperature (0–600 ◦C). The UV-aging of PUR composites was performed using a UV 2000
(Atlas, Berwyn, PA, USA)—the samples were UV-irradiated for 7 days (radiation inten-
sity = 0.7 W m−2, temperature = 60 ◦C). The color characteristic of PUR composites was
determined using a CM-3600d spectrophotometer (Konica Minolta Sensing, Inc., Osaka,
Japan).

2.3. Synthesis of PUR Composites

In the first step, coir fibers were alkali-treated following using NaOH solution (10%
v/v). Subsequently, the alkali-treated coir fibers were functionalized with henna powder
using a high-energy ball-milling process (60 min, 3000 RPM). The selected content of the
developed coir-fiber filler (1, 2, and 5 wt %) was mixed with a polyol, water, surfactant,
and catalysts using a mechanical stirrer (60 s, 2000 rpm). Subsequently, the polymeric
diphenyl methane diisocyanate (pMDI) was added to the mixture and the PUR system
was intensively mixed for another 30 s. The PUR composites were allowed to grow freely
and left at room temperature for 48 h. The formulas of PUR composites are presented in
Table 1. The schematic steps of PUR composites preparation are presented in Figure 1.

Table 1. Formulas of PUR composites developed in the study.

Component
PUR_NEAT PUR_C_1 PUR_C_2 PUR_C_5

Parts by Weight (wt %) 1

STEPANPOL PS-2352 100 100 100 100
PUROCYN B 160 160 160 160

Kosmos 75 6 6 6 6
Kosmos 33 0.8 0.8 0.8 0.8

Tegostab B8513 2.5 2.5 2.5 2.5
Water 0.5 0.5 0.5 0.5

Pentane/cyclopentane 11 11 11 11

Coir-fiber filler (coir fibers treated with henna) 0 1 2 5
1 Parts by weight (in relation to the weight of polyol (STEPANPOL PS-2352)).
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3. Results and Discussion

Scanning electron microscopy (SEM) of coir fibers before surface treatment and after
the treatment with henna are presented in Figure 2. After the chemical treatment, the
external surface of the coir-fiber filler seemed to be more rough than before the treatment.
This may be connected with the alkali treatment, which removed the impurities and the
waxes that smooth the filler surface. Moreover, it is believed that such a rough surface
was connected with the presence of henna molecules, which created a coating layer on the
filler surface. It is believed that such developed filler will be more compatible with PUR
structure, providing better interfacial interlocking during PUR synthesis and avoiding the
damages of PUR structure during the foaming process.
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Figure 2. Optical and scanning electron microscope images of (a–c) pristine coir fibers and (d–f) coir-fiber filler treated with
henna.

The size of filler particles was determined using the dynamic light scattering (DLS)
method. According to the results (Figure 3a), the coir-fiber filler treated with henna had
60.2% of particles with an average size between 1.0 and 1.5 µm. Apart from this, 8.5%
of particles were in the range of 0.7–0.8 µm, and only 5.5% of particles were bigger than
1.5 µm. It can be seen that the application of a high-energy ball-milling process resulted in
the formation of coir-fiber filler with a more homogenous particle-size distribution. Before
the treatment, the pristine coir fibers were characterized by a less-uniform distribution of
particle size, with different content of smaller and bigger particles. As shown in Figure 3b,
most of the particles were in the 2.5–3.0 µm range; however, larger aggregates of coir-fiber
filler with an average size of ~4.0 µm were also observed.
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Figure 3. Particle-size distribution of (a) coir-fiber filler modified with henna and (b) pristine coir fibers.
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Ultraviolet–visible (UV–VIS) analysis of the coir-fiber filler treated with henna is
presented in Figure 4. An intense peak at 280 nm corresponded to C=O and O-H groups
of lawsone [35,41]. The long tail of the band beginning at 370 nm was associated with the
yellow/orange color of the lawsone [41].
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Figure 4. UV–VIS spectrum of coir-fiber filler treated with henna.

The FTIR spectrum of coir treated with henna is presented in Figure 5. The obtained
spectrum showed the presence of three intense peaks at 1220, 1360, and 1740 cm−1, which
correspond to the C=C aromatic of henna [42]. This indicates that the coir fibers were
successfully functionalized with the henna compound, which effectively covered the
surface of the fibers.
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Figure 5. FTIR spectra of coir fibers treated with henna.

The results of the foaming behavior of PUR composites were determined by mea-
suring cream and expansion times (Figure 6). In this study, on the addition of coir-fiber
filler, the cream time of PUR_C_1, PUR_C_2, and PUR_C_5 increased from 40 s to 50,
53, and 61 s, respectively, while the extension time increased from 268 s to 320, 330, and
365 s, respectively. These results can be explained based on the following aspects. PUR
composites reinforced with coir-fiber filler were synthesized by chemical foaming with
carbon dioxide (CO2) as the foaming agent, which is produced in the reaction between
water and isocyanate groups. Since the addition of coir-fiber fillers could affect the proper
stoichiometry of the reaction, the formation and releasing of CO2 was reduced, which
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resulted in limiting expansion of the cells and extended processing times [43,44]. Moreover,
the further expansion of the cells was additionally hindered by the increased viscosity of
PUR systems containing coir-fiber filler. Therefore, the addition of the filler resulted in
extended processing times. Similar results can also be found in other studies [43,44].
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Figure 6. The results for processing times of the PUR systems.

The addition of coir-fiber filler decreased the maximum temperature (Tmax) measured
during the PUR synthesis (Figure 7). On the addition of 1, 2, and 5 wt % of the coir-fiber
filler, the value of Tmax decreased from 130 ◦C (for PUR_NEAT) to 125, 115, and 105 ◦C,
respectively. This may be connected with the increased viscosity of the PUR systems with
the addition of coir-fiber filler, which effectively reduced the efficiency of the reaction
between functional groups of the components. Moreover, previous studies have shown
that decreased temperature of PUR reinforced with natural fillers may be connected with
the fact that during the foaming process, some heat is absorbed by the filler [45]. A similar
explanation may be found in our study as well.
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Figure 7. The results for temperature and dynamic viscosity of the PUR systems.

The physico-mechanical properties of PUR composites are strongly affected by the
rigidity of the PUR matrix and the cellular morphology of the composites. Previous studies
have shown that, owing to the relatively large size of filler particles, the addition of fillers
may disrupt the closed-cell structure of PUR composites, thereby altering their uniform
integrity [46,47]. Therefore, the evaluation of the impact of coir-fiber filler on the cellular
morphology of PUR composites seems to be necessary. As shown in Figure 8a, the overall
structure of PUR_NEAT was quite uniform, with a high number of closed cells. On the
addition of coir-fiber filler (Figure 8b–d), the closed-cell structure of PUR composites was
still well preserved. Comparing all modified PUR composites, the highest number of
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broken cells and the most nonuniform size of the cells was exhibited by the PUR composite
reinforced with 5 wt % of coir-fiber filler. When compared to PUR_NEAT, the percentage
content of closed cells decreased from 85.2% to 78.6%. This can be attributed to poor
compatibility between the hydrophilic filler and the hydrophobic PUR matrix, which
resulted in collapse of the cells and the formation of open cells [48]. A more uniform
structure was exhibited in the PUR composites reinforced with 1 and 2 wt % of coir-fiber
filler. When compared with PUR_NEAT, the percentage content of closed cells increased
slightly to 85.9 and 83.2% for PUR_C_1 and PUR_C_2, respectively. Moreover, with the
addition of coir-fiber filler, the average size of the cells slightly decreased. The average
size of the cells decreased from 490 µm (for PUR_NEAT) to 455, 440, and 430 µm for
PUR_C_1, PUR_C_2, and PUR_C_5, respectively. This confirmed that the solid particles of
the filler could act as a nucleating agent, changing the nucleation character from homo- to
heterogeneous, and promoting the formation of a higher number of smaller cells [47,49,50].

Figure 8. Scanning electron microscope images of (a,b) PUR_NEAT; (c,d) PUR_C_1; (e,f) PUR_C_2; (g,h) PUR_C_5.

The impact of coir-fiber filler on the color of PUR composites was evaluated using
the colorimetric analysis. According to the optical images presented in Figure 9, on the
addition of the filler, the overall color of the PUR composites became greener. This was
connected with the fact that henna contains a coloring matter—lawsone. According to
the results of color analysis (Table 2), on the addition of the filler, the value of total color
change became higher. Moreover, the values of a * and b *, which refer to the red/green
and yellow/blue shades increased, indicating the more green and blue shadows of the
PUR composites.
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Table 2. Color parameters of PUR composites measured before and after the UV-aging.

Sample
L * a * b * ∆E *

Before UV-Aging

PUR_NEAT 14.3 63.4 −7.5 0
PUR_C_1 17.2 78.1 −3.7 14.6
PUR_C_2 22.5 78.3 −1.2 21.2
PUR_C_5 28.2 79.3 −0.2 25.2

After UV-Aging

PUR_NEAT 65.5 18.5 −4.1 50.2
PUR_C_1 55.4 31.1 −3.0 48.1
PUR_C_2 54.3 38.4 −2.9 42.5
PUR_C_5 51.1 49.6 0.5 41.5

∆E *—total color change, L *—white/dark degree, a *—red/green shade, b *—yellow/blue shade.

Phytochemicals, especially phenols and flavonoids, are sensitive to UV-irradiation.
The UV-irradiation can initiate a polymerization or degradation process of phytochemicals,
leading to the deterioration of the physical and mechanical properties of the composites
containing plant fillers. Therefore, the impact of controlled UV-irradiation on the structural
and physical properties of PUR composites was evaluated. The optical images of PUR
composites after the controlled UV-irradiation are presented in Figure 10. Based on this,
it can be concluded that the addition of coir-fiber filler treated with henna had an impact
on the color change of the PUR composites. The optical analysis revealed that after the
UV-irradiation, the overall color of PUR composites had changed from yellow to orange,
and this effect was most prominent in the case of PUR_NEAT. On the addition of coir-fiber
filler, the difference in the color was not as intense. Confirmation of these results can be
found in the color-parameter results (Table 2). When comparing all PUR composites, the
most significant change in total color change (∆E *) was observed for PUR_NEAT. On
the addition of the coir-fiber filler, the difference in ∆E * was slightly reduced. A similar
trend was observed in the case of the lightness parameter (L *)—on the addition of the
coir-fiber filler, the value decreased. Moreover, the UV-aging increased the values of a *
and b *, which refer to the red/green and yellow/blue shades. On the addition of coir-fiber
filler, the differences between the parameters measured before and after the UV-aging were
slightly reduced. This indicated that the addition of the coir-fiber filler treated with henna
effectively protected the PUR composites from UV-radiation and acted as an antiaging
compound. Good resistance of PUR composites against UV-irradiation should be attributed
to the chemical composition of henna, which possesses strong antioxidant activity and
successfully reduces a natural discoloration of PUR composites.
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Mechanical properties are an important parameter that determines the further applica-
tion of PUR composites. The compressive strength of PUR composites depends significantly
on their apparent density. According to the results presented in Table 3, the incorporation of
coir-fiber filler increased the apparent density of PUR composites, due to the incorporation
of the filler with a certain weight. Depending on the content of coir-fiber filler, the value of
apparent density increased from 35.9 kg m−3 to 37.9, 38.2, and 38.6 kg m−3 for PUR_C_1,
PUR_C_2, and PUR_C_5, respectively. This may be explained by the following reasons.
As discussed previously, PUR composites were synthesized in the foaming with CO2,
which was formed in the reaction between water and isocyanate groups. Due to the filler
incorporation, the viscosity of the PUR systems was increased, leading to a greater number
of cells over a given volume. Therefore, the solid phases of PUR composites increased with
the addition of the filler.

Table 3. Cell size, closed-cell content, and apparent density of PUR composites before and after UV-aging.

Sample
Before UV-Aging After UV-Aging

Cell Size
[µm]

Closed-Cell
Content [%] Apparent Density [kg m−3] Cell Size

[µm]
Closed-Cell
Content [%]

Apparent Density
[kg m−3]

PUR_NEAT 490 85.2 35.9 505 75.4 31.3
PUR_C_1 455 85.9 37.9 470 76.2 33.5
PUR_C_2 440 83.2 38.2 455 75.2 33.7
PUR_C_5 430 78.6 38.6 450 70.2 35.8

The impact of the addition of coir-fiber filler on the σ10% of the PUR composites is
presented in Figure 11a. When compared to PUR_NEAT, the value of σ10% increased by
23 and 21% for PUR_C_1 and PUR_C_2, respectively, and decreased by 4% for PUR_C_5.
To eliminate the impact of apparent density on the value of σ10%, the compressive specific
strength, defined as the ratio of σ10% to the apparent density of the PUR composites, was
evaluated as well. Depending on the content of coir-fiber filler, the specific compressive
strength increased from 6.7 kPa/kg/m3 to 7.8 and 7.6 kPa/kg/m3 on the addition of 1
and 2 wt % of coir-fiber filler, respectively, and then decreased to 6.0 kPa/kg/m3 with a
further increase of coir-fiber filler to 5 wt %. An analog dependency is observed in the case
of flexural strength (σF) (Figure 11b). When compared with PUR_NEAT, the value of σF
increased by 9 and 5% for PUR_C_1 and PUR_C_2, respectively, and then decreased by 7%
for PUR_C_5. Previous studies have reported that the mechanical characteristics of porous
materials depend on interfacial interactions between filler surface and polymer matrix,
as well as relatively uniform distribution of the filler in the composite structure [51]. A
similar explanation can also be used in our study. The greatest improvement in mechanical
characteristics was observed for PUR composites reinforced with 1 and 2 wt % of coir-
fiber filler. Such a reinforcing effect may be connected with a uniform distribution of
the coir-fiber filler in the PUR structure, as well as strong interphase adhesion between
the functional groups of coir-fiber filler (mostly hydroxy groups of lawsone compound)
and the PUR matrix. Therefore, the mechanical characteristic of the PUR composites
was enhanced by a more rigid, cross-linked cellular structure. Furthermore, as discussed
previously, the application of the high-energy ball-milling process resulted in the formation
of smaller particles of the filler, which could be easily built in the PUR structure, showing
a reinforcing function and effectively transferring an external load [52–54]. Owing to the
higher stiffness of PUR composites, they were able to absorb more energy, effectively
improving the mechanical resistance [55,56]. It has been shown that when the filler content
was increased to 5 wt %, the mechanical properties were slightly decreased. According to
previous studies, for a filler with an irregular shape, such as a cellulosic filler, the strength
of the reinforced materials can be weakened by the filler’s insufficient ability to bear the
stresses transferred from the matrix of the polymeric composites [55,56]. Besides, the high
content of filler particles can result in poor interfacial adhesion, leading to the formation of
partially separated microvoids between the polymer matrix and the filler surface, which
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prevent stress transfer. Due to the partial separation of the voids, the mechanical properties
of PUR composites were deteriorated. According to the results presented in Figure
11c,d, the controlled UV-aging reduced the mechanical properties of the PUR composites.
Interestingly, the most significant deterioration was observed in the case of PUR_NEAT.
On the addition of coir-fiber filler, the mechanical properties were deteriorated as well;
however, the difference was lower, as in the case of PUR_NEAT. The compressive strength
decreased by ~36% for PUR_NEAT, while for the PUR composites reinforced with coir-fiber
filler, the value decreased by ~28–34%, depending on the concentration of the filler. It
seems that the solid particles of the filler may have acted as a physical barrier during the
UV-aging and effectively supported the overall structure of the PUR composites, which
resulted in better mechanical performances.
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Figure 11. Mechanical performances of PUR composites measured (a,b) before, and (c,d) after the UV-aging.

The dynamic mechanical properties (DMA), such as storage modulus (E′), and the
glass-transition temperature (Tg)—determined as a maximum peak on the graph of tanδ
in the function of temperature—were evaluated. The results for storage modulus are
presented in Figure 12a. When compared to the PUR_NEAT, on the incorporation of
1 and 2 wt % of coir-fiber filler, a significant improvement in E’ was observed. This
may be explained by the following reasons: The alkali treatment removed the impurities
and waxes on a fiber’s surface, and due to this, the fiber’s surface became more rough,
increasing the interphase adhesion between the filler’s surface and the polymeric matrix.
Furthermore, as discussed previously, on the incorporation of coir-fiber filler, the viscosity
of the PUR systems was increased, limiting the mobility of the polymer chains, which
resulted in the higher stiffness of the PUR structure. The incorporation of the coir-fiber filler
increased the cross-linking density of PUR, due to the formation of chemical bridge bonds
between functional groups of the coir-fiber filler and isocyanate groups. This induced
the reinforcement effect and improved the overall mechanical characteristic of the PUR
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composites. On the addition of 5 wt % of coir-fiber filler, the dynamic mechanical properties
of the PUR composites were slightly decreased. This indicates that the addition of coir-fiber
filler in a higher concentration resulted in the formation of a more flexible structure in
the PUR composites. The results for E’ were in agreement with the results for the glass-
transition temperature (Tg) (Figure 12b). When compared with PUR_NEAT, the value of Tg
increased with the addition of the coir-fiber filler. Similar to the results for E’, the greatest
improvement in Tg was observed for PUR_C_1—the value of Tg increased from 149 ◦C
(for PUR_NEAT) to 178 ◦C. Such improvement in Tg observed for the PUR composites
may be connected with the presence of the filler particles, which were built into the PUR
structure and were able to create the interlocks between the PUR cells. Due to this, more
energy was needed to reach the Tg. The dynamic-mechanical properties of PUR composites
subjected to the UV-aging were determined as well. According to the results presented in
Figure 12c,d, after the UV-aging, all PUR composites were characterized by lower Tg and a
reduced value of E’. Similar to the results for mechanical properties, the most significant
decrease in dynamic-mechanical properties was observed for PUR_NEAT—the value of Tg
decreased from 149 to 121 ◦C, while the E’ decreased by ~38%. On the addition of coir-fiber
filler, the deterioration of the properties was not as significant. For example, in the case of
PUR_C_5, the value of Tg decreased from 160 ◦C to 149 ◦C, while the value of E’ decreased
by ~30%.
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Figure 12. Dynamic-mechanical properties of PUR composites measured (a,b) before, and (c,d) after the UV-aging.

Thermal decomposition of the PUR composites was evaluated using thermogravi-
metric analysis (TGA) and derivative thermogravimetric analysis (DTGA). The results are
shown in Table 4 and Figure 13.



Materials 2021, 14, 1128 12 of 16

Table 4. The results of the thermogravimetric and derivative thermogravimetric analyses.

Sample Codes
T10% [◦C] T50% [◦C] T80% [◦C] Char Residue

(at 600 ◦C) [%]

Before UV-Aging

PUR_NEAT 213 312 585 29.2
PUR_C_1 215 320 592 30.3
PUR_C_2 225 319 595 30.9
PUR_C_5 210 310 576 28.7

After UV-Aging

PUR_NEAT 227 309 579 28.3
PUR_C_1 230 313 582 28.9
PUR_C_2 231 315 585 28.8
PUR_C_5 231 308 586 28.2
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Figure 13. TGA results for PUR composites measured (a,b) before, and (c,d) after the UV-aging.

In all cases, a three-stage decomposition of the PUR composites was observed. The
first stage of decomposition (Tmax1) occurred in the range of 200–230 ◦C and referred
to the moisture absorption of cellulosic filler [57–60] and decomposition of the urethane
bond [57,58]. The second stage (Tmax2) of the PUR-composite decomposition occurred
in the range of 300–350 ◦C, and should be assigned to the thermal pyrolysis of hard
segments of PUR, which resulted in the formation of alcohol and isocyanate groups [61–63].
When compared with PUR_NEAT, Tmax2 increased on the addition of 1 and 2 wt % of
coir-fiber filler—the value of Tmax2 increased from 312 ◦C (for PUR_NEAT) to 320 and
319 ◦C, respectively. Due to the more porous structure, the value of Tmax2 decreased
slightly to 310 ◦C on the addition of 5 wt % of coir-fiber filler. The third stage of thermal
decomposition of the PUR composites was mostly connected with the combustion of the
composites, as well as thermal decomposition of the cellulosic derivatives hemicellulose
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and lignin [64,65]. When compared with PUR_NEAT, the PUR composites reinforced with
1 and 2 wt % of coir-fiber filler were more thermally stable—the value of Tmax3 increased
from 585 ◦C (for PUR_NEAT) to 592 and 595 ◦C, respectively. The observed thermal-
degradation behavior indicated that filler particles delayed the temperature of thermal
decomposition by acting as a mass transport barrier and superior insulator to the volatile
compounds, which were released during the thermal decomposition [66]. Besides, the
thermal decomposition of PUR composites may be additionally reduced due to the higher
cross-linking structure of the composites and the additional chemical bond between the
functional groups of coir-fiber filler and isocyanate groups. The obtained results were in
agreement with the results of the mass of char residue of the PUR composites obtained at
600 ◦C. Compared to PUR_NEAT, the mass of char residue increased from 29.2% to 30.3
and 30.9% for PUR_C_1 and PUR_C_2, respectively, and then decreased slightly to 28.7%
for PUR_C_5. Based on this, it can be concluded that during the thermal-decomposition
process, the filler particles could act as radical scavengers, while the higher cross-linking
structure of the PUR composites effectively reduced heat transfer through the composite
structure and improved their thermal resistance [66]. According to the results presented in
Figure 13c,d, the UV-aging affected the thermal stability of the PUR composites; however,
the differences between the maximum temperatures for non-aged and UV-aged PUR
composites were not as significant.

4. Conclusions

In this study, coir fibers were successfully modified with henna (Lawsonia inermis plant)
using a high-energy ball-milling process. In the next step, the developed filler was used
as a reinforcing filler in the production of rigid polyurethane (PUR) foams. The impact
of 1, 2, and 5 wt % of coir-fiber filler on the structural and physico-mechanical properties
were evaluated. The obtained results revealed that depending on the filler content, an
improvement or deterioration of the examined properties was observed. Among all
modified series of PUR composites, the greatest improvement in physico-mechanical
performances was observed for the PUR composite reinforced with 1 wt % of the coir-fiber
filler. For example, on the addition of 1 wt % of coir-fiber filler, the compression strength
was improved by 23%, while the flexural strength increased by 9%. Similar dependence
was observed in the case of dynamic-mechanical properties—on the addition of 1 wt %
of the filler, the glass-transition temperature increased from 149 ◦C to 178 ◦C, while the
value of the storage modulus increased by ~80%. Interestingly, it was found that the
PUR composites reinforced with coir-fiber filler were characterized by better mechanical
performances after the UV-aging. Moreover, the incorporation of low thermally-stable
cellulosic filler did not deteriorate the thermal stability of the PUR composites. When
compared with the reference PUR composites, all series of modified PUR composites
exhibited a similar degradation pattern. This led to the conclusion that the application of
henna protected the coir-fiber filler and the reinforced PUR composites from UV-aging and
high temperatures.
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